COMPOSITIO MATHEMATICA

NADIA CHIARLI

Characterizations of certain singularities of a branched covering

Compositio Mathematica, tome 42, nº 3 (1980), p. 361-373 <http://www.numdam.org/item?id=CM_1980_42_3_361_0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA Vol. 42, Fasc. 3, 1981, pag. 361-373 © 1981 Sijthoff & Noordhoff International Publishers-Alphen aan den Rijn Printed in the Netherlands

CHARACTERIZATIONS OF CERTAIN SINGULARITIES OF A BRANCHED COVERING*

Nadia Chiarli

Introduction

Let X, Y be locally noetherian schemes, where Y is normal irreducible and X is reduced, and let $\phi: X \rightarrow Y$ be a finite covering of degree n (see definition 1.4). The problem is: how much ramification is allowed in order for X to have nice singularities, in particular in order for X to be seminormal or normal?

We studied essentially the seminormality of X in [4] when n = 2, and in [5] when ϕ is locally monogenic of arbitrary degree and X is integral. The purpose of this paper is to give a more general answer to the problem, studying the normal case and generalizing the seminormal case in a way leading also to the unification of the results of [4] and [5].

All the results are obtained by assuming Y to be the spectrum of a discrete valuation ring (see sections 1, 2, 3): they can be globalized (see section 4) in the same way shown in [4] and [5].

In section 1 and 2 we study respectively the normality and the seminormality of X, giving characterizations for both of them in terms of the value of the discriminant sheaf at the points of Y of codimension 1, and showing the relations with the tame ramification over Y of the normalization of X (see 1.2, 1.8, 2.2, 2.7).

In section 3 we study the particular case when X is Gorenstein, and finally in section 4 we discuss the globalization of the previous results.

The author wishes to thank prof. S.S. Abhyankar for helpful advice.

0010-437X/81/03361-13\$00.20/0

^{*} This work was done during a stay at the Mathematics Department, Poona University, and at the Bhaskaracharya Pratishthana, Poona (India), under financial support of a N.A.T.O. fellowship, in the ambit of G.N.S.A.G.A. of C.N.R.

Conventions and notations

Rings are assumed to be noetherian, commutative, with identity. In the remainder of this paper, unless stated to the contrary, we make the following assumptions:

(a) A is a discrete valuation ring, with uniformizing parameter t, residue field k and valuation v;

(b) K is the fraction field of A and L is a reduced K-algebra such that [L: K] = n;

(c) B' is a finite A-algebra, with L as total quotient ring;

(d) B is the integral closure of A in L, finite over A;

(e) for all $\mathfrak{m}_i \in Max B$, the extensions $k(\mathfrak{m}_i)/k$ are separable;

(f) if M is a sub-A-module of B, free of rank n, then $D_{M/A}$ denotes the discriminant of M over A ([19] §3, p. 59);

(g) l_A denotes the length of an A-module;

(h) for every $\mathfrak{m}_i \in \operatorname{Max} B$, put $f_i = [k(\mathfrak{m}_i): k]$ and $\Sigma_i f_i = f = l_A(B/\operatorname{rad} B)$; for every $\mathfrak{b} \in \operatorname{Max} B'$, put $g_j = [k(\mathfrak{p}_j): k]$ and $\Sigma_j g_j = g = l_A(B'/\operatorname{rad} B')$. Obviously $g \leq f$.

Remark that from (a), (b), (c), (d) it follows that B and B' are sub-A-modules of B, free of rank n.

For general facts on ramification theory see [1], [8], [9].

1. Normality

PROPOSITION 1.1: Let A, K, B, L be as above. Suppose M and N are two sub-A-modules of B, free of rank n. Then, for $M \subseteq N$:

$$v(D_{M/A}) = 2\ell_A(N/M) + v(D_{N/A}).$$

PROOF. By [8] th. 1, p. 26 there exists a basis $\{b_1, \ldots, b_n\}$ of N such that $\{t^{r_1}b_1, \ldots, t^{r_n}b_n\}$ $(r_h \leq r_{h+1})$ is a basis of M. Therefore ([8] prop. 1, p. 46):

$$\det(\mathrm{T}r_{M/A}(t^{r_i}b_it^{r_j}b_i)) = (\det(a_{ij}))^2 \det(\mathrm{T}r_{N/A}(b_ib_j))$$

where (a_{ij}) is the matrix associated with the A-linear mapping

$$(b_1,\ldots,b_n) \rightarrow (t',b_1,\ldots,t'',b_n).$$

Then $(\det(a_{ij}))^2 = t^{2\sum_h r_h}$, and $v(D_{M/A}) = 2\sum_h r_h + v(D_{N/A})$. Moreover it

362

is easy to prove, by induction over $\ell_A(N/M)$, that $\Sigma_h r_h = \ell_A(N/M)$ and this concludes the proof.

We recall that B is said to be *tamely ramified* over A if for every $m_i \in Max B$ the characteristic of k does not divide the ramification index e_i of m_i .

THEOREM 1.2: If B' is normal, then $v(D_{B'/A}) \ge n - f$. Moreover the following are equivalent:

- (i) B' is normal and tamely ramified over A.
- (ii) $v(D_{B'/A}) = n f$.
- (iii) $v(D_{B'/A}) \leq n-g$.
- (iv) $v(D_{B'/A}) = n g$.

PROOF: Suppose B' = B. We have: $B = \prod_i B_i$, where the B_i 's are normal domains. Therefore ([19] prop. 6, p. 60 and prop. 13, p. 67):

$$D_{B_{l}/A} = N(\delta_{B_{l}/A}) = N[\prod_{s}(\mathfrak{q}_{ls}^{h_{ls}})] \text{ with } h_{ls} \geq e_{ls} - 1,$$

where $q_{ls} \in Max \ B_1$ for every s, e_{ls} is the ramification index of q_{ls} , N is the norm and $\delta_{B_l/A}$ is the different of B_l over A.

So: $v(D_{B_{l}/A}) = \sum_{s} f_{ls}h_{ls} \ge \sum_{s} f_{ls}(e_{ls} - 1)$, where $f_{ls} = [k(\mathfrak{q}_{ls}):k]$. Now, since $D_{B/A} = \prod_{l} D_{B_{l}/A}$ ([8] lemma 1, p. 87) we have: $v(D_{B/A}) = \sum_{l} v(D_{B_{l}/A}) \ge \sum_{l} (\sum_{s} f_{ls}(e_{ls} - 1) = \sum_{i} f_{i}(e_{i} - 1) = n - f$, where the last equality follows from [3] th. 2, p. 147.

(i) \rightarrow (ii) Follows by the previous arguments, after observing that, due to the tame ramification of *B* over *A*, we have $h_{ls} = e_{ls} - 1$ ([9] prop. 13, p. 67) for every *l* and *s*.

(ii) \rightarrow (iii) Follows from $g \leq f$ (see (h) above).

(iii) \rightarrow (iv) By 1.1 since $v(D_{B/A}) \ge n - f$, we have $2\ell_A(B/B') + n - f \le n - g$, which implies $2\ell_A(B/B') \le f - g$. But $\ell_A(B/B') \ge \ell_A(B/\operatorname{rad} B) - \ell_A(B'/\operatorname{rad} B') = f - g$, so f = g and B' = B. Moreover from $n - g = n - f \le v(D_{B'/A}) \le n - g$, it follows $v(D_{B'/A}) = n - g$.

 $(iv) \rightarrow (i)$ By 1.1 and the first part of this theorem, we have $n - g \ge 2\ell_A(B/B') + n - f$, so $2\ell_A(B/B') \le f - g$, which implies, by the same arguments as in $(iii) \rightarrow (iv)$, f = g and B' normal. Moreover B' is tamely ramified over A: in fact (with the same notations as in the first part of this proof) we get $h_{ls} = e_{ls} - 1$ for every l and s.

COROLLARY 1.3: (i) $v(D_{B'/A}) \ge n - g$.

(ii) $v(D_{B'/A}) = n - g$ iff B' is normal and tamely ramified over A. (The lower bound n - g for $v(D_{B'/A})$ shall be improved in 2.3 (i): see also remark 2.4).

Nadia Chiarli

PROOF: By 1.1 and 1.2 we have: $v(D_{B'/A}) \ge 2\ell_A(B/B') + n - f \ge 2(f - g) + n - f = n + f - 2g \ge n - g.$ (ii) Follows from 1.2.

We will give now a geometrical interpretation of 1.2.

DEFINITION 1.4: Let X, Y be two locally noetherian schemes, with X reduced and Y integral, and denote by X_i (i = 1, ..., s) the irreducible components of X : let $\phi : X \to Y$ be a morphism. We say that ϕ is a *finite covering* if ϕ is finite and $\phi_{|X_i} : X_i \to Y$ is surjective for every i: in this case $\phi_{|X_i}$ induces a natural embedding $k(Y) \hookrightarrow k(X_i)$ for every i. We call degree of ϕ the integer Σ_i [$k(X_i)$: K(Y)].

Let now $\phi: X \to Y$ be a finite covering of degree *n* between two schemes locally of finite type over an algebraically closed field *k*: assume that *Y* is normal and irreducible, and let \mathfrak{D} be the discriminant sheaf of ϕ (see e.g. [4]). Let $Z \subset Y$ be an irreducible closed subscheme of codimension 1, with generic point \mathfrak{q} : assume that $Z \subset \operatorname{Sing} Y$ and denote by v_z the valuation associated with the discrete valuation ring \mathfrak{D}_Z . Let Z_1, \ldots, Z_r be the irreducible components of $\phi^{-1}(Z)$ and, for each *i*, denote by z_i the generic point of Z_i .

PROPOSITION 1.5: Assume that for every *i* we have: $k(z_i)/k(z)$ is separable and \mathcal{O}_{z_i} is tamely ramified over \mathcal{O}_z (e.g. *k* has characteristic zero). Then the following are equivalent:

(i) $Z_i \subset \operatorname{Sing} X$ for all i's.

(ii) There is a non-empty open $U \subset Z$ such that for every closed point $\zeta \in U$ the cardinality of the set $\phi^{-1}(\zeta)$ is equal to $n - v_z(\mathfrak{D}_z)$.

PROOF: For every *i* the morphism $\phi_i = \phi_{|Z_i}: Z_i \to Z$ is a finite covering of degree $d_i = [k(z_i): k(z)]$: by [10] th. 7, p. 117 there is a non-empty open set $U_i \subset Z$ such that $d_i = \#$ points of $\phi^{-1}(\alpha)$, for all closed points $\alpha \in U_i$.

Hence $\sum_i d_i = \#$ points of $\phi^{-1}(\zeta)$, where ζ is closed and belongs to the open set $(\bigcap_i U_i) - [\bigcup_{i \neq j} \phi(Z_i \cap Z_j)]$ which is non-empty because Z as well as the Z_i 's are irreducible. Now, if we denote by A the local ring of Y at z and by B' the semilocal ring of X at $z_1, ..., z_r$, we have by 1.3, $f = \sum_i d_i \leq n - v_z(\mathfrak{D}_z)$, where the equality holds iff B' is normal, i.e. iff $Z_i \subset \operatorname{Sing} X$ for all i's.

COROLLARY 1.6: Let X, Y be two algebraic curves over an algebraically closed field k of characteristic zero, and let $\phi: X \to Y$ be a finite covering of degree n. Let $P \in Y$ be a non-singular (closed) point

364

and let $\phi^{-1}(P) = \{P_1, ..., P_s\}$ (as a set). Then: (i) $s \ge n - v_P(\mathfrak{D}_P)$. (ii) $s = n - v_P(\mathfrak{D}_P)$ iff $P_1, ..., P_s$ are non-singular.

LEMMA 1.7: $\hat{B} = \overline{\hat{B}}'$ and $[\hat{L}:\hat{K}] = [L:K]$.

PROOF: Since *B* is semilocal $\hat{B} = \prod_i \hat{B}_{m_i}$, and since dim B' = 1 dim B = 1 too. Moreover, since B_{m_i} is a discrete valuation ring, \hat{B}_{m_i} is also a discrete valuation ring and therefore \hat{B} is normal. From $B' \subset B \subset L$ it follows: $\hat{B}' = \hat{B}' \otimes_{B'} B' \subset B \otimes_{B'} \hat{B}' \subset L \otimes_{B'} \hat{B}'$ and then $\hat{B}' \subset B \subset L \otimes_{B'} \hat{B}'$, and \hat{B} is finite over \hat{B}' . We have: $L = B'_f$ where $f \in B'$ is a non zero-divisor belonging to rad B'. Therefore: $L \otimes_{B'} \hat{B}' = B'_f \otimes_{B'} \hat{B}' = B'_f \otimes_{B'} \hat{B}' = B'_f \otimes_{B'} \hat{B}'$ is the total quotient ring of \hat{B}' . But $L \otimes_{B} \hat{B}' = L \otimes_{B} B \otimes_{B'} \hat{B}' = L \otimes_{B'} \hat{B}'$ and then $L \otimes_{B'} \hat{B}'$ is the total quotient ring of \hat{B} , which implies $\hat{B} = \hat{B}'$. Moreover $[\hat{L}:\hat{K}] = [(L \otimes_B \hat{B}):(K \otimes_A \hat{A})] = [(L \otimes_A \hat{A}):(K \otimes_A \hat{A})] = [L:K].$

THEOREM 1.8: If B' is normal and tamely ramified over A, then $v(D_{B'|A}) \leq n-1$.

The converse holds if either:

(i) n = 2, or

(ii) B' is local, or

(iii) there exists a finite group G of automorphisms of B' such that $B'^G = A$.

PROOF: The first claim follows from 1.2.

(i) We have either f = 2 or f = 1, so the claim follows from 1.1.

(ii) Claim first that f = g. By 1.1 and 1.2 we have $n - f + 2(f - g) \le v(D_{B/A}) + 2\ell_A(B/B') \le n - 1$ and so $f - 2g \le -1$. Now, if k' is the residue field of B' we have: $f = \dim_k(B/\operatorname{rad} B) = g \dim_k(B/\operatorname{rad} B)$. If $f \ne g$, then $\dim_{k'}(B/\operatorname{rad} B) > 1$, which implies $f \ge 2g$; a contradiction. So f = g. On the other hand, by 1.1 and 1.2 we have: $n - 1 \ge v(D_{B'/A}) \ge 2\ell_A(B/B') + n - f$ and $\ell_A(B/B') = g\ell_{B'}(B/B')$.

Therefore: $2g\ell_{B'}(B|B') \le f - 1 = g - 1$, so $g[2\ell_{B'}(B|B') - 1] \le -1$, which implies B = B'.

Moreover B is tamely ramified over A. Indeed, denoting by m the unique maximal ideal of B and by e its ramification index, we have: $\delta_{B/A} = \mathfrak{m}^h$ with $h \ge e - 1$. Now, $v(D_{B/A}) = v(N(\delta_{B/A})) = fh$; then $fh \le n - 1 = ef - 1$ ([3] th. 2, p. 147), so $f(h - e) \le -1$. This implies $h \le e - 1$, which concludes the proof ([9] prop. 13, p. 67).

(iii) We have: $B' = \bigoplus_{j=1}^{r} B'_{j}$ where all the B'_{j} 's are local. Moreover

([3] th. 2, p. 42) $[k(\mathfrak{p}_i): k]$, $[k(\mathfrak{m}_{il}): k]$, $[L'_j: \hat{K}]$ do not depend on j, for all $\mathfrak{p}_j \in \operatorname{Max} B'$ and all $\mathfrak{m}_{jl} \in \operatorname{Max} B$ over \mathfrak{p}_j : and also $[L'_j: \hat{K}] = n/r$ by 1.7. Since $v(D_{B'|A}) = v(D_{\hat{B}'|\hat{A}})$ ([9] prop. 10, p. 61), we have $v(D_{B'|A}) \leq n-1$. Therefore: $v(D_{B_j|\hat{A}}) = (1/r)v(D_{B'|A}) \leq [(n-1)/r] \leq [L'_j: \hat{K}] - 1$. Since for every B'_j condition (e) is verified because the residue fields do not change by completion, B'_j is normal and tamely ramified over A for every j by (ii): then B' itself is normal and tamely ramified over A.

COROLLARY 1.9: ([4] prop. 1.6). Suppose that n = 2 and that A contains a field of characteristic $\neq 2$. Then B' is normal iff $v(D_{B'|A}) \leq 1$.

PROOF: B' is tamely ramified over A and the claim follows from 1.8.

REMARK 1.10: In general $v(D_{B'/A}) \leq n-1$ does not imply B' normal even if B is tamely ramified over A, as shown by the following:

COUNTEREXAMPLE 1.11: Suppose char k = 0, and let $A = k[X]_{(X)}$, $B' = A[Y]/(Y^4 - Y^2 - X^3)$ (B' is the semilocal ring of the points of the curve $F = Y^4 - Y^2 - X^3 = 0$ which are contained in the line X = 0). We have: $v(D_{B'/A}) = v(\operatorname{Res}_Y(F, F')) = 3$ (by direct computation), where $\operatorname{Res}_Y(F, F')$ is the resultant of F and its derivative F' with respect to Y.

Therefore $v(D_{B'/A}) \leq 4-1$; but B' is not normal.

Moreover we can show, by the following counterexample, that n-1 is the best upper-bound for $v(D_{B'|A})$ in order to grant, under the assumptions of 1.8, the normality of B' and its tame ramification over A.

COUNTEREXAMPLE 1.12: Put $A = \mathbb{R}[T]_{(T)}$, $B = \mathbb{C}[X]_{(X)}$ with the ring homomorphism given by $T \to X^2$ (so that n = 4), and let $B' = \mathbb{R}[X, iX]_{(X, iX)}$. B' is local and moreover there is a finite group G of automorphisms of B' such that $B'^G = A$, given by: $G = \{\sigma_1, ..., \sigma_4\}$ where $\sigma_1 = id_{B'}$, $\sigma_2(X, iX) = (X, -iX)$, $\sigma_3(X, iX) = (-X, -iX)$, $\sigma_4 = \sigma_2^{\circ} \sigma_3$. We have $v(D_{B'|A}) = 4 = n$ (see 3.5), but B' is not normal.

The following example shows that for every $n \in \mathbb{N}$ there exists B' normal and tamely ramified over A such that $v(D_{B'|A}) = 0, 1, ..., n-1$; therefore in particular the maximum n-1 is attained.

EXAMPLE 1.13: Let $q_1, \ldots, q_u \in k[X]$ be irreducible, $q_i \neq q_j$ and non-associate whenever $i \neq j$; assume char k = 0 and let S =

 $\{q \in k[X] \mid q_i \text{ does not divide } q \text{ for every } i\}$. Put $A = k[T]_{(T)}$ and $B' = k[X]_S$ with the ring homomorphism given by $T \to \prod_i q_i^{a_i}$ where the a_i 's are positive integers and $\sum_i a_i = n$. The maximal ideals of B' are the $\mathfrak{m}_i = (q_i)k[X]_{(q_i)}$ and $[k(\mathfrak{m}):k] = \deg q_i$ $(i = 1, \ldots, u)$. We have: K = k(T), L = k(X); so [L:K] = n. B' is normal and tamely ramified over A, therefore by 1.2 $v(D_{B'|A}) = n - \sum_i \deg q_i$. Now, for a suitable choice of the q_i 's it is possible to obtain every value of $v(D_{B'|A})$ between 0 and n - 1 (compare with 1.6).

2. Seminormality

For general facts on seminormality see [6] or [11].

LEMMA 2.1: The following are equivalent: (i) B' is seminormal. (ii) rad B' = rad B. (iii) $\ell_A(B/B') = f - g$. If moreover f = g, then (i), (ii), (iii) are also equivalent to: (iv) B' is normal.

PROOF: Let b be the conductor of *B*.

(i) \rightarrow (ii) If B' is seminormal, then B/b is reduced ([11] lemma 1.3, p. 588); so, after renumbering the \mathfrak{m}_i 's, we have: $\mathfrak{b} = \mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_s \supset \mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_r = \operatorname{rad} B$. But $\mathfrak{b} \subset B'$, so rad $B \subset \operatorname{rad} B'$ and we are done.

(ii) \rightarrow (i) $b \supset rad B' = rad B$, therefore $B/b = (B/rad B)/(b/rad B) = (k_1 \times \ldots \times k_r)/I$ (I a suitable ideal). Thus $B/b = k_{i_1} \times \ldots \times k_{i_r}$ which implies B/b reduced and B' seminormal ([6] cor. 2.7, p. 10).

(ii) \leftrightarrow (iii) $\ell_A(B/B') = \ell_A(B/\text{rad } B) - \ell_A(B'/\text{rad } B) = f - g$ iff rad B = rad B'.

The rest is obvious.

THEOREM 2.2: Consider the following conditions:

(i) B' is seminormal.

(ii) $v(D_{B'/A}) \ge n + f - 2g$.

(iii) $v(D_{B'/A}) = n + f - 2g$.

(iv) $v(D_{B'/A}) \leq n + f - 2g$.

(v) B' is seminormal and B is tamely ramified over A.

Then: (i) \rightarrow (ii) and (iii), (iv), (v) are equivalent.

PROOF: (i) \rightarrow (ii) By 2.1 we have $\ell_A(B/B') = f - g$, and therefore by 1.1 and 1.2 $v(D_{B'|A}) \ge n + f - 2(f - g) = n + f - 2g$.

(iii) \rightarrow (iv) Trivial.

(iv) \rightarrow (v) Let C be the seminormalization of B' ([11] pp. 585-586): by 1.1 we have $v(D_{C|A}) + 2\ell_A(C|B') = v(D_{B'|A}) \leq n + f - 2g$. But since C is seminormal and the sum of the degrees over k of its residue fields equals g, we have: $n + f - 2g + 2\ell_A(C|B') \leq n + f - 2g$, which implies $\ell_A(C|B') = 0$ and C = B'.

Moreover *B* is tamely ramified over *A*. In fact: $v(D_{B|A}) + 2\ell_A(B|B') \leq n + f - 2g$ implies, by 2.1, $v(D_{B|A}) + 2(f - g) \leq n + f - 2g$; so $v(D_{B|A}) \leq n - f$ and the claim follows by 1.2.

 $(v) \rightarrow (iii)$ Follows from 1.2 and from $(i) \rightarrow (ii)$.

COROLLARY 2.3: (i) $v(D_{B'|A}) \ge n + f - 2g$.

(ii) $v(D_{B'|A}) = n + f - 2g$ iff B' is seminormal and B is tamely ramified over A.

PROOF: (i) Let C be the seminormalization of B'; by 1.1 we have $v(D_{B'|A}) \ge v(D_{C|A}) \ge n + f - 2g.$ (ii) Follows from 2.2

(ii) Follows from 2.2.

REMARK 2.4: Since $f \ge g$, then $n + f - 2g \ge n - g$, with strict inequality whenever $f \ne g$. Therefore 2.3 (i) is an improvement of 1.3 (i).

REMARK 2.5: From 2.2 it follows that if B' is seminormal and B is tamely ramified over A, then $v(D_{B'/A}) \leq 2n-2$ (the upper bound is obtained when f = n and g = 1).

Counterexample 1.11 shows that the converse is false, in general: in fact B' is not seminormal and still $v(D_{B'|A}) \leq 2 \cdot 4 - 2$.

The following example shows that for every $n \in \mathbb{N}$ there exists B' seminormal, with B tamely ramified over A, such that $v(D_{B'/A}) = n, n+1, \ldots, 2n-2$; therefore, in particular, the maximum 2n-2 is attained.

EXAMPLE 2.6: With the same notations as in 1.13 put: $A = k[T]_{(T)}$, $B = k[X]_s$, B' = k + rad B.

B' is seminormal by 2.1 and since B is tamely ramified over A, from 2.2 it follows $v(D_{B'/A}) = n + \sum_i \deg q_i - 2$. Therefore, for a suitable choice of the q_i 's, it is possible to obtain every value of $v(D_{B'/A})$ between n and 2n - 2.

PROPOSITION 2.7: (i) B' is seminormal iff \hat{B}' is seminormal.

(ii) If $B' = C \bigoplus D$ (direct sum of rings), then B' is seminormal iff C and D are seminormal.

[8]

PROOF: (i) B' is seminormal iff rad $B' = \operatorname{rad} B$ (see 2.1) iff rad $\hat{B}' = \operatorname{rad} \hat{B}$ iff rad $\hat{B}' = \operatorname{rad} \hat{B}'$ (see 1.7) iff \hat{B}' is seminormal (see 2.1).

(ii) If B' is seminormal, then B' is the largest subring of B such that spec $B \rightarrow \text{spec } B'$ is a homeomorphism with trivial residue field extension. Therefore for C and D the same property holds; and conversely.

In remark 2.5 we pointed out that $v(D_{B'/A}) \leq 2n-2$ is not a sufficient condition in order for B' to be seminormal. Now we want to find a function F(n, f, g) such that $v(D_{B'/A}) \leq F(n, f, g)$ gives such a sufficient condition (under suitable hypotheses). In the next theorem we show that F(n, f, g) = n + f - 1 is the required function.

THEOREM 2.8: Assume that B is tamely ramified over A. If B' is seminormal, then $v(D_{B'|A}) \leq n + f - 1$.

The converse holds if either:

(i) n = 2, or

(ii) B' is local, or

(iii) there exists a finite group G of automorphisms of B' such that $B'^G = A$.

PROOF. By 2.2 $v(D_{B'|A}) = n + f - 2g$: moreover $2g \ge 1$, therefore $v(D_{B'|A}) \le n + f - 1$, which proves the first part of the theorem.

(i) If B' is local, we can apply (ii). If B' is not local we have f = g = 2, which implies B' normal and then seminormal.

(ii) Let C be the seminormalization of B'; by 2.3 and 1.1 we have: $n+f-2g \leq v(D_{C/A}) \leq v(D_{B'/A}) \leq n+f-1$, which implies $v(D_{B'/A}) - v(D_{C/A}) \leq 2g-1$ and so $2\ell_A(C/B') \leq 2g-1$. But, since B' is local, $\ell_A(C/B') = g\ell_{B'}(C/B')$: then we have $2g\ell_{B'}(C/B') \leq 2g-1$, which implies $\ell_{B'}(C/B') = 0$ and B' is seminormal.

(iii) With the same notations as in the proof of 1.8 (ii) we have: $v(D_{B'_{j}/A}) = (1/r)v(D_{B'/A}) \leq [(n + f - 1)/r] \leq n/r + f/r - 1 = [L'_{j}: \hat{K}] + [k(\mathfrak{p}_{j}): k] - 1$, which implies B'_{j} seminormal for every *j*, by (ii). Therefore B' itself is seminormal by 2.7.

REMARK 2.9: In general $v(D_{B'/A}) \leq n+f-1$ does not imply B' seminormal, as shown by counterexample 1.2 of [5].

Moreover we can show, by the following counterexample, that n + f - 1 is the best upper bound for $v(D_{B'/A})$ in order to grant, under the assumptions of 2.8, the seminormality of B'.

Nadia Chiarli

COUNTEREXAMPLE 2.10: Let $A = \mathbb{R}[T^2]_{(T^2)}$, $B' = \mathbb{C}[T^2, T^3]_{(T^2,T^3)}$ and $B = \mathbb{C}[T]_{(T)}$. We have n = 4 and f = g = 2. Moreover $\ell_{B'}(B/B') = 1$, so $\ell_A(B/B') = 2$. Since B is tamely ramified over A, from 1.3 it follows $v(D_{B/A}) = 4 - 2 = 2$ and by 1.1 $v(D_{B'/A}) = 4 + 2 = n + f$; but B' is not seminormal, though it is local.

REMARK 2.11: We do not know if, in theorem 2.8, when (i) or (ii) or (iii) are verified and $v(D_{B'/A}) \leq n + f - 1$, B happens to be tamely ramified over A.

3. The Gorenstein case

THEOREM 3.1: Suppose B' is Gorenstein and B is tamely ramified over A.

If B' is seminormal, then $v(D_{B'|A}) \leq n$. The converse holds if either:

(i) n = 2, or

(ii) B' is local, or

(iii) there exists a finite group G of automorphisms of B' such that $B'^G = A$.

PROOF: For every $\mathfrak{p}_i \in \text{Max } B'$, let $p_j = \ell_A(\overline{B}_{\mathfrak{p}_j}'/\text{rad } \overline{B}_{\mathfrak{p}_j}')$: from [6] th. 8.1, p. 46 it follows $2g_j \ge p_j$ and since $f = \sum_j p_j$ we get $2g = 2\sum_j g_j \ge f$, and the claim follows from 2.2. The converse follows from 2.8.

COROLLARY 3.2 ([5] 1.1 and 1.3): Let B' = A[x] be a domain, and suppose either char k = 0 or char k > n. If B' is seminormal, then $v(D_{B'|A}) \leq n$. The converse holds if B' is local.

PROOF: If G is the characteristic polynomial of x, we have B' = A[X]/(G) and, since A[X] is Gorenstein, B' is also Gorenstein. Moreover from the formula $\Sigma_{\mathfrak{p}} e_{\mathfrak{p}} f_{\mathfrak{p}} = n$, it follows $e_{\mathfrak{p}} \leq n$ for every $\mathfrak{p} \in \text{spec } B$, which implies that B is tamely ramified over A (obviously $e_{\mathfrak{p}}$ denotes the ramification index of \mathfrak{p} , and $f_{\mathfrak{p}} = [k(\mathfrak{p}):k]$). Then the claim follows from 3.1.

COROLLARY 3.3 ([4] 1.7): Assume that n = 2, that A contains a field of characteristic $\neq 2$, and that B' is a domain. Then B' is seminormal iff $v(D_{B'|A}) \leq 2$.

370

PROOF: B' is monogenic over A([4] 1.1), then it is Gorenstein (see proof of 3.2) and B is tamely ramified over A. Then the claim follows from 3.1.

REMARK 3.4: In general $v(D_{B'/A}) \leq n$ does not imply that B' is seminormal, even when B' is Gorenstein and B tamely ramified over A (see counterexample 1.2 of [5]).

In [5] we proved that if B' and k are as in 3.2, and if the characteristic polynomial of x is $X^n - a$ ($a \in A$), then the following are equivalent:

(i) B' is seminormal.

(ii) $v(D_{B'/A}) \leq n$.

(iii) $a = ut^{q}$, where u is a unit in A and $q \le n/(n-1)$. Recently S.S. Abhyankar made us to notice that when $n \ge 3$ (i), (ii), (iii) are also equivalent to:

(iv) B' is normal.

In fact, when $n \ge 3$, (iii) implies $v(a) \le 1$: now, if v(a) = 0, then $v(D_{B'/A}) = v(n^n a^{n-1}) = 0$ and B' is normal by 1.1; if v(a) = 1, then B' is local and B' is normal by 1.8.

Moreover (iv) \rightarrow (i).

Now, supposing that A contains the n^{th} roots of 1, then there is the group G of automorphisms of B', $G = \{\sigma_1, \ldots, \sigma_n\}$, where $\sigma_{i|A} = id_A$ and $\sigma_i(x) = x \cdot \xi^i$ (ξ a fixed primitive n^{th} root of 1) for every *i*; for this group obviously $B'^G = A$. Therefore it is natural to conjecture that when $n \ge 3$, B' is Gorenstein and either B' is local or there is a finite group G of automorphisms of B' such that $B'^G = A$, then $v(D_{B'|A}) \le n$ implies B' normal (notice that by 3.1 B' is seminormal). The following counterexample gives a negative answer to the conjecture.

COUNTEREXAMPLE 3.5: Let A, B, B' be as in 1.12. B' is Gorenstein and seminormal; moreover by 2.2 we have $v(D_{B'|A}) = n + f - 2g =$ $4 + 2 - 2 \le 4$. But B' is not normal.

4. Globalization

Suppose X, Y are locally noetherian schemes, with Y integral normal, and let $\phi: X \to Y$ be a finite covering of degree *n*. From the going-up and going-down theorems ([3] cor. 2, p. 38 and th. 3, p. 56) it follows that if $x \in X$ is a point of codimension 1, then $y = \phi(x) \in Y$ is

a point of codimension 1, which implies that \mathcal{O}_y is a discrete valuation ring.

Now, when X is S_2 the seminormality and normality of X can be checked in codimension 1 (see [6] th. 2.6, p. 9 and the Krull-Serre criterion, [7] th. 39, p. 125) i.e. it is enough to look at $v_y(\mathfrak{D}_y)$ for all $y \in Y$ of codimension 1.

LEMMA 4.1: (i) If B' is Gorenstein, then B' is S_2 .

(ii) If E is any normal domain, and B' = E[x] is a domain integral over A, then B' is S_2 and Gorenstein in codimension 1.

PROOF: (i) By definition B' is Cohen-Macaulay, hence S, for all r. (ii) Since E is normal $\{1, x, ..., x^{n-1}\}$ is a free basis of B' as an E-module. Now E is S_2 and the fibers of the canonical embedding $E \hookrightarrow B'$ are also S_2 , being 0-dimensional: therefore since B' is faithfully flat over E, B' is S_2 ([7] cor. 2, p. 154).

Moreover for every $\mathfrak{q} \in \operatorname{spec} B'$ of height 1, we have $B'_{\mathfrak{q}} = (E_{\mathfrak{Q}}[x])_{\mathfrak{q}}$ where $\mathfrak{Q} = \mathfrak{q} \cap E : \operatorname{now} E_{\mathfrak{Q}}[x]$ is Gorenstein because $E_{\mathfrak{Q}}$ is a discrete valuation ring and $E_{\mathfrak{Q}}[x]$ is a domain (see proof of 3.2), then $B'_{\mathfrak{q}}$ is Gorenstein and we are done.

By assuming X to be S_2 we can globalize 1.2, 1.8, 2.2, 2.8: by assuming X to be S_2 and Gorenstein in codimension 1, we can globalize in particular 3.1.

We wish to remark explicitly that when we assume X to be integral and locally monogenic over Y, then by 4.1 (ii) X is both S_2 and Gorenstein in codimension 1: which shows that the result obtained by globalizing 3.1 generalizes the analogous results of [4] and [5].

REFERENCES

- [1] S.S. ABHYANKAR: Ramification theoretic methods in algebraic geometry. Ann. Math. Studies, 43. Princeton Univ. Press (1959).
- [2] N. BOURBAKI: Algèbre commutative. Ch. 3-4. Hermann. Paris (1961).
- [3] N. BOURBAKI: Algèbre commutative. Ch. 5-6. Hermann. Paris (1964).
- [4] N. CHIARLI: Seminormalită e ramificazione. Rend. Sem. Mat. Torino Vol. 33. (1974-75) 259-268.
- [5] N. CHIARLI: On the seminormality of finite coverings of a normal scheme. J. Indian Math. Soc. 41. (1977) 143-148.
- [6] S. GRECO and C. TRAVERSO: On seminormal schemes. Comp. Math. 40 (1980) 325-365.
- [7] H. MATSUMURA: Commutative Algebra. Benjamin. New York (1970).
- [8] P. SAMUEL: Théorie algébrique des nombres. Hermann. Paris (1967).

- [9] J.P. SERRE: Corps locaux. Hermann. Paris (1968).
- [10] I.R. SHAFAREVICH: Basic algebraic geometry. Springer-Verlag (1977).
- [11] C. TRAVERSO: Seminormality and Picard group. Ann. Sc. Norm. Sup. Pisa 24. (1970) 585-595.

(Oblatum 23-XI-1979 & 23-VI-1980)

Istituto Matematico Politecnico di Torino Torino (Italy)