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BOUNDED DISCREPANCY SETS*

R. Tijdeman and M. Voorhoeve

Abstract

Let o = {§}72 be a sequence in [0, 1). We define the discrepancy
function D, by D,(w, @) = Z,(w, a) — na, where Z,(w, o) is the num-
ber of elements in [0, o) among the first n terms of w. It is known that
SUP4 n|Dn(w, )| = for every sequence w. In this paper sets S are
characterized for which an o exists such that sup,|D,(w, )| < for
every o« €S. Furthermore we investigate sets S such that
SUPqes, nen|Dn(w, a)| < for some w. In particular, we show in Corol-
lary 1 of Theorem 5 that such sets S have relatively large gaps.
Theorems 14 are based on Lemma 1, which provides a construction
for sequences with small discrepancy at specific points. Theorems 5
and 6 are applications of Lemma 3 which is proved by a method of
W.M. Schmidt.

1. Introduction

Let U be the unit interval consisting of numbers & with 0=§ <1,
and let w ={&, &,...} be a sequence of numbers in this interval.
Given an o in U and a positive integer n, we write Z,(w, a) for the
number of integers i with 1<i=<n and 0=§¢ <a and we put
D, (w, a) = Z,(w, a) — na. For convenience we define D,(w, 1) =0 and
Dy(w, @) =0 for all a, n and w. Put D(w, a) = sup,|D,(w, a)|.

In answering a question of J.G. van der Corput [2], Mrs. T. van
Aardenne-Ehrenfest [1] showed that there is no sequence w in U for
which sup,ecv D(w, ) is bounded. P. Erdos [3] wondered whether for

*Key Words & Phrases: Discrepancy, irregularities of distribution, uniform dis-
tribution.
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376 R. Tijdeman and M. Voorhoeve [2]

every sequence o there exist numbers a such that D(w, a) = . This
was answered by W.M. Schmidt [4] in the affirmative. Later Schmidt
[7, p. 40] proved that for every sequence w even

) |Dp(w, o)) 1
lim sup oo Togn ~ 2000

for almost all a. Schmidt [5] also investigated sets at which D can
remain bounded. He demonstrated that the set S(x) := {a:D(w, a) <
o} is countable for every sequence w. Theorem 1 gives the opposite
result that for every countable subset S of U there exists a sequence
o such that D(w, a) <o for every a in S. In the special case S =Q
Theorem 3 gives a quantitative result which is in a sense the best
possible. We remark that Schmidt [6] generalized his result on the
countability of S() in a very remarkable manner. See also L. Shapiro
(81.

We call S a k-discrepancy set if there exists a sequence o such that
D(w, a) <k for every a in S. A bounded discrepancy set (BDS) is a
set which is a k-discrepancy set for some . Theorem 2 states that
every finite set is a BDS. Recall that a number v is a limit point of a
set S if there is a sequence of distinct elements of S which converges
to y. The derivative S of S consists of all the limit points of S.
The higher derivatives are defined inductively by S =(S¢@D)®
(d=2,3,...). Schmidt [5] proved that S® is empty if S is a «-
discrepancy set and if d >4«. Furthermore he showed that S need
not be empty if S is a d-discrepancy set. This provides a necessary
condition for being a BDS. The fact that S = {n"!}3., is not a BDS
while S@ = @ shows that the condition is not sufficient. The corollary
of Theorem 5 gives a property of a BDS which this set does not
fulfill: if S is a BDS then there is an € >0 such that every interval of
length ¢ contains a subinterval J of length e¢ with J NS =@. It seems
a difficult problem to characterize BDS’s in a simple way, if possible
at all. In Section 4 we argue that the essential problem already occurs
for a monotonic decreasing sequence with limit 0. Theorem 4 gives a
sufficient condition for being a BDS and in Theorem 6 we show that
in a certain case the necessary and sufficient conditions coincide.

2

The basic tool for constructing BDS’s is the following lemma.

LeEMMA 1: Let «, B, v be real numbers with 0=a <B <y =1. Let
V C U. Assume there is a sequence w ={&}n-1 in V such that
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D(w, @) = A and D(w, y) = C. Then there exists a sequence ' = {£x}n-1
in VU {a}U{B} such that
() én=& if & E[0, ) ULy, 1),

(i) én€{a, B}if & Ela, y),

(iii) D(w’, x) = D(w, x) for x €[0, a] U [y, 1),

) D@, p) =B a+B-2c]

Proor: We may assume without loss of generality that & = a if
& € la, y), since D(w, x) for x €(a, y) is of no importance for the
lemma. We shall prove by induction on m that we can define
&, € {a, B} in such a way that

(1) _%SAm S%
where
@ a=Duw.p-2ZE Drw. 0 - EZE Drtw .

It is obvious that 4o =0 and that (1) holds for m = 0. Suppose that m
is some non-negative integer for which the induction hypothesis
holds. If &,41 € [0, @) U [y, 1), then we put &,y = &n+1. If follows that

Ani=dnt(1-p) 1L 1-0)- L2 (1- 92
if &n+1 €10, @) and that

A _paY—B _B-a_ _
Am+| Am B+y_aa+y_ay Am

if £&n+1€1[y,1). Hence (1) holds in this case. If &,.,=a then put
Enn=a if Apn=(B—a)l(y—a)—1}and &, =B otherwise. If &,,;=
a, then

—a

Bnr = A+ (1= )+ 1= ga %}ga—wszu—ﬁ_a

and hence, by (1), —3=<Ap+1 <4 If £,., =B, then

~a,-B=@
Y-«

m+1
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and hence, by (1), —3< A+ =3. Thus (1) is valid with m + 1 in place
of m.

By the above construction a sequence o' = {£,}5- is defined which
satisfies (i) and (ii). Further (iii) is an immediate consequence of (i)
and (ii). Finally it follows from (1) and (2) that

IDat’, B =22 |Du(0, @)+ B2 Do 9 45
for m =1, 2,.... This implies (iv).

REMARK: Note that the discrepancy of ' is bounded in both « and
B and y. Hence o' assumes both values in [a, B) and in [B, y). By (i)
and (ii) this implies that both @ and B occur as terms of w'.

3

Schmidt [5] proved that every S(«)-set is countable. The following
theorem shows that every countable set is a S(«)-set.

THEOREM 1: For every countable set S = {ay, a,. . .} in U there exists a
sequence o such that D(w, aj) <o forj=1,2,....

Proor: Without loss of generality we may assume that 0, a,
ay, ... are distinct numbers. We shall prove by induction on m that
there exists a sequence wpn = {&m 1, &m.2, . - -} in {0, ay, . . ., am} such that

(i) D(@m, @) = D(@m-1, ) forj=1,2,...,m—1,

(ii) D(wm, aj) <o for j=1,2,...,m

(iii) If 1 =j <m and &,- , is the first element of wy,-1 with &,-1,, =

aj, then &y » = a.
For m =1 we apply Lemma 1 with a =0, B=a;, y=1, A=C=0,
V ={0}. Suppose that m is a non-negative integer for which the
induction hypothesis holds. Let a be the largest element of the set
{0,1, ay, ..., am} Which is smaller than an+; and let y be the smallest
element of this set which is larger than a,+;. Apply Lemma 1 with this
a and y and with B =an.. This gives a sequence wp+ in
{0, ay, . . ., am+1} satisfying (i) and (ii). Let n be the smallest integer
with &, = a. If £n41.0 = a, then put Wms1 = Wmer. If €y o = B, then
we form wn.+; by interchanging the first « and the first 8 in w/,+,. This
change does only affect the discrepancy in (a, B], in fact by at most 1
in absolute value. Since wp., is derived from w, by merely replacing
some a’s by B’s, the other q;’s in @, remain unaltered. Thus w4
satisfies (i)—(iii) and the induction step is complete.
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By (iii) the sequence {&n »}m=1 is constant from some mo = mo(n) on.
Put &, = &, . This induces a sequence w = {{;, &,...}. By the con-
struction &, <aq; if §,.<a; and & =q; if &,= ¢, for all j and n.
Hence D(w, ¢j) = D(wj, aj) <o forj=1,2,....

REMARK: The above proof gives in fact that there exists a
sequence o such that D(w, ;) =<3j/2 for j=1,2,.... As the referee
suggested this result can be generalized to measurable sets. Defining
the discrepancy function D(w, B) in the natural way, Lemma 1
implies that for any sequence of measurable subsets A;, A,,... of a
set A of measure 1 there exists a sequence w in A such that
D(w, A))<j.2 for j=1,2,.... We intend to develop more ap-
propriate techniques leading to a better upper bound in the near
future.

The next theorem gives an estimate for the case of a finite set in U
which can only be improved by a constant factor in view of Corollary
2. In particular it shows that every finite set of numbers in [0, 1) is a
BDS.

THEOREM 2: For every finite set S = {a,, az, . . ., am} in U there exists a
sequence w such that

N log2m) .
D(w, aj) s——z Tog 2 forj=1,2,...,m.

Proor: We prove by induction on t that for every finite set
{ai, az, ..., ax_i}in U there exists a sequence w; such that D(w;, a;) < t/2
forj=1,2,...,2'—1. For t =1 we apply Lemma 1 with « =0, 8 = a;,
y =1, A= C =0. Suppose the induction hypothesis is true for t. Let
{ay, ay, . .., axn_} C U. We may assume without loss of generality that
0<a1<ar<---<ap+_;. Put ap=0. There exists a sequence w; in
{ao, a2, ay, . . ., ax+i_3} such that D(w}, az)<t/2 for i=0,1,...,2" —1.
On applying Lemma 1 with a = ay;, B = agi+1, ¥ = agie2, A = C =2 for
i=0,1,...,2 — 1 and combining the resulting sequences in an obvious
way, we obtain a sequence w.;; such that D(w+1, ;) < (t +1)/2 for
i=0,1,...,2""" = 1. This proves the induction hypothesis for all values
of t.

Let a set S ={a;, as,...,an} be given. Let t be the integer with
2t"1=m < 2'. We have shown that there exists a sequence o = w, with

logm
log 2

D(w, aj)s—zl—t<l<1+

> ) forj=1,2,...,m.
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The following result gives a quantitative form of Theorem 1 in the
special case S = Q which is best possible in a similar way as Theorem
2 is.

THEOREM 3: There exists a sequence o such that
D
D w,q =1+4logq

for every plq with p,q €Z and 0 <p <q.

Proor: We prove by induction on t that there exists a sequence
w; = {& »}7-1 in a finite set V, of at most 2* rational numbers with the
following properties:

(i) Vo ,CV,fort=2,

(ii) V, contains all numbers p2 % with p € Z and 0 < p < 2%,

(iii) V, contains all numbers pq~' with p, g€Z and 0<p <q <2,

(iv) if « € V,_; and &, is the first element of w,-, with &, , = a,
then & , = a,

(v) D(w, @) <3t —13for every a in V..

For t=1 we take V,={0,13,3} and by a double application of
Lemma 1 there exists a sequence w; in V, such that D(w;, a) <1 for
a € V. Suppose t is a positive integer for which the induction
hypothesis is true. We construct V.., in three steps:

Vi= V,U{?k,:—l:kEZ,0<k<22'“},

Vi= V;U{-zzlf—+2: kEZ,0<k<22‘*2},

Vi = V’,’U{%z P,qEZ,0<p<gq 52'“}.
Observe that at each step any two ‘“‘new’” points are separated by an
“old” point. Hence we can apply Lemma 1 as we did in the proof of
Theorem 2 and we obtain sequences w}, o}, w'{ with discrepancy at

i, V' V.. at most 5t — 1, 3t — 1, 3t respectively. Clearly (i)(iii) are
fulfilled with t + 1 in place of t. For every a € V, with the property
that &.,,# « where n is the smallest integer with & ., = « we make
an interchange like in the proof of Theorem 1. In such a case &, 1S
a number B € V,,,\V, which is smaller than the smallest element of V.,
which is larger than «. By interchanging the first « and the first g in
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o't the discrepancy function remains unchanged outside the interval
(a, B] and changes by at most 1 in («, B] in absolute value. Since
these intervals (a, B] are disjoint, the sequence w,.; which results
after all interchanges have been made, satisfies (iv) with t + 1 in place
of t and moreover D(ws, o) <3t +1 for every a € V,,,. This com-
pletes the induction step.

By (iv) the sequence {&, .}n-1 is constant from some to= ty(n) on.
Put & =&, ». This induces a sequence w ={{, &,...}. By the con-
struction §, <a if &, <a and &, =« if & ,=a for every a,n and ¢
with « € V,. Let p/q € Z with 0 <p < q =2'. Let t be the integer with
2" < q =2'. Then p/q € V.. Hence

5, 3
D(w,%)zD(a),,%)sit—§<l+5 log g2 log2<1+4logq.

4

Suppose we want to decide whether a set S is a BDS. If it is,
there exists a sequence o and an integer d such that

3) D(w,a)=d forevery a €S.

It follows from a result of Schmidt [5] that S has to be countable and
S@+) = ¢ Note that D,(w, a) = lim. ;¢ Da(o, a + €) for every « and n.
Hence if ay is the limit of an increasing sequence in S and S satisfies
(3) then D(w, ag) = d. If ap>0 is a limit point of S but not the limit of
an increasing sequence in S, then we can replace every ap in @ by
ag— € for a sufficiently small € >0 without changing D(a) for
a € S U SP\{ay}. For this new sequence o’ we have D,(w’, ao) = lim, o
Da(w, a0+ €) = d for every n. Since we can do so for all such ap € S™\S
simultaneously, we conclude that S is a BDS if and only if SU S is a
BDS. We may therefore assume without loss of generality that S is
closed. It further follows that S? (j = 1,2, ...) as a subsequence of S is
also a BDS. Soitis sufficient to be able to decide whether a set S isa BDS
if it is known that SV is a BDS, for then one can apply the argument to
make the transitions S“*V > §¢V ... 580G

Let S be a set such that SV is a BDS. For a € S let ¢(a) denote an
element in S with |a — ¢(a)| minimal. Let g € S and let ay, as. ..
be all elements of S with ¢(a;) = B and a; > B ordered in such a way
that a; > a;>a3>... . It is obvious that a;, ay, ... is a BDS if and
only if a;— B, a— B, ... is a BDS. For the points a € S with ¢(a) =
and a < B a similar argument applies. So the essential difficulty is to
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decide whether a monotonic sequence ai, ay, ... in U with limit 0 is a
k-discrepancy set or not. If S? is a BDS and there exists a constant «
such that for every B € S both the points o €S with ¢(a)=p,
a < fB and the points « €S with ¢(a) =B, a > B are k-discrepancy
sets, then S is a BDS itself.

The following result gives a sufficient condition for a monotonic
decreasing sequence with limit 0 to be a BDS. Necessary conditions
for such sequences are given in Theorems S and 6.

THEOREM 4: Let {a,}r-1 be a monotonic decreasing sequence in U
with a, > 0 as n — o, If there exists a positive integer h and a constant
¢ with ¢ <1 such that a,.y <ca, for n=1,2,..., then there exists a
sequence w such that

1 +log 2h

Do, an) =55+ 2108 2

forn=1,2,....

Proor: We prove by induction on t that there exists a sequence

= {& n}5-1in {0, am, a1, . . ., a1} such that
1 .
4) D(w;, a;h)Sz—:—% fOI'] =1,2,...,t
and
1 log 2h .
) D(w,,aj)52_26+2log2 forj=1,2,...,th

For t = 0 the assertion is true. Suppose t is a non-negative integer for
which the induction hypothesis holds. First apply Lemma 1 with
a=0, B=agm y=an (y=1if t=0), A=0, C=2-2c)""
Hence, there exists a sequence w; in {0, a¢+1ns Athy Ah—15 Ath—2, .« -, A1}
such that

D(w}, ap) =555 +3 =575 forj=12. .1+
and
, 1 log2h .
D(w,,a,.)sz_26+2°§)g2 forj=1,2,...,th.

Next we apply the argument used in the proof of Theorem 2 to the
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points a+nh-1, - - -» am+1- The only difference is that everywhere A and
C have to be increased by (2—2c¢)™". So we obtain a sequence w;;; in
{0, a+nyh, Xsnh-1, - - -, @1} Which satisfies (4) and (5) with t + 1 instead
of t.

Every sequence {£, .}i-1 is constant from some to= to(n) on. Let
& =limy.& .. This defines the sequence w ={£,}n-1. As before we
have

1 +log2h
2—-2c¢ 2log2

D(w, ;) = D(wj, o) = forj=1,2,....

5

To derive further properties of a BDS we use a technique due to
Schmidt [5]. Since we shall work from now on with one sequence w only,
we shall suppress the variable w and write D,(a), etc. Let I and J be real
intervals. We shall use the following notations.

h;(«) = max D,(a) — min D,(a),
nel nel

Dn(a’ B) = Dn(B) - I)n(a)= Z(n’ B) - Z(n’ (I) - n(B - a),
and
hI,J(a’ B) =

= max(min D,(a, B) — max D,(a, B), min D,(a, B) — max D,(a, B)).
nel neJ nelJ nel

The following lemma involves Schmidt’s basic idea.

LEMMA 2: Suppose a, B € U and suppose that J, K are subintervals
of an interval I. Then

hi(a) + hi(B) = hy k(a, B) +%(h1(a) +hy(B) + hx () + hg (B)).

ProorF: [5, Lemma 5].
We use Lemma 2 to show that the average value of h;(«) in a
sequence of well-spaced points a cannot be very small.

LEMMA 3: Let A be a real number with 0 <A <3%. Let ¢ and t be
positive integers with 3A¢ <4. Put m = (4¢)". Let I be a real interval



384 R. Tijdeman and M. Voorhoeve [10]

[x,y) with x =0 of length at least m/\. Let ao, ay,..., an-1 be real

numbers satisfying 0<a;j—aj-y<Ac/m for j=1,2,....m—1 and

ajsmp— ;=\ for j=0,1,...,3m — 1. Then, for any sequence w in U,
1 m=1

(6) 2 (@) >

ProOOF: Let J =[v, w) be any interval of length m/(4cA) with v =0.
Take integers a and b such that v=a<v+1 and w—1=b<w.
Suppose

(7) Zy(am-1) — Zo(am-1) — Zb(ao) + Z(ag) = grn-g
Then, for j=0,1,...,im—1,
Db(ai+m/2) - Da(ai+m/2) - Db(aj) + Da(a,-)

= Zb(amvl) - Za(amfl) - Zb(ao) + Za(aO) - (b - a)(ai+m/2 - ai)

m m __ﬂ
S%—<m—2))\ = 8c+2)t.

Hence,
hy(atjemp) + hy ()

= max D, (aj+mp) — min Dy(@j+mp2) + max Dy(e;) — min D,(a;)
nejJ nel nelJ nelJ

On summing over j we obtain that under the supposition (7)

1

® 3 o) =1

1
m f

for any positive interval J of length m/(4c)).
We use induction on t. For t =1 we have D,(a)+na €Z. Let

j€1{0,1,...,4m —1}. By the conditions of the lemma we have
1 2
A= Qjrmp — @ SE/\C 5-3-.
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Since min(3,32A) =14, we have |aj] = A/3 or |@jimd = A/3, where |«
denotes the distance from o to the nearest integer. We can therefore
choose integers i€{j,j+m/2} and r,s€I such that D,(a;)—
D;(a;) = 1/4. Hence hi(o;) = 1/4 and therefore

1! 1 m1 1
m & @) =07 4

This proves the lemma in case t = 1.
We now assume that the assertion of the lemma holds for t — 1 and
we shall deduce it for t. Put

J = [H(_‘;Alc) +21T] fori=1,2,3,4.

Let z be the number of pairs (u, &) with x+m/(4rc)=p <

x +2m(4Ac) and &, — p € [aj-y1, o) for some integer p. Hence z; is a

non-negative integer We distinguish two cases.

(a) Assume 27! z; = m/(8c). Then (7) is fulfilled for v = x + m/(4Xc),
= x + m/(2Ac). Hence, by (8),

.-

1 t

1A m
m 2 @) =165 =16

Since J, C I, this implies inequality (6).
(b) Assume 27! z; > m/(8¢). For every r €J, and s € J; we have

Im A 3
Ds(aj-1, &j) — Di(aj-1, a5) = zi — (s = r)(ej — aj-1) =z — Z% HC =z~7
Hence, for j=0,1,...,m — 1, in case z; =1,
1
hs,. 1(@j-1, o) = 2%
By Lemma 2, or obviously if z; =0,
hi(aj-1) + hi (o) = (h]l(a, )+ hy (o)) + hp(aj-) + hy(ey)).

Since h;(o;) = max(hy,(o)), hy(e;)) =1hy(e;) +1hi(ey), we have
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m—1 m—1 1 m-1
2 20 hi(ej) = Zo (hy () + hy(a)) + ) 21 zj + hr(ao)
1= 1= =
1 1 1 1
+ hi(am-1) — 3 hy (ao) — ) hs(am-1) — 3 hy(ao) — 5 hi(am-1) =
m—1 m—1 m
> ,Sa hy (o) + ]20 hia) + 35

On applying the induction hypothesis to J; and the point sets

m/(4c)-1 :
{ag ity > we obtain

m—1 4c—1 m/(4¢)—1 4c—1
- mit-1_m . _
]Zo h]'(a,) = ,‘Z() Z) hJI»(a4c£’+k) > “ 4C 640 640 (t 1)

for j=1 and j = 3. Hence,

1 nt t=1. 1t
m 2 @) > e = e

This proves Lemma 3.

6

As an applicant of Lemma 3 we derive the following theorem.

THEOREM 5: Let vy and 8 be real numbers with 0=y <8=<1. Let H
be some positive integer. Let v = a), az,...,an = 8 be real numbers
satisfying 0<aj.1—a;<(8—y)/H for i=1,2,...,N —1. Then for
every sequence

)] 1 H
max < D(w, a;) = 3000 log a8

i=1,2

PrOOF: Put ¢=56—1v. Let t =[log(H/3)/log 16]. So H/48 <16' <
Hj/3. Split [v, 8) into 3.16' parts of equal lengths and choose in every
third part a point from {aj, as,..., an}. This is possible, since
€/3.16' = ¢/H. This gives m = 16' points B, B, . . ., Bn With B; — Bj_1 <
4¢/(3m). Further Bjimp— Bj = €/3. We apply Lemma 3 with A = €3
and ¢ = 4. Hence

t log (H/48) 1 H

1 m-
H,};: hu(Bj) > 556 > 256 log 16 1000 '°8 48"
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It follows that for any sequence w

0 D(e, B)> 3000 2000 '08 48

In particular (9) holds.

CoOROLLARY 1: Let S be a BDS. Then there exists an € >0 such
that every subinterval of U of length ¢ contains a subinterval J of
length at least € with I NS = .

Proor: Let S be any BDS. Let w be a sequence and « a positive
number such that

D(w, a) =k for every a €S.

Let [y, ) be any subinterval of U. Choose H so large that

1 H
mlogﬁ> K.

Put e = H™!. Then, by Theorem 5, max;-,,.. nD(w, a;) > k for any set
{ag,..,an} in [y,8) with 0<ajpi—a=e(6—vy) for j=
1,2,...,N —1. Thus S does not contain such a subset. This proves
the corollary.

The following result shows that Theorems 2 and 3 cannot be
improved by more than a constant factor. (The constant (4000)! can
be improved considerably.)

COROLLARY 2: Let n > 482 Then for every sequence o

max log n.

i 1
omax D (“” ) 2oool°g48 4000

7

It follows from Corollary 1 that S = {£}7-, is not a BDS. This result is
also a consequence of the following theorem which gives a necessary
and sufficient condition for sequences satisfying a certain regularity
condition.

THEOREM 6: Let ay, ay,... be a strictly decreasing sequence with
limit 0. Suppose there exists a constant ¢ such that a,-;—a, <
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¢(am-1— am) for every n and m with n=m. Then S = {a;, as,...} is a
BDS if and only if for some positive integer h

Qn+h

lim sup <l1.

n-o n

ProOF: Suppose lim sup,.» an+x ;' <1. Then there exists a con-
stant ¢ <1 such that a,,,w <ca, for n=1,2,.... It follows from
Theorem 4 that S is a BDS. (Here we did not use the regularity
condition.)

Suppose S is a BDS. Then by Corollary 1 there exists a positive
number e such that every interval [0, a,) contains an interval J of
length ea, such that SNJ =@. Let k be such that J C (an+k, Cnik—1)-
Then

min ‘ (an+jAl - anﬂ') = Cﬁl(an+k71 - an+k) = 6ancAl-

j=1...,

Hence,

-1
On = 0 — Opik = €kac ™.

Thus k = ce™! is bounded, which implies that for h = [ce™!]

. (03 €
lim sup—"—ﬂ.<_l—z<1.

n—>« n
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