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CHARACTERIZATIONS OF CERTAIN SINGULARITIES OF
A BRANCHED COVERING*

Nadia Chiarli

Introduction

Let X, Y be locally noetherian schemes, where Y is normal
irreducible and X is reduced, and let ¢ : X—Y be a finite covering of
degree n (see definition 1.4). The problem is: how much ramification
is allowed in order for X to have nice singularities, in particular in
order for X to be seminormal or normal?

We studied essentially the seminormality of X in [4] when n =2,
and in [5] when ¢ is locally monogenic of arbitrary degree and X is
integral. The purpose of this paper is to give a more general answer to
the problem, studying the normal case and generalizing the seminor-
mal case in a way leading also to the unification of the results of [4]
and [S].

All the results are obtained by assuming Y to be the spectrum of a
discrete valuation ring (see sections 1, 2, 3): they can be globalized
(see section 4) in the same way shown in [4] and [5].

In section 1 and 2 we study respectively the normality and the
seminormality of X, giving characterizations for both of them in
terms of the value of the discriminant sheaf at the points of Y of
codimension 1, and showing the relations with the tame ramification
over Y of the normalization of X (see 1.2, 1.8, 2.2, 2.7).

In section 3 we study the particular case when X is Gorenstein, and
finally in section 4 we discuss the globalization of the previous
results.

* This work was done during a stay at the Mathematics Department, Poona University,
and at the Bhaskaracharya Pratishthana, Poona (India), under financial support of a
N.A.T.O. fellowship, in the ambit of G.N.S.A.G.A. of C.N.R.
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362 Nadia Chiarli 2]
Conventions and notations

Rings are assumed to be noetherian, commutative, with identity. In
the remainder of this paper, unless stated to the contrary, we make
the following assumptions:

(a) A is a discrete valuation ring, with uniformizing parameter t,
residue field k and valuation v;

(b) K is the fraction field of A and L is areduced K-algebra such that
[L: K]=n;

(c) B'is afinite A-algebra, with L as total quotient ring;

(d) B is the integral closure of A in L, finite over A;

(e) for all m; € Max B, the extensions k(m;)/k are separable;

(f) if M is a sub-A-module of B, free of rank n, then Dyy4 denotes the
discriminant of M over A ([19] §3, p. 59);

(g) la denotes the length of an A-module;

(h) for every m;EMax B, put fi=[k(m;):k] and Xf;i=f=
I(B/rad B); for every b €Max B’, put g; = [k(p;): k] and 2;gj =g =
14(B’[rad B’). Obviously g = f.

Remark that from (a), (b), (c), (d) it follows that B and B’ are
sub-A-modules of B, free of rank n.

For general facts on ramification theory see [1], [8], [9].

1. Normality

ProposiTION 1.1: Let A, K, B, L be as above. Suppose M and N
are two sub-A-modules of B, free of rank n. Then, for M C N:

v(Dpya) = 2€4(NIM) + v(Dnya)-

ProOF. By [8] th. 1, p. 26 there exists a basis {by, ..., b,} of N such
that {t"b,..., t"b,} (r, = ) is a basis of M. Therefore ([8] prop. 1, p.
46):

det(Tryya(t"b;t'iby)) = (det(a;))* det(Trya(bib;))
where (a;) is the matrix associated with the A-linear mapping

(b1, .., by)—>(t" by, ..., t"b,).

Then (det(a;))* = t**", and v(Dyya) =2 2y 1y + v(Dyj4). Moreover it
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is easy to prove, by induction over ¢4(N/M), that 3, r, = €4(N/M)
and this concludes the proof.

We recall that B is said to be tamely ramified over A if for every
m; € Max B the characteristic of k does not divide the ramification index
e of m;.

THEOREM 1.2: If B' is normal, then v(Dgys) = n — f.
Moreover the following are equivalent:

(i) B’ is normal and tamely ramified over A.

(i) v(Dga)=n-—f.

(iii) v(Dpya)=n—g.

(iv) v(Dpia)=n-—g.

Proor: Suppose B'= B. We have: B =II,;B, where the B;’s are
normal domains. Therefore ([19] prop. 6, p. 60 and prop. 13, p. 67):

Dpja = N(8py4) = N[IL(qf)] with h = e, — 1,

where g, € Max B, for every s, ¢ is the ramification index of q;,, N
is the norm and 834 is the different of B, over A.

So: v(Dgya) = Z; fishis Z Z; fi,(e, — 1), where fi; = [k(ai):k]. Now,
since Dga =1IiDpja ([8] lemma 1, p. 87) we have: v(Dgua)=
Ziv(Dga) Z 2, fis(es—1)=2;fi(es—1)=n—f, where the Ilast
equality follows from [3] th. 2, p. 147.

(i) — (ii) Follows by the previous arguments, after observing that, due
to the tame ramification of B over A, we have h; = ¢, — 1 ([9] prop.
13, p. 67) for every [ and s.

(ii) — (iii) Follows from g = f (see (h) above).

(iii) > (iv) By 1.1 since v(Dg4) =n — f, we have 2¢4(B/BY+n—f=
n—g, which implies 24,(B/B)=f—-g But {¢4B/B)=
¢4(Bfrad B) — ¢4(B'[rad B)=f—g, so f=g and B’'= B. Moreover
fromn—g=n—f =v(Dgys) =n—g,.it follows v(Dgys) =n —g.

(iv)—>(@) By 1.1 and the first part of this theorem, we have n —g =
2¢4(B/B")+n—f, so 2¢4(B/B')= f — g, which implies, by the same
arguments as in (iii)—(iv), f =g and B’ normal. Moreover B’ is
tamely ramified over A: in fact (with the same notations as in the first
part of this proof) we get h, = ¢, — 1 for every | and s.

CorOLLARY 1.3: (i) v(Dgja)=n—g.

(ii) v(Dpja)=n—g iff B’ is normal and tamely ramified over A.
(The lower bound n — g for v(Djy,,) shall be improved in 2.3 (i): see
also remark 2.4).
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ProoF: By 1.1 and 1.2 we have: v(Dgju) Z2¢4(B/B)+n—f=
2(f—g)+n—f=n+f-2¢g=n—g.

(i) Follows from 1.2.

We will give now a geometrical interpretation of 1.2.

DEFINITION 1.4: Let X, Y be two locally noetherian schemes, with
X reduced and Y integral, and denote by X;(i =1, . ., s) the irreduci-
ble components of X :let ¢ : X—Y be a morphism. We say that ¢ is
a finite covering if ¢ is finite and ¢ x.: X; > Y is surjective for every
i :in this case ¢x, induces a natural embedding k(Y ) k(X;) for every i.
We call degree of ¢ the integer =; [k(X;): K(Y)].

Let now ¢:X —>Y be a finite covering of degree n between two
schemes locally of finite type over an algebraically closed field
k :assume that Y is normal and irreducible, and let ® be the dis-
criminant sheaf of ¢ (see e.g. [4]). Let Z C Y be an irreducible closed
subscheme of codimension 1, with generic point (: assume that
ZZ Sing Y and denote by v, the valuation associated with the dis-
crete valuation ring ®©; Let Z,,. ., Z, be the irreducible components
of ¢~'(2Z) and, for each i, denote by z; the generic point of Z,.

PROPOSITION 1.5: Assume that for every i we have: k(z)/k(z) is
separable and O is tamely ramified over O, (e.g. k has characteristic
zero). Then the following are equivalent:

(1) Z,Z SingX for all i’s.

(ii) There is a non-empty open U C Z such that for every closed
point { € U the cardinality of the set ¢ '({) is equal to n — v,(D,).

ProOF: For every i the morphism ¢;=¢z:Z;—>Z is a finite
covering of degree d; =[k(z;): k(z)]: by [10] th. 7, p. 117 there is a
non-empty open set U; C Z such that d; = #points of ¢ '(a), for all
closed points a € U..

Hence =, d; = #points of ¢~!(¢), where ¢ is closed and belongs to
the open set (N;U;)) —{U ;s ¢(Z; N Z;)] which is non-empty because
Z as well as the Z;’s are irreducible. Now, if we denote by A the local
ring of Y at z and by B’ the semilocal ring of X at z,. ., z,, we have
by 1.3, f =3,d; = n — v,(D,), where the equality holds iff B’ is normal,
i.e. iff Z;Z Sing X for all i’s.

CoRrROLLARY 1.6: Let X, Y be two algebraic curves over an al-
gebraically closed field k of characteristic zero, and let ¢ : X - Y be a
finite covering of degree n. Let P € Y be a non-singular (closed) point
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and let ¢ '(P)={P,,.., P,} (as a set). Then:
(i) s=n-—vp(Dp).

(i) s =n—vp(Dp) iff Py, .., P, are non-singular.
LeEmMMA 1.7: B =§’ and [L:K]=[L:K).

PrOOF: Since B is semilocal B =H.Bmi, and since dim B'=1 dim
B =1 too. Moreover, since By, is a discrete valuation ring, B, is also
a discrete valuation ring and therefore B is normal. From B'C BC L
it follows: B'=B'®yzB CBRyzB' C LB’ and then B'CBC
L®yB’, and B is finite over B'. We have: L = B; where fEB' is a
non zero-divisor belonging to rad B’. Therefore: LQz B’ = Bi®Q #B' =
Bj, where, by flatness f is a non zero-divisor in rad B'. So LQyB' is
the total quotient ring of B’. But L®pB = LQzBRpB' = L®R,_A !
and then L ®p B’ is the total quotient ring of B, which implies B =
B'. Moreover [L:K]=[(L®sB):(KQaA)]=[(LRAA):(KRaA)]=
[L:K].

THEOREM 1.8: If B' is normal and tamely ramified over A, then
v(Dgia)=n-—1.

The converse holds if either:

() n=2, or

(ii) B’ is local, or

(iii) there exists a finite group G of automorphisms of B’ such that
B¢ =A.

Proor: The first claim follows from 1.2.

(i) We have either f =2 or f =1, so the claim follows from 1.1.

@ii) Claim first that f =g. By 1.1 and 1.2 we have n — f+2(f—g) =
v(Dg4) +2€6,(B/B)Y=n—1 and so f—2g=-1. Now, if k' is the
residue field of B’ we have: f = dim,(B/rad B) = g dim,(B/rad B). If
f# g, then dimy(B/rad B) > 1, which implies f =2g; a contradiction.
So f=g On the other hand, by 1.1 and 1.2 we have: n—1=
v(Dpa) Z2€6,4(B/B")+ n — f and ¢4(B/B’) = g{s(BIB’).

Therefore: 2g€s(B/BY=f—-1=g—-1, so g[2¢(B/B)—1]1=-1,
which implies B = B'.

Moreover B is tamely ramified over A. Indeed, denoting by m the
unique maximal ideal of B and by e its ramification index, we have:
83/,4 = mh with h=e—1. NOW, U(DB/A) = D(N(SB/A)) = fh; then fh =
n—1=ef—1 ([3] th. 2, p. 147), so f(h—e)=—1. This implies h =
e — 1, which concludes the proof ([9] prop. 13, p. 67).

(iii) We have: B’'=@]-;Bj where all the Bj’s are local. Moreover
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([3] th. 2, p. 42) [k(p;): k1, [k(my): k], [Lj: K] do not depend on j, for all
p; € Max B’ and all my € Max B over p;: and also [L;:K]=n/rby 1.7.

Since v(Dgy4) = v(Dgy4) ([9] prop. 10, p. 61), we have v(Dp) =
n—1. Therefore: v(Dg;a) = (A/nv(Dgja) =[(n-1)/r1=[L}: K] —1.
Since for every B} condition (e) is verified because the residue fields
do not change by completion, B’ is normal and tamely ramified over
A for every j by (ii): then B’ itself is normal and tamely ramified over
A

CoRrROLLARY 1.9: ([4] prop. 1.6). Suppose that n =2 and that A
contains a field of characteristic # 2. Then B’ is normal iff v(Dga) = 1.

ProoOF: B’ is tamely ramified over A and the claim follows from
1.8.

REMARK 1.10: In general v(Dg,4) = n —1 does not imply B’ normal
even if B is tamely ramified over A, as shown by the following:

COUNTEREXAMPLE 1.11: Suppose char k =0, and let A = k[X]x,,
B’ = A[Y]/(Y*- Y?— X?) (B’ is the semilocal ring of the points of the
curve F=Y*-—Y?-X?=0 which are contained in the line X =0).
We have: v(Dgya) = v(Resy(F, F))=3 (by direct computation),
where Resy(F, F') is the resultant of F and its derivative F' with
respect to Y.

Therefore v(Dg,4) =4 — 1; but B’ is not normal.

Moreover we can show, by the following counterexample, that
n —1 is the best upper-bound for v(Djg,,) in order to grant, under the
assumptions of 1.8, the normality of B’ and its tame ramification over
A.

CoUNTEREXAMPLE 1.12: Put A=R[T]), B=C[X]yx with the
ring homomorphism given by T - X? (so that n =4), and let B' =
R[X, iX]x ix)- B’ is local and moreover there is a finite group G of
automorphisms of B’ such that B’ = A, given by: G ={oy,.., 04}
where o, =idg, 0y(X,iX)=(X,-iX), oy X, iX)=(—X,—iX), o,4=
o0a3. We have v(Dgys) =4 = n (see 3.5), but B’ is not normal.

The following example shows that for every n €N there exists B’
normal and tamely ramified over A such that v(Dg,4)=0,1,..,n—1;
therefore in particular the maximum n —1 is attained.

ExamPLE 1.13: Let q,.., q, € k[X] be irreducible, q;# q; and
non-associate whenever i#j; assume char k=0 and let S=



[7 Singularities of a branched covering 367

{q € k[X]1| g; does not divide g for every i}. Put A =k[T]s and
B’ = k[X]s with the ring homomorphism given by T —II;q{% where the
a;’s are positive integers and I; a; = n. The maximal ideals of B’ are
the m; = (q)k[X1q and [k(m):k]l=degq (i=1,...,u). We have:
K=k(T), L=k(X); so [L:K]=n. B’ is normal and tamely ramified
over A, therefore by 1.2 v(Dgs) =n —Z; deg g. Now, for a suitable
choice of the g;’s it is possible to obtain every value of v(Dp,,)
between 0 and n — 1 (compare with 1.6).

2. Seminormality

For general facts on seminormality see [6] or [11].

LeEMMA 2.1: The following are equivalent:

(1) B' is seminormal.

(i1) rad B’ =rad B.

(iii) 4(B/B)=f—g.

If moreover f = g, then (i), (ii), (iii) are also equivalent to:
(iv) B’ is normal.

ProoF: Let b be the conductor of B.

(i) - (ii) If B’ is seminormal, then B/b is reduced ([11] lemma 1.3, p.
588); so, after renumbering the m;’s, we have: b=
mN...0m;,OmN...Nm,=rad B.Butbh C B’,sorad B C rad B’ and
we are done.

(ii))— (i) bDrad B'=rad B, therefore B/b=(B/rad B)/(b/rad B) =
(ki X.:..Xk)/I (I a suitable ideal). Thus B/b=k; X..xk; which
implies B/b reduced and B’ seminormal ([6] cor. 2.7, p. 10).

(i)e(ii) ¢4(B/B')= ¢4,(Bfrad B)— ¢4,(B'/rad B)=f—¢ iff rad B =
rad B'.

The rest is obvious.

THEOREM 2.2: Consider the following conditions:

(i) B’ is seminormal.

(i) v(Dga)zn+f-2g.

(iii) v(Dgia)=n+f-2g.

@iv) v(Dgja)=n+f-2g.

(v) B' is seminormal and B is tamely ramified over A.
Then: (i)— (ii) and (iii), (iv), (v) are equivalent.

PROOF: (i)—>(ii) By 2.1 we have ¢4(B/B") = f — g, and therefore by
1.1 and 1.2 v(Dgi)=n+f-2(f—g)=n+f-2g
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(iii) - (iv) Trivial.

(iv) > (v) Let C be the seminormalization of B’ ([11] pp. 585-586):
by 1.1 we have v(D¢,)+2€4(C/B’) = v(Dg4) = n+ f —2g. But since
C is seminormal and the sum of the degrees over k of its residue
fields equals g, we have: n+f—2g+2¢,(C/B)=n +f—2g, which
implies ¢,(C/B'’)=0and C=B'.

Moreover B is tamely ramified over A. In fact: wv(Dp,)+
2¢,(B/B)=n+f—2g implies, by 2.1, v(Dg)+2(f—g)=n+f—2g;
s0 v(Dg4) =n — f and the claim follows by 1.2.

(v) - (iii) Follows from 1.2 and from (@) - (ii).

COROLLARY 2.3: (i) v(Dgja)=n+f—2g.
(ii) v(Dgia)=n+f—2g iff B' is seminormal and B is tamely
ramified over A.

ProOF: (i) Let C be the seminormalization of B’; by 1.1 we have
v(DB'/A) = D(chA) =n +f — 2g.
(ii) Follows from 2.2.

REMARK 2.4: Since f=g, then n+f—2g=n—g, with strict in-
equality whenever f# g. Therefore 2.3 (1) is an improvement of 1.3 (i).

REMARK 2.5: From 2.2 it follows that if B’ is seminormal and B is
tamely ramified over A, then v(Dpg,4)=2n —2 (the upper bound is
obtained when f =n and g = 1).

Counterexample 1.11 shows that the converse is false, in general: in
fact B’ is not seminormal and still v(Dg;s) =2 -4—2.

The following example shows that for every n €N there exists B’
seminormal, with B tamely ramified over A, such that v(Dg,) =
n,n+1,..,2n—2; therefore, in particular, the maximum 2n—2 is
attained.

ExAMPLE 2.6: With the same notations as in 1.13 put: A = k[T]),
B =k[X]s, B'=k+rad B.

B’ is seminormal by 2.1 and since B is tamely ramified over A,
from 2.2 it follows v(Dgy4) =n +Z2; deg q; — 2. Therefore, for a suit-
able choice of the g;’s, it is possible to obtain every value of v(Dgs)
between n and 2n — 2.

ProrosITION 2.7: (i) B’ is seminormal iff B' is seminormal.
(ii) If B'= C@D (direct sum of rings), then B’ is seminormal iff C
and D are seminormal.
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ProoF: (i) B'is seminormal iff rad B’ =rad B (see 2.1) iff rad B =
rad B iff rad B’ =rad B’ (see 1.7) iff B’ is seminormal (see 2.1).

@ii) If B’ is seminormal, then B’ is the largest subring of B such
that spec B—spec B’ is a homeomorphism with trivial residue field
extension. Therefore for C and D the same property holds; and
conversely.

In remark 2.5 we pointed out that v(Dp,4) =2n — 2 is not a sufficient
condition in order for B’ to be seminormal. Now we want to find a
function F(n,f,g) such that v(Dg )= F(n,f, g) gives such a
sufficient condition (under suitable hypotheses). In the next theorem
we show that F(n, f,g)=n+f —1 is the required function.

THEOREM 2.8: Assume that B is tamely ramified over A. If B’ is
seminormal, then v(Dgj)=n+f—1.
The converse holds if either:

(i) n=2, or

(ii) B’ is local, or

(iii) there exists a finite group G of automorphisms of B' such that
B¢ =A.

Proor. By 2.2 v(Dgya) =n+f—2g: moreover 2g =1, therefore
v(Dgya) = n + f — 1, which proves the first part of the theorem.

(i) If B’ is local, we can apply (ii). If B’ is not local we have
f =g =2, which implies B’ normal and then seminormal.

(ii) Let C be the seminormalization of B’; by 2.3 and 1.1 we have:
n+f-2g=v(Dgs)=v(Dpa)=n+f—1, which implies v(Dg4)—
v(Dga)=2g—1 and so 2¢,(C/B’)=2g—1. But, since B’ is local,
¢4(CI/B") = g€g(C/B"): then we have 2g¢g(C/B’) =<2g — 1, which im-
plies ¢z (C/B’)=0 and B’ is seminormal.

(iii) With the same notations as in the proof of 1.8 (ii) we have:
v(Dgya) = (1/Nv(Dgya) = [(n + f = DIl = nfr + flr = 1 = [Li: K1+
[k(p;): k]1— 1, which implies B} seminormal for every j, by (ii). Therefore
B’ itself is seminormal by 2.7.

REMARK 2.9: In general v(Dgj)=n+f—1 does not imply B’
seminormal, as shown by counterexample 1.2 of [5].

Moreover we can show, by the following counterexample, that
n+f—1is the best upper bound for v(Dg,4) in order to grant, under
the assumptions of 2.8, the seminormality of B’'.
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COUNTEREXAMPLE 2.10: Let A =R[T? 12, B' = C[T? T?) 123 and
B =C[T]1). We have n =4 and f = g =2. Moreover ¢z(B/B')=1, so
¢4(B/B’)=2. Since B is tamely ramified over A, from 1.3 it follows
v(Dpa)=4—-2=2 and by 1.1 v(Dgjx)=4+2=n+f; but B’ is not
seminormal, though it is local.

REMARK 2.11: We do not know if, in theorem 2.8, when (i) or (ii) or
(iii) are verified and v(Dg)=n+f—1, B happens to be tamely
ramified over A.

3. The Gorenstein case

THEOREM 3.1: Suppose B' is Gorenstein and B is tamely ramified
over A.

If B’ is seminormal, then v(Dg,4) < n.
The converse holds if either:

(i) n=2, or

(ii) B’ is local, or

(iii) there exists a finite group G of automorphisms of B’ such that
B'S = A,

ProoF: For every p; € Max B’, let p; = €A(§;j/rad _E,;,.): from [6]
th. 8.1, p. 46 it follows 2g; = p; and since f =Z;p; we get 2g =25, g, =
f, and the claim follows from 2.2.

The converse follows from 2.8.

CoRrROLLARY 3.2 ([5] 1.1 and 1.3): Let B’ = A[x] be a domain, and
suppose either char k =0 or char k > n.
If B' is seminormal, then v(Dg,,) = n.
The converse holds if B' is local.

ProOF: If G is the characteristic polynomial of x, we have B’ =
A[X]/(G) and, since A[X] is Gorenstein, B’ is also Gorenstein.
Moreover from the formula 3, e,f, = n, it follows e¢,=n for every
p € spec B, which implies that B is tamely ramified over A (obviously e,
denotes the ramification index of p, and f, = [k(p):k]). Then the claim
follows from 3.1.

COROLLARY 3.3 ([4] 1.7): Assume that n =2, that A contains a field
of characteristic# 2, and that B' is a domain.
Then B' is seminormal iff v(Dg;,) = 2.
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PrOOF: B’ is monogenic over A([4] 1.1), then it is Gorenstein (see
proof of 3.2) and B is tamely ramified over A. Then the claim follows
from 3.1.

REMARK 3.4: In general v(Dg;s)=n does not imply that B’ is
seminormal, even when B’ is Gorenstein and B tamely ramified over
A (see counterexample 1.2 of [5]).

In [5] we proved that if B’ and k are as in 3.2, and if the
characteristic polynomial of x is X" —a (a € A), then the following
are equivalent:

(i) B’is seminormal.

(ii) v(Dpya) =n.

(ili) a = ut? where u is a unit in A and q = n/(n — 1). Recently S.S.
Abhyankar made us to notice that when n =3 (i), (ii), (iii) are also
equivalent to:

(iv) B’is normal.

In fact, when n =3, (iii) implies v(a) =1: now, if v(a)=0, then
v(Dgy4) = v(n"a" ") =0 and B’ is normal by 1.1; if v(a) =1, then B’ is
local and B’ is normal by 1.8.

Moreover (iv) - (i).

Now, supposing that A contains the n'" roots of 1, then there is the
group G of automorphisms of B’, G ={o1,...., 0.}, where ojja = id4
and o;(x) = x - ¢ (¢ a fixed primitive n' root of 1) for every i; for this
group obviously B'® = A. Therefore it is natural to conjecture that
when n =3, B’ is Gorenstein and either B’ is local or there is a finite
group G of automorphisms of B’ such that B’ = A, then v(Dg,)=n
implies B’ normal (notice that by 3.1 B’ is seminormal). The following
counterexample gives a negative answer to the conjecture.

COUNTEREXAMPLE 3.5: Let A, B, B’ be as in 1.12. B’ is Gorenstein
and seminormal; moreover by 2.2 we have v(Dpja)=n+f—-2g=
44+2—-2=4. But B’ is not normal.

4. Globalization

Suppose X, Y are locally noetherian schemes, with Y integral
normal, and let ¢: X — Y be a finite covering of degree n. From the
going-up and going-down theorems ([3] cor. 2, p. 38 and th. 3, p. 56) it
follows that if x € X is a point of codimension 1,then y = ¢(x) E Y is
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a point of codimension 1, which implies that 0, is a discrete valuation
ring.

Now, when X is S, the seminormality and normality of X can be
checked in codimension 1 (see [6] th. 2.6, p. 9 and the Krull-Serre
criterion, [7] th. 39, p. 125) i.e. it is enough to look at v,(9D,) for all
y € Y of codimension 1.

LemMA 4.1: (i) If B’ is Gorenstein, then B'is S,.
(ii) If E is any normal domain, and B’ = E[x] is a domain integral
over A, then B’ is S, and Gorenstein in codimension 1.

Proor: (i) By definition B’ is Cohen-Macaulay, hence S, for all r.

(ii) Since E is normal {1, x,..,x" '} is a free basis of B’ as an
E-module. Now E is S, and the fibers of the canonical embedding
E S B’ are also S,, being 0-dimensional: therefore since B’ is faith-
fully flat over E, B’ is S, ([7] cor. 2, p. 154).

Moreover for every q € spec B’ of height 1, we have B', = (Eg[x]),
where Q =qN E:now Eg[x] is Gorenstein because Eg is a discrete
valuation ring and Eg[x] is a domain (see proof of 3.2), then Bj is
Gorenstein and we are done.

By assuming X to be S, we can globalize 1.2, 1.8, 2.2, 2.8: by
assuming X to be S, and Gorenstein in codimension 1, we can
globalize in particular 3.1.

We wish to remark explicitly that when we assume X to be integral
and locally monogenic over Y, then by 4.1 (ii)) X is both S, and
Gorenstein in codimension 1: which shows that the result obtained by
globalizing 3.1 generalizes the analogous results of [4] and [5].
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