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Abstract

Let w = {03BEj}~j=1 be a sequence in [0, 1). We define the discrepancy
function Dn by Dn (w, a) = Zn(03C9, a) - na, where Zn(03C9, a) is the num-
ber of elements in [0, 03B1) among the first n terms of w. It is known that

sup03B1,n|Dn(03C9,03B1)| = ~ for every sequence 03C9. In this paper sets S are

characterized for which an w exists such that supn|Dn(03C9,03B1)|  ~ for
every a E S. Furthermore we investigate sets S such that

SUPaES, nEN IDn (w, a)1  00 for some w. In particular, we show in Corol-
lary 1 of Theorem 5 that such sets S have relatively large gaps.
Theorems 1-4 are based on Lemma 1, which provides a construction
for sequences with small discrepancy at specific points. Theorems 5
and 6 are applications of Lemma 3 which is proved by a method of
W.M. Schmidt.

1. Introduction

Let U be the unit interval consisting of numbers e with 0 ~ 03BE  1,
and let w = {03BE1, e2, ...} be a sequence of numbers in this interval.

Given an a in U and a positive integer n, we write Zn(w, 03B1) for the
number of integers i with 1:5 i ~ n and 0 s ei  a and we put
Dn(w, 03B1) = Zn(w, a) - na. For convenience we define Dn(w, 1) = 0 and
D0(03C9, a) = 0 for all a, n and w. Put D(w, a) = sUPnIDn(w, a)l.

In answering a question of J.G. van der Corput [2], Mrs. T. van
Aardenne-Ehrenfest [1] showed that there is no sequence w in U for
which supaEu D(03C9, a) is bounded. P. Erdôs [3] wondered whether for

* Key Words &#x26; Phrases: Discrepancy, irregularities of distribution, uniform dis-

tribution.
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every séquence there exist numbers a such that D(w, a) = 00. This
was answered by W.M. Schmidt [4] in the affirmative. Later Schmidt
[7, p. 40] proved that for every séquence even

for almost all a. Schmidt [5] also investigated sets at which D can
remain bounded. He demonstrated that the set S(-) : = f a : D(03C9, a) 
-1 is countable for every sequence w. Theorem 1 gives the opposite
result that for every countable subset S of U there exists a sequence
03C9 such that D(03C9, a)  ~ for every a in S. In the special case S = Q
Theorem 3 gives a quantitative result which is in a sense the best

possible. We remark that Schmidt [6] generalized his result on the
countability of S(~) in a very remarkable manner. See also L. Shapiro
[8].
We call S a K-discrepancy set if there exists a sequence w such that

D(w, a)  K for every a in S. A bounded discrepancy set (BDS) is a
set which is a K-discrepancy set for some K. Theorem 2 states that

every finite set is a BDS. Recall that a number y is a limit point of a
set S if there is a sequence of distinct elements of S which converges
to y. The derivative S(I) of S consists of all the limit points of S.
The higher derivatives are defined inductively by S(d) = (S(d-l))(1)
(d = 2, 3, ...). Schmidt [5] proved that S(d) is empty if S is a K-

discrepancy set and if d &#x3E; 4K. Furthermore he showed that S(d) need
not be empty if S is a d-discrepancy set. This provides a necessary
condition for being a BDS. The fact that S = fn-’I,’ =2 is not a BDS
while S(2) = 0 shows that the condition is not sufficient. The corollary
of Theorem 5 gives a property of a BDS which this set does not
fulfill: if S is a BDS then there is an E &#x3E; 0 such that every interval of

length e contains a subinterval J of length Et with J rl S = 0. It seems
a difficult problem to characterize BDS’s in a simple way, if possible
at all. In Section 4 we argue that the essential problem already occurs
for a monotonic decreasing sequence with limit 0. Theorem 4 gives a
sufficient condition for being a BDS and in Theorem 6 we show that
in a certain case the necessary and sufficient conditions coincide.

2

The basic tool for constructing BDS’s is the following lemma.

LEMMA 1: Let a, 03B2, y be real numbers with 0 ~ a  03B2  03B3 ~ 1. Let
V C U. Assume there is a sequence 03C9 = {03BEn}~n=1 in V such that
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D(03C9, a):5 A and D(03C9, 03B3) ~ C. Then there exists a sequence w= {03BE’n}~n=1
in V ~ {a} ~ {03B2} such that

(i) 03BE’n = 03BEn if 03BEn ~ [0, 03B1)~[03B3,1),
(ii) en’ ~ {03B1, 03B2} if en E [a, 03B3),

(iii) D(03C9’, x) = D(03C9, x) for x E [0, a] U [y, 1),

(iv) D(03C9’,03B2)~.

PROOF: We may assume without loss of generality that en = a if

en E [a, y), since D(w, x) for x E (a, y) is of no importance for the
lemma. We shall prove by induction on m that we can define

03BE’m E {03B1, 03B2} in such a way that

where

It is obvious that ào = 0 and that (1) holds for m = 0. Suppose that m
is some non-negative integer for which the induction hypothesis
holds. If )m+i E [0, a) U [y, 1), then we put 03BE’m+1 = 03BEm+1. If follows that

if 03BEm+1 ~ [0, a ) and that

if 03BEm+1 ~ [03B3, 1). Hence (1) holds in this case. If 03BEm+1 = 03B1 then put
03BE’m+1 = a if 0394m ~ «(3 - 03B1)/(03B2 - a) -! and 03BE’m+1 = 03B2 otherwise. If 03BE’m+1 =
a, then

and hence, by (1), -1:5 0394m+1 ~ 1 2. If 03BE’m+1 = 03B2, then



378

and hence, by (1), -1 2~0394m+1 ~ 1 2. Thus (1) is valid with m + 1 in place
of m.

By the above construction a sequence w’= {03BE’n}~n=1 is defined which

satisfies (i) and (ii). Further (iii) is an immediate consequence of (i)
and (ii). Finally it follows from (1) and (2) that

for m = 1, 2,.... This implies (iv).

REMARK: Note that the discrepancy of w’ is bounded in both a and
03B2 and y. Hence w’ assumes both values in [a, 03B2) and in [/3, y). By (i)
and (ii) this implies that both a and 03B2 occur as terms of w’.

3

Schmidt [5] proved that every S(-)-set is countable. The following
theorem shows that every countable set is a S(-)-set.

THEOREM 1: For every countable set S = {03B11, 03B12...} in U there exists a
sequence w such that D(03C9, aj)  00 f or j = 1, 2, ....

PROOF: Without loss of generality we may assume that 0, ai,

a2, ... are distirict numbers. We shall prove by induction on m that
there exists a sequence wm = {03BEm, 1, en, 2, ...} in 10, 03B11, ..., 03B1m} such that

(i) D(wm, 03B1j) = D(03C9m-1, 03B1j) for j = 1, 2,..., m - 1,
(ii) D(wm, 03B1j)  00 for j = 1, 2, ..., m,
(iii) If 1 ::5 j  m and 03BEm-1, n is the first element of 03C9m-1 with 03BEm-1, n =

aj, then en, n = aj.
For m = 1 we apply Lemma 1 with a = 0, j8 = ai, y = 1, A = C = 0,
V = {0}. Suppose that m is a non-negative integer for which the
induction hypothesis holds. Let a be the largest element of the set
{0, 1, 03B11, ..., 03B1m} which is smaller than am+, and let y be the smallest
element of this set which is larger than 03B1m+1. Apply Lemma 1 with this
a and y and with j8 = am+i. This gives a sequence 03C9’m+1 in

{0, 03B11, ..., 03B1m+1} satisfying (i) and (ii). Let n be the smallest integer
with gm, n = a. If 03BE’m+1,n = a, then put wm+1 = 03C9’m+1. If 03BE’m+1,n = /3, then
we form Wm+1 by interchanging the first a and the first j8 in 03C9’m+1. This
change does only affect the discrepancy in (a, 0], in fact by at most 1
in absolute value. Since 03C9m+1 is derived from wm by merely replacing
some a’s by 03B2’s, the other a/s in wm remain unaltered. Thus 03C9m+1

satisfies (i)-(iii) and the induction step is complete.
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By (iii) the sequence {03BEm,n}~m=1 is constant from some mo = mo(n) on.
Put gn = çmo, n. This induces a sequence (0 = fel, 03BE2,...}. By the con-
struction 03BEn  03B1j if 03BEj,n  03B1j and 03BEn ~ 03B1j if 03BEj,n ~ 03B1j, for all j and n.

Hence D(w, aj) = D(03C9j, aj)  00 for j = 1, 2, ....

REMARK: The above proof gives in fact that there exists a

séquence such that D(w, aj) :5 3j/2 for j = 1, 2, .... As the referee
suggested this result can be generalized to measurable sets. Defining
the discrepancy function D(oi, B) in the natural way, Lemma 1

implies that for any sequence of measurable subsets A1, A2, ... of a
set A of measure 1 there exists a sequence w in A such that

D(03C9, Aj) ~ j.2j for j = 1, 2,.... We intend to develop more ap-

propriate techniques leading to a better upper bound in the near

future.
The next theorem gives an estimate for the case of a finite set in U

which can only be improved by a constant factor in view of Corollary
2. In particular it shows that every finite set of numbers in [0, 1) is a
BDS.

THEOREM 2: For every finite set S = {03B11, a2, an 1 in U there exists a
sequence w such that

PROOF: We prove by induction on t that for every finite set

f a,, a2, ..., a2’-Il in U there exists a sequence 03C9t such that D(ô)h 03B1j) ~ t/2
for j = 1, 2, ..., 2t - 1. For t = 1 we apply Lemma 1 with a = 0, 03B2 = ai,
03B3 = 1, A = C = 0. Suppose the induction hypothesis is true for t. Let

f al, a2,..., 03B12t+1-1} C U. We may assume without loss of generality that
003B1103B12···  03B12t+1-1. Put ao = 0. There exists a sequence 03C9’t in

{03B10, a2, 03B14, ..., 03B12t+1-2} such that D(03C9’t, 03C92i) ~ t/2 for i = 0, 1, ..., 2t - 1.
On applying Lemma 1 with a = 03B12i, j8 = a2i+I, y = a2i+2, A = C = t/2 for
i = 0, 1, ..., 2t-1 and combining the resulting sequences in an obvious
way, we obtain a sequence ô)t+1 such that D(03C9t+1, 03B1i) ~ (t + 1)/2 for
i = 0, 1,..., 2t+1 - 1. This proves the induction hypothesis for all values
of t.

Let a set S = {03B11, a2, ..., 03B1m} be given. Let t be the integer with
2t-1 ::5 m  2’. We have shown that there exists a sequence 03C9 = 03C9t with
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The following result gives a quantitative form of Theorem 1 in the

special case S = Q which is best possible in a similar way as Theorem
2 is.

THEOREM 3: There exists a sequence w such that

for every p/q with p, q E Z and 0  p  q.

PROOF: We prove by induction on t that there exists a sequence
wi = {03BEt,n}~n=1 in a finite set Vt of at most 23t rational numbers with the
following properties:

(i) Vt-1 ~ Vt for t ~ 2,
(ii) Vt contains all numbers p2-2t with p E Z and 0 ~ p  2 2t
(iii) Vt contains all numbers pq-’ with p, q E Z and 0  p  q :5 2t,
(iv) if a E Vt-I and 03BEt-1,n is the first element of w,-, with 03BEt-1,n = 03B1,

then çt, n = a,
(v) D(Wh 03B1) ~ 5 2t - 3 2 for every a in Vt.

For t = 1 we take VI = {0, 4, 1, 4} and by a double application of
Lemma 1 there exists a sequence wi in VI such that D(03C91, 03B1) ~ 1 for
a E VI. Suppose t is a positive integer for which the induction

hypothesis is true. We construct Vt+l in three steps:

Observe that at each step any two "new" points are separated by an
"old" point. Hence we can apply Lemma 1 as we did in the proof of
Theorem 2 and we obtain séquences, 03C9"t, 03C9"’t with discrepancy at
V’t, V"t, V,,, at most 2t - 1, 5 2t - 1 2, 5 2t respectively. Clearly (i)-(iii) are
fulfilled with t + 1 in place of t. For every a E Vt with the property
that 03BEt+1,n ~ 03B1 where n is the smallest integer with et, n = a we make
an interchange like in the proof of Theorem 1. In such a case 03BEt+1 n is
a number 03B2 E Vt+1BVt which is smaller than the smallest element of Vt
which is larger than a. By interchanging the first a and the first 0 in
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03C9"’t the discrepancy function remains unchanged outside the interval
(a, 0] and changes by at most 1 in (03B1, 03B2] in absolute value. Since
these intervals (a, 03B2] are disjoint, the sequence (1Jt+ 1 which results
after all interchanges have been made, satisfies (iv) with t + 1 in place
of t and moreover D(03C9t+1, 03B1) ~ 5 2t + 1 for every a E Vt+l. This com-
pletes the induction step.
By (iv) the sequence {03BEt,n}~n=1 is constant from some to = to(n) on.

Put e,, = çto, n. This induces a séquence = {03BE1, e2, ...}. By the con-
struction 03BEn  a if çt, n  a and Çn 2:: a if et,, ~ a for every a, n and t

with a E Vt. Let p/q E Z with 0  p  q ~ 2‘. Let t be the integer with
2t-1  q ~ 2t. Then p/q E V,. Hence

4

Suppose we want to decide whether a set S is a BDS. If it is,
there exists a sequence w and an integer d such that

It follows from a result of Schmidt [5] that S has to be countable and
S(4d+l) = 0. Note that Dn(03C9, a) = lim~~0 Dn(03C9, 03B1 + E) for every a and n.
Hence if ao is the limit of an increasing sequence in S and S satisfies
(3) then D(w, ao) :5 d. If ao &#x3E; 0 is a limit point of S but not the limit of
an increasing sequence in S, then we can replace every ao in w by
ao - E for a sufficiently small E &#x3E; 0 without changing D(a) for

a E S U S(1)B{03B10}. For this new sequence w’ we have Dn(03C9’, ao) = limE 10
Dn(03C9, ao + e) ::5 d f or every n. Since we can do so f or all such ao E S(1)BS
simultaneously, we conclude that S is a BDS if and only if S U S(1) is a
BDS. We may therefore assume without loss of generality that S is
closed. It further follows that S(j) (j = 1, 2,...) as a subsequence of S is
also a BDS. So it is sufficient to be able to decide whether a set S is a BDS

if it is known that S(1) is a BDS, for then one can apply the argument to
make the transitions S(4d+1) ~ S(4d) ~···S(1)~S.
Let S be a set such that S(1) is a BDS. For a E S let ~(03B1) denote an

element in S(1) with |03B1 - ~(03B1)| minimal. Let 03B2 E S(1) and let 03B11, a2...

be all elements of S with ~(03B1j) = j8 and a; &#x3E; 03B2 ordered in such a way
that 03B11 &#x3E; a2 &#x3E; a3 &#x3E; .... It is obvious that al, a2, ... is a BDS if and

only if al - 03B2, a2 - (3, ... is a BDS. For the points a E S with ~(03B1) = 03B2
and a  (3 a similar argument applies. So the essential difficulty is to
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decide whether a monotonic sequence 03B11, a2, ... in U with limit 0 is a

K-discrepancy set or not. If S(1) is a BDS and there exists a constant K
such that for every (3 E S(1) both the points a E S with ~(03B1) = 03B2,
a  (3 and the points a E S with ~(03B1) j3, a &#x3E; 03B2 are K-discrepancy
sets, then S is a BDS itself.
The following result gives a sufficient condition for a monotonic

decreasing sequence with limit 0 to be a BDS. Necessary conditions
for such sequences are given in Theorems 5 and 6.

THEOREM 4: Let {03B1n}~n=1 be a monotonic decreasing sequence in U
with an - 0 as n - 00. If there exists a positive integer h and a constant
c with c  1 such that an+h  can for n = 1, 2, ..., then there exists a
sequence w such that

PROOF: We prove by induction on t that there exists a sequence
wi = {03BEt,n}~n=1 in {0, ath, 03B1th-1, ..., all such that

and

For t = 0 the assertion is true. Suppose t is a non-negative integer for
which the induction hypothesis holds. First apply Lemma 1 with

03B1=0, 03B2=03B1(t+1)h, 03B3 = 03B1th (03B3 = 1 if t = 0), A = 0, C = (2 - 2c)-’.
Hence, there exists a sequence w) in f 0, 03B1(t+1)h, «th, ath-1, 03B1th-2,..., 03B11}
such that

and

Next we apply the argument used in the proof of Theorem 2 to the
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points 03B1(t+1)h-1, ..., ath+l. The only difference is that everywhere A and
C have to be increased by (2 - 2c)-1. So we obtain a sequence (»t+l in
f 0, 03B1(t+1)h, 03B1(t+1)h-1, all which satisfies (4) and (5) with t + 1 instead

of t.

Every sequence {03BEt,n}~t=1 1 is constant from some t0 = t0(n) on. Let
03BEn = limt~~03BEt,n. This defines the sequence (ù = {03BEn}~n=1. As before we
have

D(w, ’ = D(Wj, 03B1j) 2 - 2c 2 log 2 
5

To derive further properties of a BDS we use a technique due to
Schmidt [5]. Since we shall work from now on with one sequence w only,
we shall suppress the variable w and write Dn(a), etc. Let I and J be real
intervals. We shall use the following notations.

and

The following lemma involves Schmidt’s basic idea.

LEMMA 2: Suppose a, (3 E U and suppose that J, K are subintervals
of an interval L Then

PROOF: [5, Lemma 5].
We use Lemma 2 to show that the average value of hl(a) in a

sequence of well-spaced points a cannot be very small.

LEMMA 3: Let À be a real number with 0  03BB~1/2. Let c and t be

positive integers with 3Àc 4. Put m = (4c)t. Let I be a real interval
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[x, y) with x ~ 0 of length at least m/À. Let ao, 03B11, ..., am-t 1 be real
numbers satisfying 0  aj - aj-t :5 Aclm for j = 1, 2,..., m - 1 and

aj+m/2 - 03B1j ~ 03BB f or j = 0, 1, ..., ’ 2 rn - 1. Then, for any sequence w in U,

PROOF: Let J = [v, w) be any interval of length m/(4cÀ) with v ~ 0.
Take integers a and b such that v:5 a  v + 1 and w - 1 ~ b  w.

Suppose

Then, for j = 0, 1, ..., 1 2 m - 1,

Hence,

On summing over j we obtain that under the supposition (7)

for any positive interval J of length m/(4cÀ).
We use induction on t. For t = 1 we have Dn(03B1) + n03B1~Z. Let

j E {0, 1,..., 1 2m - 1}. By the conditions of the lemma we have
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Since min(1 6, 1 2 03BB) ~ 03BB 3, we have ~03B1j~~03BB/3 or ~03B1j+m/2~~03BB/3, where ~03B1~
denotes the distance from a to the nearest integer. We can therefore
choose integers i E {j, j + m/2} and r, s E I such that Dr(03B1i) -
Ds(03B1i) ~ 1/4. Hence hI(03B1i) ~ 1/4 and therefore

This proves the lemma in case t = 1.

We now assume that the assertion of the lemma holds for t - 1 and

we shall deduce it for t. Put

Let Zj be the number of pairs (03BC, 03BE03BC) with x + m/(403BBc) ~ 03BC 
x + 2m(4Ac) and e, - p E [03B1j-1, aj) for some integer p. Hence Zj is a

non-negative integer. We distinguish two cases.
(a) Assume 03A3m-1j=1 zj :5 m/(8c). Then (7) is fulfilled for v = x + m/(4Àc),

w = x + m/(203BBc). Hence, by (8),

Since J2 C I, this implies inequality (6).
(b) Assume 03A3m-1j=1 Zj &#x3E; m/(8c). For every r E Il and s E J3 we have

Hence, for j = 0, 1,..., m - 1, in case Zj ~ 1,

By Lemma 2, or obviously if zj = 0,
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On applying the induction hypothesis to Ji and the point sets

, we obtain

for j = 1 and j = 3. Hence,

This proves Lemma 3.

6

As an applicant of Lemma 3 we derive the following theorem.

THEOREM 5: Let y and 03B4 be real numbers with 0 ~ y  03B4 ~ 1. Let H

be some positive integer. Let y = al, a2, ..., aN = 03B4 be real numbers

satisfying 0  03B1i+1 - ai ç (S - 03B3)/H for i = 1, 2,..., N - 1. Then for
every sequence w

PROOF: Put ~=03B4-03B3. Let t = [log (H/3)/log 16]. So H/48  161 :5

H/3. Split [y, 8) into 3.16t parts of equal lengths and choose in every
third part a point from {03B11, 03B12, ..., 03B1N}. This is possible, since

~/3.16t ~ ~/H. This gives m = 16’ points (3., 03B22, ..., (3m with 0j - pj-1 «-5
4~/(3m). Further 03B2j+m/2 - 03B2j ~ ~/3. We apply Lemma 3 with À = tl3
and c = 4. Hence
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It follows that for any sequence 03C9

In particular (9) holds.

COROLLARY 1: Let S be a BDS. Then there exists an E &#x3E; 0 such
that every subinterval of U of length t contains a subinterval J of
length at least Et with J rl S = 0.

PROOF: Let S be any BDS. Let w be a sequence and K a positive
number such that

Let [y, 8) be any subinterval of U. Choose H so large that

Put E = H-1. Then, by Theorem 5, max,=i, ND(03C9, ai) &#x3E; K for any set

{03B11,...,aN} in [y, 5) with 0  03B1j+1 - 03B1j ~ ~(03B4 - 03B3) for j =
1, 2,..., N - 1. Thus S does not contain such a subset. This proves
the corollary.
The following result shows that Theorems 2 and 3 cannot be

improved by more than a constant factor. (The constant (4000)-1 can
be improved considerably.)

COROLLARY 2: Let n &#x3E; 482. Then for every sequence w

7

It follows from Corollary 1 that S = {1 n}~n=2 is not a BDS. This result is
also a consequence of the following theorem which gives a necessary
and sufficient condition for sequences satisfying a certain regularity
condition.

THEOREM 6: Let al, 03B12, ... be a strictly decreasing sequence with
limit 0. Suppose there exists a constant c such that an-1 - 03B1n ~
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c(03B1m-1 - am ) for every n and m with n ~ m. Then S = {03B11, a2, ...} is a
BDS if and only if for some positive integer h

PROOF: Suppose lim supn-m an+h 03B1-1n 1. Then there exists a con-
stant c  1 such that an+h  can for n = 1, 2, .... It follows from

Theorem 4 that S is a BDS. (Here we did not use the regularity
condition.)
Suppose S is a BDS. Then by Corollary 1 there exists a positive

number E such that every interval [0, an) contains an interval J of
length Ean such that S ~ J = 0. Let k be such that J C (an+k, an+k-i).
Then

Hence,

Thus k :5 cE-’ is bounded, which implies that for h = [CE-’]
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