## Compositio Mathematica

## Nadia Chiarli

## Characterizations of certain singularities of a branched covering

Compositio Mathematica, tome 42, $\mathrm{n}^{\circ} 3$ (1980), p. 361-373
[http://www.numdam.org/item?id=CM_1980__42_3_361_0](http://www.numdam.org/item?id=CM_1980__42_3_361_0)
© Foundation Compositio Mathematica, 1980, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numbam

# CHARACTERIZATIONS OF CERTAIN SINGULARITIES OF A BRANCHED COVERING* 

Nadia Chiarli

## Introduction

Let $X, Y$ be locally noetherian schemes, where $Y$ is normal irreducible and $X$ is reduced, and let $\phi: X \rightarrow Y$ be a finite covering of degree $n$ (see definition 1.4). The problem is: how much ramification is allowed in order for $X$ to have nice singularities, in particular in order for $X$ to be seminormal or normal?

We studied essentially the seminormality of $X$ in [4] when $n=2$, and in [5] when $\phi$ is locally monogenic of arbitrary degree and $X$ is integral. The purpose of this paper is to give a more general answer to the problem, studying the normal case and generalizing the seminormal case in a way leading also to the unification of the results of [4] and [5].

All the results are obtained by assuming $Y$ to be the spectrum of a discrete valuation ring (see sections $1,2,3$ ): they can be globalized (see section 4) in the same way shown in [4] and [5].

In section 1 and 2 we study respectively the normality and the seminormality of $X$, giving characterizations for both of them in terms of the value of the discriminant sheaf at the points of $Y$ of codimension 1, and showing the relations with the tame ramification over $Y$ of the normalization of $X$ (see $1.2,1.8,2.2,2.7$ ).

In section 3 we study the particular case when $X$ is Gorenstein, and finally in section 4 we discuss the globalization of the previous results.

[^0]0010-437X/81/03361-13\$00.20/0

## Conventions and notations

Rings are assumed to be noetherian, commutative, with identity. In the remainder of this paper, unless stated to the contrary, we make the following assumptions:
(a) $A$ is a discrete valuation ring, with uniformizing parameter $t$, residue field $k$ and valuation $v$;
(b) $K$ is the fraction field of $A$ and $L$ is a reduced $K$-algebra such that [L:K]=n;
(c) $B^{\prime}$ is a finite $A$-algebra, with $L$ as total quotient ring;
(d) $B$ is the integral closure of $A$ in $L$, finite over $A$;
(e) for all $\mathfrak{m}_{i} \in \operatorname{Max} B$, the extensions $k\left(\mathfrak{m}_{i}\right) / k$ are separable;
(f) if $M$ is a sub- $A$-module of $B$, free of rank $n$, then $D_{M / A}$ denotes the discriminant of $M$ over $A$ ([19] §3, p. 59);
(g) $l_{A}$ denotes the length of an $A$-module;
(h) for every $\mathfrak{m}_{i} \in \operatorname{Max} B$, put $f_{i}=\left[k\left(\mathfrak{m}_{i}\right): k\right]$ and $\Sigma_{i} f_{i}=f=$ $l_{A}(B / \operatorname{rad} B)$; for every $\mathfrak{b} \in \operatorname{Max} B^{\prime}$, put $g_{j}=\left[k\left(\mathfrak{p}_{j}\right): k\right]$ and $\Sigma_{j} g_{j}=g=$ $l_{A}\left(B^{\prime} / \mathrm{rad} B^{\prime}\right)$. Obviously $g \leqq f$.

Remark that from (a), (b), (c), (d) it follows that $B$ and $B^{\prime}$ are sub- $A$-modules of $B$, free of rank $n$.

For general facts on ramification theory see [1], [8], [9].

## 1. Normality

Proposition 1.1: Let $A, K, B, L$ be as above. Suppose $M$ and $N$ are two sub-A-modules of $B$, free of rank $n$. Then, for $M \subseteq N$ :

$$
v\left(D_{M / A}\right)=2 \ell_{A}(N / M)+v\left(D_{N / A}\right) .
$$

Proof. By [8] th. 1, p. 26 there exists a basis $\left\{b_{1}, \ldots, b_{n}\right\}$ of $N$ such that $\left\{t^{r_{1}} b_{1}, \ldots, t^{r_{n}} b_{n}\right\}\left(r_{h} \leqq r_{h+1}\right)$ is a basis of $M$. Therefore ([8] prop. 1, p. 46):

$$
\operatorname{det}\left(\operatorname{Tr} r_{M / A}\left(t^{r_{i}} b_{i} t^{r_{i}} b_{j}\right)\right)=\left(\operatorname{det}\left(a_{i j}\right)\right)^{2} \operatorname{det}\left(\operatorname{Tr} r_{N / A}\left(b_{i} b_{j}\right)\right)
$$

where $\left(a_{i j}\right)$ is the matrix associated with the $A$-linear mapping

$$
\left(b_{1}, \ldots, b_{n}\right) \rightarrow\left(t^{r}, b_{1}, \ldots, t^{r_{n}} b_{n}\right)
$$

Then $\left(\operatorname{det}\left(a_{i j}\right)\right)^{2}=t^{2 \Sigma_{h} r_{h}}$, and $v\left(D_{M / A}\right)=2 \Sigma_{h} r_{h}+v\left(D_{N / A}\right)$. Moreover it
is easy to prove, by induction over $\ell_{A}(N / M)$, that $\Sigma_{h} r_{h}=\ell_{A}(N / M)$ and this concludes the proof.

We recall that $B$ is said to be tamely ramified over $A$ if for every $\mathfrak{m}_{i} \in \operatorname{Max} B$ the characteristic of $k$ does not divide the ramification index $\boldsymbol{e}_{i}$ of $\mathrm{m}_{i}$.

Theorem 1.2: If $B^{\prime}$ is normal, then $v\left(D_{B^{\prime} \mid A}\right) \geqq n-f$. Moreover the following are equivalent:
(i) $B^{\prime}$ is normal and tamely ramified over $A$.
(ii) $v\left(D_{B^{\prime} / A}\right)=n-f$.
(iii) $v\left(D_{B^{\prime} / A}\right) \leqq n-g$.
(iv) $v\left(D_{B^{\prime} \mid A}\right)=n-g$.

Proof: Suppose $B^{\prime}=B$. We have: $B=\Pi_{l} B_{l}$, where the $B_{l}$ 's are normal domains. Therefore ([19] prop. 6, p. 60 and prop. 13, p. 67):

$$
D_{B_{l} \mid A}=N\left(\delta_{B_{l} \mid A}\right)=N\left[\Pi_{s}\left(\mathfrak{q}_{l s}^{h_{l s}}\right)\right] \text { with } h_{l s} \geqq e_{l s}-1 \text {, }
$$

where $\mathfrak{q}_{l s} \in \operatorname{Max} B_{1}$ for every $s, e_{l s}$ is the ramification index of $q_{l s}, N$ is the norm and $\delta_{B_{l} / A}$ is the different of $B_{l}$ over $A$.

So: $v\left(D_{B_{l} A}\right)=\sum_{s} f_{l s} h_{l s} \geqq \Sigma_{s} f_{l s}\left(e_{l s}-1\right)$, where $f_{l s}=\left[k\left(\mathfrak{q}_{l s}\right): k\right]$. Now, since $D_{B / A}=\Pi_{l} D_{B_{/} / A}\left([8]\right.$ lemma 1, p. 87) we have: $v\left(D_{B / A}\right)=$ $\Sigma_{l} v\left(D_{B_{l} / A}\right) \geqq \Sigma_{l}\left(\Sigma_{s} f_{l s}\left(e_{l s}-1\right)=\Sigma_{i} f_{i}\left(e_{i}-1\right)=n-f\right.$, where the last equality follows from [3] th. 2, p. 147.
(i) $\rightarrow$ (ii) Follows by the previous arguments, after observing that, due to the tame ramification of $B$ over $A$, we have $h_{l s}=e_{l s}-1$ ([9] prop. 13, p. 67) for every $l$ and $s$.
(ii) $\rightarrow$ (iii) Follows from $g \leqq f$ (see (h) above).
(iii) $\rightarrow$ (iv) By 1.1 since $v\left(D_{B / A}\right) \geqq n-f$, we have $2 \ell_{A}\left(B / B^{\prime}\right)+n-f \leqq$ $n-g$, which implies $\quad 2 \ell_{A}\left(B / B^{\prime}\right) \leqq f-g$. But $\quad \ell_{A}\left(B / B^{\prime}\right) \geqq$ $\ell_{A}(B / \operatorname{rad} B)-\ell_{A}\left(B^{\prime} / \operatorname{rad} B^{\prime}\right)=f-g$, so $f=g$ and $B^{\prime}=B$. Moreover from $n-g=n-f \leqq v\left(D_{B^{\prime} / A}\right) \leqq n-g$, it follows $v\left(D_{B^{\prime} / A}\right)=n-g$.
(iv) $\rightarrow$ (i) By 1.1 and the first part of this theorem, we have $n-g \geqq$ $2 \ell_{A}\left(B / B^{\prime}\right)+n-f$, so $2 \ell_{A}\left(B / B^{\prime}\right) \leqq f-g$, which implies, by the same arguments as in (iii) $\rightarrow$ (iv), $f=g$ and $B^{\prime}$ normal. Moreover $B^{\prime}$ is tamely ramified over $A$ : in fact (with the same notations as in the first part of this proof) we get $h_{l s}=e_{l s}-1$ for every $l$ and $s$.

Corollary 1.3: (i) $v\left(D_{B^{\prime} A}\right) \geqq n-g$.
(ii) $v\left(D_{B^{\prime} \mid A}\right)=n-g$ iff $B^{\prime}$ is normal and tamely ramified over $A$. (The lower bound $n-g$ for $v\left(D_{B^{\prime} A A}\right)$ shall be improved in 2.3 (i): see also remark 2.4).

Proof: By 1.1 and 1.2 we have: $v\left(D_{B^{\prime} \mid A}\right) \geqq 2 \ell_{A}\left(B / B^{\prime}\right)+n-f \geqq$ $2(f-g)+n-f=n+f-2 g \geqq n-g$.
(ii) Follows from 1.2.

We will give now a geometrical interpretation of 1.2.
Definition 1.4: Let $X, Y$ be two locally noetherian schemes, with $X$ reduced and $Y$ integral, and denote by $X_{i}(i=1, \ldots, s)$ the irreducible components of $X$ : let $\phi: X \rightarrow Y$ be a morphism. We say that $\phi$ is a finite covering if $\phi$ is finite and $\phi_{\left.\right|_{X_{i}}}: X_{i} \rightarrow Y$ is surjective for every $i$ in this case $\phi_{\mid X_{i}}$ induces a natural embedding $k(Y) \hookrightarrow k\left(X_{i}\right)$ for every $i$. We call degree of $\phi$ the integer $\Sigma_{i}\left[k\left(X_{i}\right): K(Y)\right]$.

Let now $\phi: X \rightarrow Y$ be a finite covering of degree $n$ between two schemes locally of finite type over an algebraically closed field $k$ :assume that $Y$ is normal and irreducible, and let $\mathfrak{D}$ be the discriminant sheaf of $\phi$ (see e.g. [4]). Let $Z \subset Y$ be añ irreducible closed subscheme of codimension 1, with generic point $\mathfrak{q}$ : assume that $Z \not \subset$ Sing $Y$ and denote by $v_{z}$ the valuation associated with the discrete valuation ring $\mathfrak{D}_{Z}$. Let $Z_{1}, \ldots, Z_{r}$ be the irreducible components of $\phi^{-1}(Z)$ and, for each $i$, denote by $z_{i}$ the generic point of $Z_{i}$.

Proposition 1.5: Assume that for every $i$ we have: $k\left(z_{i}\right) / k(z)$ is separable and $\mathscr{O}_{z_{1}}$ is tamely ramified over $\mathscr{O}_{z}$ (e.g. $k$ has characteristic zero). Then the following are equivalent:
(i) $Z_{i} \subset \operatorname{Sing} X$ for all i's.
(ii) There is a non-empty open $U \subset Z$ such that for every closed point $\zeta \in U$ the cardinality of the set $\phi^{-1}(\zeta)$ is equal to $n-v_{z}\left(\mathfrak{D}_{z}\right)$.

Proof: For every $i$ the morphism $\phi_{i}=\phi_{\mid Z_{i}}: Z_{i} \rightarrow Z$ is a finite covering of degree $d_{i}=\left[k\left(z_{i}\right): k(z)\right]$ : by [10] th. 7, p. 117 there is a non-empty open set $U_{i} \subset Z$ such that $d_{i}=$ \# points of $\phi^{-1}(\alpha)$, for all closed points $\alpha \in U_{i}$.

Hence $\Sigma_{i} d_{i}=\#$ points of $\phi^{-1}(\zeta)$, where $\zeta$ is closed and belongs to the open set $\left(\cap_{i} U_{i}\right)-\left[\cup_{i \neq j} \phi\left(Z_{i} \cap Z_{j}\right)\right]$ which is non-empty because $Z$ as well as the $Z_{i}$ 's are irreducible. Now, if we denote by $A$ the local ring of $Y$ at $z$ and by $B^{\prime}$ the semilocal ring of $X$ at $z_{1}, \ldots, z_{r}$, we have by $1.3, f=\Sigma_{i} d_{i} \leqq n-v_{z}\left(\mathfrak{D}_{z}\right)$, where the equality holds iff $B^{\prime}$ is normal, i.e. iff $Z_{i} \subset$ Sing $X$ for all $i$ 's.

Corollary 1.6: Let $X, Y$ be two algebraic curves over an algebraically closed field $k$ of characteristic zero, and let $\phi: X \rightarrow Y$ be a finite covering of degree n. Let $P \in Y$ be a non-singular (closed) point
and let $\phi^{-1}(P)=\left\{P_{1}, \ldots, P_{s}\right\}$ (as a set). Then:
(i) $s \geqq n-v_{P}\left(\mathfrak{D}_{P}\right)$.
(ii) $s=n-v_{P}\left(\mathfrak{D}_{P}\right)$ iff $P_{1}, \ldots, P_{s}$ are non-singular.

Lemma 1.7: $\hat{B}=\overline{\hat{B}^{\prime}}$ and $[\hat{L}: \hat{K}]=[L: K]$.
Proof: Since $B$ is semilocal $\hat{B}=\Pi_{i} \hat{B}_{m_{i}}$, and since $\operatorname{dim} B^{\prime}=1 \operatorname{dim}$ $B=1$ too. Moreover, since $B_{\mathrm{m}_{i}}$ is a discrete valuation ring, $\hat{B}_{m_{i}}$ is also a discrete valuation ring and therefore $\hat{B}$ is normal. From $B^{\prime} \subset B \subset L$ it follows: $\hat{B}^{\prime}=\hat{B}^{\prime} \bigotimes_{B^{\prime}} B^{\prime} \subset B \bigotimes_{B^{\prime}} \hat{B}^{\prime} \subset L \bigotimes_{B^{\prime}} \hat{B}^{\prime}$ and then $\hat{B}^{\prime} \subset B \subset$ $L \otimes_{B^{\prime}} \hat{B}^{\prime}$, and $\hat{B}$ is finite over $\hat{B}^{\prime}$. We have: $L=B_{f}^{\prime}$ where $f \in B^{\prime}$ is a non zero-divisor belonging to rad $B^{\prime}$. Therefore: $L \otimes_{B^{\prime}} \hat{B}^{\prime}=B_{f}^{\prime} \otimes_{B^{\prime}} \hat{B}^{\prime}=$ $B_{f}^{\prime}$, where, by flatness $f$ is a non zero-divisor in $\operatorname{rad} \hat{B}^{\prime}$. So $L \bigotimes_{B^{\prime}} \hat{B}^{\prime}$ is the total quotient ring of $\hat{B}^{\prime}$. But $L \bigotimes_{B} \hat{B}^{\prime}=L \bigotimes_{B} B \bigotimes_{B^{\prime}} \hat{B}^{\prime}=L \bigotimes_{R^{\prime}} \hat{B}^{\prime}$ and then $L \otimes_{B^{\prime}} \hat{B}^{\prime}$ is the total quotient ring of $\hat{B}$, which implies $\hat{B}=$ $\hat{B}^{\prime}$. Moreover $[\hat{L}: \hat{K}]=\left[\left(L \otimes_{B} \hat{B}\right):\left(K \otimes_{A} \hat{A}\right)\right]=\left[\left(L \otimes_{A} \hat{A}\right):\left(K \bigotimes_{A} \hat{A}\right)\right]=$ [L:K].

Theorem 1.8: If $B^{\prime}$ is normal and tamely ramified over $A$, then $v\left(D_{B^{\prime} \mid A}\right) \leqq n-1$.

The converse holds if either:
(i) $n=2$, or
(ii) $B^{\prime}$ is local, or
(iii) there exists a finite group $G$ of automorphisms of $B^{\prime}$ such that $B^{\prime G}=A$.

Proof: The first claim follows from 1.2.
(i) We have either $f=2$ or $f=1$, so the claim follows from 1.1.
(ii) Claim first that $f=g$. By 1.1 and 1.2 we have $n-f+2(f-g) \leqq$ $v\left(D_{B / A}\right)+2 \ell_{A}\left(B / B^{\prime}\right) \leqq n-1$ and so $f-2 g \leqq-1$. Now, if $k^{\prime}$ is the residue field of $B^{\prime}$ we have: $f=\operatorname{dim}_{k}(B / \operatorname{rad} B)=g \operatorname{dim}_{k^{\prime}}(B / \operatorname{rad} B)$. If $f \neq g$, then $\operatorname{dim}_{k^{\prime}}(B / \operatorname{rad} B)>1$, which implies $f \geqq 2 g$; a contradiction. So $f=g$. On the other hand, by 1.1 and 1.2 we have: $n-1 \geqq$ $v\left(D_{B^{\prime} \mid A}\right) \geqq 2 \ell_{A}\left(B / B^{\prime}\right)+n-f$ and $\ell_{A}\left(B / B^{\prime}\right)=g \ell_{B^{\prime}}\left(B / B^{\prime}\right)$.

Therefore: $2 g \ell_{B^{\prime}}\left(B / B^{\prime}\right) \leqq f-1=g-1$, so $g\left[2 \ell_{B^{\prime}}\left(B / B^{\prime}\right)-1\right] \leqq-1$, which implies $B=B^{\prime}$.

Moreover $B$ is tamely ramified over $A$. Indeed, denoting by $m$ the unique maximal ideal of $B$ and by $e$ its ramification index, we have: $\delta_{B / A}=\mathfrak{m}^{h}$ with $h \geqq e-1$. Now, $v\left(D_{B / A}\right)=v\left(N\left(\delta_{B / A}\right)\right)=f h$; then $f h \leqq$ $n-1=e f-1$ ([3] th. 2, p. 147), so $f(h-e) \leqq-1$. This implies $h \leqq$ $e-1$, which concludes the proof ([9] prop. 13, p. 67).
(iii) We have: $B^{\prime}=\bigoplus_{j=1}^{r} B_{j}^{\prime}$ where all the $B_{j}^{\prime}$ 's are local. Moreover
([3] th. 2, p. 42) $\left[k\left(\mathfrak{p}_{j}\right): k\right],\left[k\left(m_{j l}\right): k\right],\left[L_{j}^{\prime}: \hat{K}\right]$ do not depend on $j$, for all $\mathfrak{p}_{j} \in \operatorname{Max} B^{\prime}$ and all $\mathfrak{m}_{j l} \in \operatorname{Max} B$ over $\mathfrak{p}_{j}$ : and also $\left[L_{j}^{\prime}: \hat{K}\right]=n / r$ by 1.7.

Since $v\left(D_{B^{\prime} \mid A}\right)=v\left(D_{\hat{B}^{\prime} \mid \hat{A}}\right)\left([9]\right.$ prop. 10, p. 61), we have $v\left(D_{B^{\prime} \mid A}\right) \leqq$ $n-1$. Therefore: $v\left(D_{B_{j}^{\prime} / \hat{A}}\right)=(1 / r) v\left(D_{B^{\prime} \mid A}\right) \leqq[(n-1) / r] \leqq\left[L_{j}^{\prime}: \hat{K}\right]-1$. Since for every $B_{j}^{\prime}$ condition (e) is verified because the residue fields do not change by completion, $B_{j}^{\prime}$ is normal and tamely ramified over $A$ for every $j$ by (ii): then $B^{\prime}$ itself is normal and tamely ramified over A.

Corollary 1.9: ([4] prop. 1.6). Suppose that $n=2$ and that $A$ contains a field of characteristic $\neq 2$. Then $B^{\prime}$ is normal iff $v\left(D_{B^{\prime} / A}\right) \leqq 1$.

Proof: $B^{\prime}$ is tamely ramified over $A$ and the claim follows from 1.8.

REmark 1.10: In general $v\left(D_{B^{\prime} \mid A}\right) \leqq n-1$ does not imply $B^{\prime}$ normal even if $B$ is tamely ramified over $A$, as shown by the following:

Counterexample 1.11: Suppose char $k=0$, and let $A=k[X]_{(X)}$, $B^{\prime}=A[Y] /\left(Y^{4}-Y^{2}-X^{3}\right)\left(B^{\prime}\right.$ is the semilocal ring of the points of the curve $F=Y^{4}-Y^{2}-X^{3}=0$ which are contained in the line $X=0$ ). We have: $v\left(D_{B^{\prime} \mid A}\right)=v\left(\operatorname{Res}_{Y}\left(F, F^{\prime}\right)\right)=3$ (by direct computation), where $\operatorname{Res}_{Y}\left(F, F^{\prime}\right)$ is the resultant of $F$ and its derivative $F^{\prime}$ with respect to $Y$.

Therefore $v\left(D_{B^{\prime} \mid A}\right) \leqq 4-1$; but $B^{\prime}$ is not normal.
Moreover we can show, by the following counterexample, that $n-1$ is the best upper-bound for $v\left(D_{B^{\prime} / A}\right)$ in order to grant, under the assumptions of 1.8 , the normality of $B^{\prime}$ and its tame ramification over A.

Counterexample 1.12: Put $A=\mathbb{R}[T]_{(T)}, B=\mathbb{C}[X]_{(X)}$ with the ring homomorphism given by $T \rightarrow X^{2}$ (so that $n=4$ ), and let $B^{\prime}=$ $\mathbb{R}[X, i X]_{(X, i X)} . B^{\prime}$ is local and moreover there is a finite group $G$ of automorphisms of $B^{\prime}$ such that $B^{\prime G}=A$, given by: $G=\left\{\sigma_{1}, \ldots, \sigma_{4}\right\}$ where $\sigma_{1}=i d_{B^{\prime}}, \sigma_{2}(X, i X)=(X,-i X), \sigma_{3}(X, i X)=(-X,-i X), \sigma_{4}=$ $\sigma_{2}{ }^{\circ} \sigma_{3}$. We have $v\left(D_{B^{\prime} / A}\right)=4=n$ (see 3.5), but $B^{\prime}$ is not normal.

The following example shows that for every $n \in \mathbb{N}$ there exists $B^{\prime}$ normal and tamely ramified over $A$ such that $v\left(D_{B^{\prime} \mid A}\right)=0,1, \ldots, n-1$; therefore in particular the maximum $n-1$ is attained.

Example 1.13: Let $q_{1}, \ldots, q_{u} \in k[X]$ be irreducible, $q_{i} \neq q_{j}$ and non-associate whenever $i \neq j$; assume char $k=0$ and let $S=$
$\left\{q \in k[X] \mid q_{i}\right.$ does not divide $q$ for every $\left.i\right\}$. Put $A=k[T]_{(T)}$ and $B^{\prime}=k[X]_{S}$ with the ring homomorphism given by $T \rightarrow \Pi_{i} q_{i}^{q_{i}}$ where the $a_{i}$ 's are positive integers and $\Sigma_{i} a_{i}=n$. The maximal ideals of $B^{\prime}$ are the $\mathfrak{m}_{i}=\left(q_{i}\right) k[X]_{\left(q_{i}\right)}$ and $[k(\mathfrak{m}): k]=\operatorname{deg} q_{i}(i=1, \ldots, u)$. We have: $K=k(T), L=k(X)$; so $[L: K]=n . B^{\prime}$ is normal and tamely ramified over $A$, therefore by $1.2 v\left(D_{B^{\prime} \mid A}\right)=n-\Sigma_{i} \operatorname{deg} q_{i}$. Now, for a suitable choice of the $q_{i}$ 's it is possible to obtain every value of $v\left(D_{B^{\prime} \mid A}\right)$ between 0 and $n-1$ (compare with 1.6).

## 2. Seminormality

For general facts on seminormality see [6] or [11].
Lemma 2.1: The following are equivalent:
(i) $B^{\prime}$ is seminormal.
(ii) $\operatorname{rad} B^{\prime}=\operatorname{rad} B$.
(iii) $\ell_{A}\left(B / B^{\prime}\right)=f-g$.

If moreover $f=g$, then (i), (ii), (iii) are also equivalent to:
(iv) $B^{\prime}$ is normal.

Proof: Let $\mathfrak{b}$ be the conductor of $B$.
(i) $\rightarrow$ (ii) If $B^{\prime}$ is seminormal, then $B / b$ is reduced ([11] lemma 1.3 , p. 588); so, after renumbering the $\mathfrak{m}_{i}$ 's, we have: $\mathfrak{b}=$ $\mathfrak{m}_{1} \cap \ldots \cap \mathfrak{m}_{s} \supset \mathfrak{m}_{1} \cap \ldots \cap \mathfrak{m}_{r}=\operatorname{rad} B$. But $\mathfrak{b} \subset B^{\prime}$, so $\operatorname{rad} B \subset \operatorname{rad} B^{\prime}$ and we are done.
(ii) $\rightarrow$ (i) $\mathfrak{b} \supset \operatorname{rad} B^{\prime}=\operatorname{rad} B$, therefore $B / \mathfrak{b}=(B / \mathrm{rad} B) /(\mathfrak{b} / \mathrm{rad} B)=$ $\left(k_{1} \times \ldots \times k_{r}\right) / I$ ( $I$ a suitable ideal). Thus $B / b=k_{i_{1}} \times \ldots \times k_{i_{r}}$ which implies $B / 6$ reduced and $B^{\prime}$ seminormal ([6] cor. 2.7, p. 10).
(ii) $\leftrightarrow($ iii $) \ell_{A}\left(B / B^{\prime}\right)=\ell_{A}(B / \operatorname{rad} B)-\ell_{A}\left(B^{\prime} / \operatorname{rad} B\right)=f-g$ iff $\operatorname{rad} B=$ $\operatorname{rad} B^{\prime}$.

The rest is obvious.
Theorem 2.2: Consider the following conditions:
(i) $B^{\prime}$ is seminormal.
(ii) $v\left(D_{B^{\prime} / A}\right) \geqq n+f-2 g$.
(iii) $v\left(D_{B^{\prime} \mid A}\right)=n+f-2 g$.
(iv) $v\left(D_{B^{\prime} \mid A}\right) \leqq n+f-2 g$.
(v) $B^{\prime}$ is seminormal and $B$ is tamely ramified over $A$.

Then: (i) $\rightarrow$ (ii) and (iii), (iv), (v) are equivalent.
Proof: (i) $\rightarrow$ (ii) By 2.1 we have $\ell_{A}\left(B / B^{\prime}\right)=f-g$, and therefore by 1.1 and $1.2 v\left(D_{B^{\prime} A}\right) \geqq n+f-2(f-g)=n+f-2 g$.
(iii) $\rightarrow$ (iv) Trivial.
(iv) $\rightarrow$ (v) Let $C$ be the seminormalization of $B^{\prime}$ ([11] pp. 585-586): by 1.1 we have $v\left(D_{C \mid A}\right)+2 \ell_{A}\left(C / B^{\prime}\right)=v\left(D_{B^{\prime} \mid A}\right) \leqq n+f-2 g$. But since $C$ is seminormal and the sum of the degrees over $k$ of its residue fields equals $g$, we have: $n+f-2 g+2 \ell_{A}\left(C / B^{\prime}\right) \leqq n+f-2 g$, which implies $\ell_{A}\left(C / B^{\prime}\right)=0$ and $C=B^{\prime}$.

Moreover $B$ is tamely ramified over $A$. In fact: $v\left(D_{B / A}\right)+$ $2 \ell_{A}\left(B / B^{\prime}\right) \leqq n+f-2 g$ implies, by $2.1, v\left(D_{B / A}\right)+2(f-g) \leqq n+f-2 g$; so $v\left(D_{B / A}\right) \leqq n-f$ and the claim follows by 1.2.
(v) $\rightarrow$ (iii) Follows from 1.2 and from (i) $\rightarrow$ (ii).

Corollary 2.3: (i) $v\left(D_{B^{\prime} / A}\right) \geqq n+f-2 g$.
(ii) $v\left(D_{B^{\prime} \mid A}\right)=n+f-2 g$ iff $B^{\prime}$ is seminormal and $B$ is tamely ramified over $A$.

Proof: (i) Let $C$ be the seminormalization of $B^{\prime}$; by 1.1 we have $v\left(D_{B^{\prime} \mid A}\right) \geqq v\left(D_{C \mid A}\right) \geqq n+f-2 g$.
(ii) Follows from 2.2.

Remark 2.4: Since $f \geqq g$, then $n+f-2 g \geqq n-g$, with strict inequality whenever $f \neq g$. Therefore 2.3 (i) is an improvement of 1.3 (i).

Remark 2.5: From 2.2 it follows that if $B^{\prime}$ is seminormal and $B$ is tamely ramified over $A$, then $v\left(D_{B^{\prime} \mid A}\right) \leqq 2 n-2$ (the upper bound is obtained when $f=n$ and $g=1$ ).

Counterexample 1.11 shows that the converse is false, in general: in fact $B^{\prime}$ is not seminormal and still $v\left(D_{B^{\prime} \mid A}\right) \leqq 2 \cdot 4-2$.

The following example shows that for every $n \in \mathbb{N}$ there exists $B^{\prime}$ seminormal, with $B$ tamely ramified over $A$, such that $v\left(D_{B^{\prime} \mid A}\right)=$ $n, n+1, \ldots, 2 n-2$; therefore, in particular, the maximum $2 n-2$ is attained.

Example 2.6: With the same notations as in 1.13 put: $A=k[T]_{(T)}$, $B=k[X]_{S}, B^{\prime}=k+\operatorname{rad} B$.
$B^{\prime}$ is seminormal by 2.1 and since $B$ is tamely ramified over $A$, from 2.2 it follows $v\left(D_{B^{\prime} \mid A}\right)=n+\sum_{i} \operatorname{deg} q_{i}-2$. Therefore, for a suitable choice of the $q_{i}$ 's, it is possible to obtain every value of $v\left(D_{B^{\prime} \mid A}\right)$ between $n$ and $2 n-2$.

Proposition 2.7: (i) $B^{\prime}$ is seminormal iff $\hat{B}^{\prime}$ is seminormal.
(ii) If $B^{\prime}=C \bigoplus D$ (direct sum of rings), then $B^{\prime}$ is seminormal iff $C$ and $D$ are seminormal.

Proof: (i) $B^{\prime}$ is seminormal iff $\operatorname{rad} B^{\prime}=\operatorname{rad} B$ (see 2.1) iff $\operatorname{rad} \hat{B}^{\prime}=$ $\operatorname{rad} \hat{B}$ iff $\operatorname{rad} \hat{B}^{\prime}=\operatorname{rad} \hat{B}^{\prime}($ see 1.7$)$ iff $\hat{B}^{\prime}$ is seminormal (see 2.1).
(ii) If $B^{\prime}$ is seminormal, then $B^{\prime}$ is the largest subring of $B$ such that spec $B \rightarrow \operatorname{spec} B^{\prime}$ is a homeomorphism with trivial residue field extension. Therefore for $C$ and $D$ the same property holds; and conversely.

In remark 2.5 we pointed out that $v\left(D_{B^{\prime} \mid A}\right) \leqq 2 n-2$ is not a sufficient condition in order for $B^{\prime}$ to be seminormal. Now we want to find a function $F(n, f, g)$ such that $v\left(D_{B^{\prime} / A}\right) \leqq F(n, f, g)$ gives such a sufficient condition (under suitable hypotheses). In the next theorem we show that $F(n, f, g)=n+f-1$ is the required function.

Theorem 2.8: Assume that $B$ is tamely ramified over $A$. If $B^{\prime}$ is seminormal, then $v\left(D_{B^{\prime} A}\right) \leqq n+f-1$.
The converse holds if either:
(i) $n=2$, or
(ii) $B^{\prime}$ is local, or
(iii) there exists a finite group $G$ of automorphisms of $B^{\prime}$ such that $B^{\prime G}=A$.

Proof. By $2.2 v\left(D_{B^{\prime} / A}\right)=n+f-2 g$ : moreover $2 g \geqq 1$, therefore $v\left(D_{B^{\prime} \mid A}\right) \leqq n+f-1$, which proves the first part of the theorem.
(i) If $B^{\prime}$ is local, we can apply (ii). If $B^{\prime}$ is not local we have $f=g=2$, which implies $B^{\prime}$ normal and then seminormal.
(ii) Let $C$ be the seminormalization of $B^{\prime}$; by 2.3 and 1.1 we have: $n+f-2 g \leqq v\left(D_{C \mid A}\right) \leqq v\left(D_{B^{\prime} \mid A}\right) \leqq n+f-1$, which implies $v\left(D_{B^{\prime} / A}\right)-$ $v\left(D_{C / A}\right) \leqq 2 g-1$ and so $2 \ell_{A}\left(C / B^{\prime}\right) \leqq 2 g-1$. But, since $B^{\prime}$ is local, $\ell_{A}\left(C / B^{\prime}\right)=g \ell_{B^{\prime}}\left(C / B^{\prime}\right)$ : then we have $2 g \ell_{B^{\prime}}\left(C / B^{\prime}\right) \leqq 2 g-1$, which implies $\ell_{B^{\prime}}\left(C / B^{\prime}\right)=0$ and $B^{\prime}$ is seminormal.
(iii) With the same notations as in the proof of 1.8 (ii) we have: $v\left(D_{B_{j}^{\prime} / A}\right)=(1 / r) v\left(D_{B^{\prime} / A}\right) \leqq[(n+f-1) / r] \leqq n / r+f / r-1=\left[L_{j}^{\prime}: \hat{K}\right]+$ [ $\left.k\left(\mathfrak{p}_{j}\right): k\right]-1$, which implies $B_{j}^{\prime}$ seminormal for every $j$, by (ii). Therefore $B^{\prime}$ itself is seminormal by 2.7 .

Remark 2.9: In general $v\left(D_{B^{\prime} \mid A}\right) \leqq n+f-1$ does not imply $B^{\prime}$ seminormal, as shown by counterexample 1.2 of [5].

Moreover we can show, by the following counterexample, that $n+f-1$ is the best upper bound for $v\left(D_{B^{\prime} \mid A}\right)$ in order to grant, under the assumptions of 2.8 , the seminormality of $B^{\prime}$.

Counterexample 2.10: Let $A=\mathbb{R}\left[T^{2}\right]_{\left(T^{2}\right)}, B^{\prime}=\mathbb{C}\left[T^{2}, T^{3}\right]_{\left(T^{2}, T^{3}\right)}$ and $B=\mathbb{C}[T]_{(T)}$. We have $n=4$ and $f=g=2$. Moreover $\ell_{B^{\prime}}\left(B / B^{\prime}\right)=1$, so $\ell_{A}\left(B / B^{\prime}\right)=2$. Since $B$ is tamely ramified over $A$, from 1.3 it follows $v\left(D_{B / A}\right)=4-2=2$ and by $1.1 v\left(D_{B^{\prime} \mid A}\right)=4+2=n+f$; but $B^{\prime}$ is not seminormal, though it is local.

Remark 2.11: We do not know if, in theorem 2.8, when (i) or (ii) or (iii) are verified and $v\left(D_{B^{\prime} \mid A}\right) \leqq n+f-1, B$ happens to be tamely ramified over $A$.

## 3. The Gorenstein case

Theorem 3.1: Suppose $B^{\prime}$ is Gorenstein and B is tamely ramified over $A$.

If $B^{\prime}$ is seminormal, then $v\left(D_{B^{\prime} \mid A}\right) \leqq n$.
The converse holds if either:
(i) $n=2$, or
(ii) $B^{\prime}$ is local, or
(iii) there exists a finite group $G$ of automorphisms of $B^{\prime}$ such that $B^{\prime G}=A$.

Proof: For every $\mathfrak{p}_{j} \in \operatorname{Max} B^{\prime}$, let $p_{j}=\ell_{A}\left(\bar{B}_{\mathfrak{p}_{j}}^{\prime} / \operatorname{rad} \bar{B}_{\mathfrak{p}_{j}}^{\prime}\right)$ : from [6] th. 8.1 , p. 46 it follows $2 g_{j} \geqq p_{j}$ and since $f=\Sigma_{j} p_{j}$ we get $2 g=2 \Sigma_{j} g_{j} \geqq$ $f$, and the claim follows from 2.2.
The converse follows from 2.8 .
Corollary 3.2 ([5] 1.1 and 1.3): Let $B^{\prime}=A[x]$ be a domain, and suppose either char $k=0$ or char $k>n$.
If $B^{\prime}$ is seminormal, then $v\left(D_{B^{\prime} \mid A}\right) \leqq n$.
The converse holds if $B^{\prime}$ is local.
Proof: If $G$ is the characteristic polynomial of $x$, we have $B^{\prime}=$ $A[X] /(G)$ and, since $A[X]$ is Gorenstein, $B^{\prime}$ is also Gorenstein. Moreover from the formula $\Sigma_{\mathfrak{p}} e_{p} f_{\mathfrak{p}}=n$, it follows $e_{\mathfrak{p}} \leqq n$ for every $\mathfrak{p} \in \operatorname{spec} B$, which implies that $B$ is tamely ramified over $A$ (obviously $e_{\mathfrak{p}}$ denotes the ramification index of $\mathfrak{p}$, and $\left.f_{\mathfrak{p}}=[k(\mathfrak{p}): k]\right)$. Then the claim follows from 3.1.

Corollary 3.3 ([4] 1.7): Assume that $n=2$, that A contains a field of characteristic $\neq 2$, and that $B^{\prime}$ is a domain.
Then $B^{\prime}$ is seminormal iff $v\left(D_{B^{\prime} A}\right) \leqq 2$.

Proof: $B^{\prime}$ is monogenic over $A([4] 1.1)$, then it is Gorenstein (see proof of 3.2) and $B$ is tamely ramified over $A$. Then the claim follows from 3.1.

REMARK 3.4: In general $v\left(D_{B^{\prime} \mid A}\right) \leqq n$ does not imply that $B^{\prime}$ is seminormal, even when $B^{\prime}$ is Gorenstein and $B$ tamely ramified over $A$ (see counterexample 1.2 of [5]).

In [5] we proved that if $B^{\prime}$ and $k$ are as in 3.2 , and if the characteristic polynomial of $x$ is $X^{n}-a(a \in A)$, then the following are equivalent:
(i) $B^{\prime}$ is seminormal.
(ii) $v\left(D_{B^{\prime} \mid A}\right) \leqq n$.
(iii) $a=u t^{q}$, where $u$ is a unit in $A$ and $q \leqq n /(n-1)$. Recently S.S. Abhyankar made us to notice that when $n \geqq 3$ (i), (ii), (iii) are also equivalent to:
(iv) $B^{\prime}$ is normal.

In fact, when $n \geqq 3$, (iii) implies $v(a) \leqq 1$ : now, if $v(a)=0$, then $v\left(D_{B^{\prime} \mid A}\right)=v\left(n^{n} a^{n-1}\right)=0$ and $B^{\prime}$ is normal by 1.1 ; if $v(a)=1$, then $B^{\prime}$ is local and $B^{\prime}$ is normal by 1.8.
Moreover (iv) $\rightarrow$ (i).
Now, supposing that $A$ contains the $n^{\text {th }}$ roots of 1 , then there is the group $G$ of automorphisms of $B^{\prime}, G=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, where $\sigma_{i \mid A}=i d_{A}$ and $\sigma_{i}(x)=x \cdot \xi^{i}$ ( $\xi$ a fixed primitive $n^{\text {th }}$ root of 1 ) for every $i$; for this group obviously $B^{\prime G}=A$. Therefore it is natural to conjecture that when $n \geqq 3, B^{\prime}$ is Gorenstein and either $B^{\prime}$ is local or there is a finite group $G$ of automorphisms of $B^{\prime}$ such that $B^{\prime G}=A$, then $v\left(D_{B^{\prime} A A}\right) \leqq n$ implies $B^{\prime}$ normal (notice that by $3.1 B^{\prime}$ is seminormal). The following counterexample gives a negative answer to the conjecture.

Counterexample 3.5: Let $A, B, B^{\prime}$ be as in $1.12 . B^{\prime}$ is Gorenstein and seminormal; moreover by 2.2 we have $v\left(D_{B^{\prime} \mid A}\right)=n+f-2 g=$ $4+2-2 \leqq 4$. But $B^{\prime}$ is not normal.

## 4. Globalization

Suppose $X, Y$ are locally noetherian schemes, with $Y$ integral normal, and let $\phi: X \rightarrow Y$ be a finite covering of degree $n$. From the going-up and going-down theorems ([3] cor. 2, p. 38 and th. 3, p. 56) it follows that if $x \in X$ is a point of codimension 1 , then $y=\phi(x) \in Y$ is
a point of codimension 1 , which implies that $\mathcal{O}_{y}$ is a discrete valuation ring.

Now, when $X$ is $S_{2}$ the seminormality and normality of $X$ can be checked in codimension 1 (see [6] th. 2.6, p. 9 and the Krull-Serre criterion, [7] th. 39, p. 125) i.e. it is enough to look at $v_{y}\left(\mathfrak{D}_{y}\right)$ for all $y \in Y$ of codimension 1.

Lemma 4.1: (i) If $B^{\prime}$ is Gorenstein, then $B^{\prime}$ is $S_{2}$.
(ii) If $E$ is any normal domain, and $B^{\prime}=E[x]$ is a domain integral over $A$, then $B^{\prime}$ is $S_{2}$ and Gorenstein in codimension 1.

Proof: (i) By definition $B^{\prime}$ is Cohen-Macaulay, hence $S_{r}$ for all $r$.
(ii) Since $E$ is normal $\left\{1, x, \ldots, x^{n-1}\right\}$ is a free basis of $B^{\prime}$ as an $E$-module. Now $E$ is $S_{2}$ and the fibers of the canonical embedding $E \hookrightarrow B^{\prime}$ are also $S_{2}$, being 0-dimensional: therefore since $B^{\prime}$ is faithfully flat over $E, B^{\prime}$ is $S_{2}$ ([7] cor. 2, p. 154).

Moreover for every $\mathfrak{q} \in \operatorname{spec} B^{\prime}$ of height 1 , we have $B_{\mathfrak{q}}^{\prime}=\left(E_{\Omega}[x]\right)_{q}$ where $\Omega=\mathfrak{q} \cap E$ : now $E_{\Omega}[x]$ is Gorenstein because $E_{\Omega}$ is a discrete valuation ring and $E_{\Omega}[x]$ is a domain (see proof of 3.2 ), then $B_{q}^{\prime}$ is Gorenstein and we are done.

By assuming $X$ to be $S_{2}$ we can globalize 1.2, 1.8, 2.2, 2.8: by assuming $X$ to be $S_{2}$ and Gorenstein in codimension 1, we can globalize in particular 3.1.

We wish to remark explicitly that when we assume $X$ to be integral and locally monogenic over $Y$, then by 4.1 (ii) $X$ is both $S_{2}$ and Gorenstein in codimension 1: which shows that the result obtained by globalizing 3.1 generalizes the analogous results of [4] and [5].

## REFERENCES

[1] S.S. Abhyankar: Ramification theoretic methods in algebraic geometry. Ann. Math. Studies, 43. Princeton Univ. Press (1959).
[2] N. Bourbaki: Algèbre commutative. Ch. 3-4. Hermann. Paris (1961).
[3] N. Bourbaki: Algèbre commutative. Ch. 5-6. Hermann. Paris (1964).
[4] N. Chiarli: Seminormalitǎ e ramificazione. Rend. Sem. Mat. Torino Vol. 33. (1974-75) 259-268.
[5] N. Chiarli: On the seminormality of finite coverings of a normal scheme. J. Indian Math. Soc. 41. (1977) 143-148.
[6] S. Greco and C. Traverso: On seminormal schemes. Comp. Math. 40 (1980) 325-365.
[7] H. Matsumura: Commutative Algebra. Benjamin. New York (1970).
[8] P. Samuel: Théorie algébrique des nombres. Hermann. Paris (1967).
[9] J.P. Serre: Corps locaux. Hermann. Paris (1968).
[10] I.R. Shafarevich: Basic algebraic geometry. Springer-Verlag (1977).
[11] C. Traverso: Seminormality and Picard group. Ann. Sc. Norm. Sup. Pisa 24. (1970) 585-595.
(Oblatum 23-XI-1979 \& 23-VI-1980)
Istituto Matematico Politecnico di Torino

Torino (Italy)


[^0]:    * This work was done during a stay at the Mathematics Department, Poona University, and at the Bhaskaracharya Pratishthana, Poona (India), under financial support of a N.A.T.O. fellowship, in the ambit of G.N.S.A.G.A. of C.N.R.

    The author wishes to thank prof. S.S. Abhyankar for helpful advice.

