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Introduction

Let X, Y be locally noetherian schemes, where Y is normal

irreducible and X is reduced, and let ~ : X- Y be a finite covering of
degree n (see definition 1.4). The problem is: how much ramification
is allowed in order for X to have nice singularities, in particular in
order for X to be seminormal or normal?
We studied essentially the seminormality of X in [4] when n = 2,

and in [5] when 0 is locally monogenic of arbitrary degree and X is
integral. The purpose of this paper is to give a more general answer to
the problem, studying the normal case and generalizing the seminor-
mal case in a way leading also to the unification of the results of [4]
and [5].

All the results are obtained by assuming Y to be the spectrum of a
discrete valuation ring (see sections 1, 2, 3): they can be globalized
(see section 4) in the same way shown in [4] and [5].

In section 1 and 2 we study respectively the normality and the
seminormality of X, giving characterizations for both of them in

terms of the value of the discriminant sheaf at the points of Y of
codimension 1, and showing the relations with the tame ramification
over Y of the normalization of X (see 1.2, 1.8, 2.2, 2.7).

In section 3 we study the particular case when X is Gorenstein, and
finally in section 4 we discuss the globalization of the previous
results.

* This work was done during a stay at the Mathematics Department, Poona University,
and at the Bhaskaracharya Pratishthana, Poona (India), under financial support of a
N.A.T.O. fellowship, in the ambit of G.N.S.A.G.A. of C.N.R.
The author wishes to thank prof. S.S. Abhyankar for helpful advice.
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C onventions and notations

Rings are assumed to be noetherian, commutative, with identity. In
the remainder of this paper, unless stated to the contrary, we make
the following assumptions:

(a) A is a discrete valuation ring, with uniformizing parameter t,
residue field k and valuation v ;

(b) K is the fraction field of A and L is a reduced K-algebra such that
[L : K] = n ;

(c) B’ is a finite A-algebra, with L as total quotient ring;
(d) B is the integral closure of A in L, finite over A;
(e) for all mi E Max B, the extensions k(mi)lk are separable;
(f) if M is a sub-A-module of B, free of rank n, then DM/A denotes the

discriminant of M over A ([19] §3, p. 59);
(g) lA denotes the length of an A-module;
(h) for every mi ~ Max B, put f; = [k(mi): k] and lifi = f =

lA(B/rad B); for every b E Max B’, put gj = [k(pj) : k] and ljgj = g =

lA(B’/rad B’). Obviously g ~ f.
Remark that from (a), (b), (c), (d) it follows that B and B’ are

sub-A-modules of B, free of rank n.

For general facts on ramification theory see [1], [8], [9].

1. Normality

PROPOSITION 1.1: Let A, K, B, L be as above. Suppose M and N
are two sub-A-modules of B, free of rank n. Then, for M C N:

PROOF. By [8] th. 1, p. 26 there exists a basis f b,, ... , bn} of N such
that {tr1b1, ... , trnbn} (rh ~ rh+l) is a basis of M. Therefore ([8] prop. 1, p.
46):

where (a;;) is the matrix associated with the A-linear mapping

Then (det(aij))2 = t203A3hrh, and v(DM/A) = 2 Eh rh + V(DNIA). Moreover it
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is easy to prove, by induction over ~A(N/M), that Eh rh = ~A(N/M)
and this concludes the proof.

We recall that B is said to be tamely ramified over A if for every
mi E Max B the characteristic of k does not divide the ramification index

ei of m i.

THEOREM 1.2: If B’ is normal, then v(DB’/A) ~ n - f.
Moreover the following are equivalent :

(i) B’ is normal and tamely ramified over A.
(ii) v(DB’/A) = n - f.
(iii) v (DB’/A) ~ n - g.
(iv) v (DB’/A) = n - g.

PROOF: Suppose B’ = B. We have: B = 03A0lBl, where the B,’s are
normal domains. Therefore ([19] prop. 6, p. 60 and prop. 13, p. 67):

where ql, E Max Bi for every s, els is the ramification index of qls, N

is the norm and &#x26;B,/A is the different of BI over A.
So: v(DBl/A) = Ls f’shls ~ Ls fls(els - 1), where fis = [k(q,s): k]. Now,

since DBIA = 03A0lDBl/A ([8] lemma 1, p. 87) we have: v(DB/A) =
, where the last

equality follows from [3] th. 2, p. 147.
(i) ~ (ii) Follows by the previous arguments, after observing that, due

to the tame ramification of B over A, we have hls = els - 1 ([9] prop.
13, p. 67) for every 1 and s.

(ii) ~ (iii) Follows from g ~ f (see (h) above).
(iii) ~ (iv) By 1.1 since v (DB/A) ~ n - f, we have 2fA(B/B’) + n - f ~

n - g, which implies 2~A(B/B’) ~ f - g. But ~A(B/B’) ~
~A(B/rad B) - tA (B’/rad B’l ’= f - g, so f = g and B’ = B. Moreover
from n - g = n - f ~ V(DB’IA):.’5 n - g,.it follows v(DB’/A) = n - g.

(iv) ~ (i) By 1.1 and the first part of this theorem, we have n - g ?
2tA(B/B’) + n - f, so 2~A(B/B’) ~ f - g, which implies, by the same
arguments as in (iii)-(iv), f = g and B’ normal. Moreover B’ is

tamely ramified over A : in fact (with the same notations as in the first
part of this proof) we get hl, = els - 1 for every 1 and s.

COROLLARY 1.3: (i) v (DB’/A) ~ n - g.
(ii) v(DB’IA) = n - g iff B’ is normal and tamely ramified over A.

(The lower bound n - g for v(DB’/A) shall be improved in 2.3 (i): see
also remark 2.4).
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PROOF: By 1.1 and 1.2 we have: v(DB’/A) ~ 2fA(B/B’) + n - f a
2(f-g)+n-f =n+f -2g ~ n-g.

(ii) Follows from 1.2.
We will give now a geometrical interpretation of 1.2.

DEFINITION 1.4: Let X, Y be two locally noetherian schemes, with
X reduced and Y integral, and denote by X (i = 1, .., s) the irreduci-
ble components of X : let ~: X- Y be a morphism. We say that ~ is
a finite covering if 0 is finite and 0 |Xi : Xi ~ Y is surjective for every
i : in this case ~|Xi induces a natural embedding k(Y)4 k(Xi) for every i.
We call degree of 0 the integer 03A3i [k(Xi): K(Y)].

Let now 0: X ~ Y be a finite covering of degree n between two
schemes locally of finite type over an algebraically closed field

k : assume that Y is normal and irreducible, and let :1) be the dis-
criminant sheaf of ~ (see e.g. [4]). Let Z C Y be ah irreducible closed
subscheme of codimension 1, with generic point q: assume that

Z Sing Y and denote by vz the valuation associated with the dis-
crete valuation ring :1) z. Let Zl, .., Zr be the irreducible components
of ~-1(Z) and, for each i, denote by Zi the generic point of Zi.

PROPOSITION 1.5: Assume that for every i we have: k(zi)lk(z) is

separable and Cz, is tamely ramified over OZ (e.g. k has characteristic
zero). Then the following are equivalent:

(i) Zi  SingX for all i’s.
(ii) There is a non-empty open U C Z such that for every closed

point (E U the cardinality of the set ~-1(03B6) is equal to n - vz(Dz).

PROOF: For every i the morphism ~i = ~|Zi:Zi~Z is a finite

covering of degree di = [k(zi): k(z)]: by [10] th. 7, p. 117 there is a

non-empty open set Ui C Z such that di = #points of ~-1(03B1), for all
closed points a E Ui.
Hence 03A3i di = # points of where C is closed and belongs to

the open set (~iUi) - [ U i~j ~(Zi n Zj)] which is non-empty because
Z as well as the z’s are irreducible. Now, if we denote by A the local
ring of Y at z and by B’ the semilocal ring of X at zl, .., zr, we have
by 1.3, f = li di ~ n - vz(Dz), where the equality holds iff B’ is normal,
i.e. iff Zi  Sing X for all i’s.

COROLLARY 1.6: Let X, Y be two algebraic curves over an al-

gebraically closed field k of characteristic zero, and let 0 : X ~ Y be a
finite covering of degree n. Let P E Y be a non-singular (closed) point
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and let ~-1(P) = {P1, .., PS} (as a set). Then :
(i) s ~ n - vp(SDp).
(ii) s = n - vP(DP) iff P1, ..., Ps are non-singular.

PROOF: Since B is semilocal B = IliÊ.,, and since dim B’ = 1 dim
B = 1 too. Moreover, since Bmi is a discrete valuation ring, Bm; is also
a discrete valuation ring and therefore B is normal. From B’ C B C L
it follows: B’ = 13’0B,B’ C B0B,13’ C L0B,13’ and then B’ C B C
L0B,13’, and B is finite over B’. We have: L = B’f where f E B’ is a
non zero-divisor belonging to rad B’. Therefore: L0B,13’ = Bj0B,13’ =
B’f, where, by flatness f is a non zero-divisor in rad B’. So L0B,13’ is
the total quotient ring of B’. But L0B13’ = L(g)BB0B,13’ = L0&#x26;’
and then L 0B’ 13’ is the total quotient ring of B, which implies 13 =
B’. Moreover [L:K]=[(L~BB):(K~AÂ)]=[(L~AÂ):(K~AÂ)]=
[L: K].

THEOREM 1.8: If B’ is normal and tamely ramified over A, then
v(DB’/A) ~ n - 1.
The converse holds if either:
(i) n = 2, or
(ii) B’ is local, or
(iii) there exists a finite group G of automorphisms of B’ such that

B’G = A.

PROOF: The first claim follows from 1.2.

(i) We have either f = 2 or f = 1, so the claim follows from 1.1.
(ii) Claim first that f = g. By 1.1 and 1.2 we have n - f + 2(f - g) ~

v(DB/A) + 2~A(B/B’) ~ n-1 and so f - 2g ~ - 1. Now, if k’ is the

residue field of B’ we have: f = dimk(B/rad B) = g dimk,(B/rad B). If
f ~ g, then dimk,(B/rad B) &#x3E; 1, which implies f a 2g ; a contradiction.
So f = g. On the other hand, by 1.1 and 1.2 we have: n - 1 ~

v(DB’/A) ~ 2tA(B/ B’) + n - f and tA(B/ B’) = geB,(BIB’).
Therefore : 2g~B’(B/B’)~f-1=g-1, so g[2~B’(B/B’)-1] ~ -1,

which implies B = B’.
Moreover B is tamely ramified over A. Indeed, denoting by m the

unique maximal ideal of B and by e its ramification index, we have:
03B4B/A = mh with h ~ e -1. Now, V (DBIA) = v (N(8BIA» = f h ; then fh ~
n-1 = ef-1 ([3] th. 2, p. 147), so f(h - e) ~ - 1. This implies h ~
e - 1, which concludes the proof ([9] prop. 13, p. 67).

(iii) We have: B’ = ~rj=1B’j where all the Bj’s are local. Moreover
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([3] th. 2, p. 42) [k(pj) : k], [k(mjl): k], [L’j: K] do not depend on j, for all
pj E Max B’ and all mjl E Max B over pj: and also [L; : K] = n/r by 1.7.

Since v(DB’/A) = v(DÊ’IÂ) ([9] prop. 10, p. 61), we have v (DB’IA)
n-1. Therefore : v(DB’j/Â) = (1/r)v(DB’/A) ~ [(n - 1)/r] ~ [L’j:K]-1.
Since for every B’j condition (e) is verified because the residue fields
do not change by completion, B’j is normal and tamely ramified over
A for every j by (ii): then B’ itself is normal and tamely ramified over
A.

COROLLARY 1.9: ([4] prop. 1.6). Suppose that n = 2 and that A
contains a field of characteristic ~ 2. Then B’ is normal iff V(DB’/A) ~ 1.

PROOF: B’ is tamely ramified over A and the claim follows from
1.8.

REMARK 1.10: In general v(DB’/A) ~ n - 1 does not imply B’ normal
even if B is tamely ramified over A, as shown by the following:

COUNTEREXAMPLE 1.11: Suppose char k = 0, and let A = k[X](X),
B’ = A[Y]/(Y4 - Y2 - X3) (B’ is the semilocal ring of the points of the
curve F = y4_ Y2 - X3 = 0 which are contained in the line X = 0).
We have: u(DB/A) = v(ResY(F, F’)) = 3 (by direct computation),
where Res y(F, F’) is the resultant of F and its derivative F’ with

respect to Y.
Therefore v(DB’/A)~4- 1; but B’ is not normal.
Moreover we can show, by the following counterexample, that

n - 1 is the best upper-bound for v(DB’/A) in order to grant, under the
assumptions of 1.8, the normality of B’ and its tame ramification over
A.

COUNTEREXAMPLE 1.12: Put A = R[T](T), B = C[X](X) with the

ring homomorphism given by T ~ X2 (so that n = 4), and let B’ =
R [X, iX](X, iX). B’ is local and moreover there is a finite group G of

automorphisms of B’ such that B’G = A, given by: G = {03C31,...,03C34}
where 03C31 = idB,, (T2(X, iX) = (X, - iX), 03C33(X, iX) = ( - X, - iX), 03C34 =

03C32°03C33. We have v(DB’IA) = 4 = n (see 3.5), but B’ is not normal.

The following example shows that for every n E N there exists B’
normal and tamely ramified over A such that v(DB’/A) = 0,1,.., n - 1;
therefore in particular the maximum n - 1 is attained.

EXAMPLE 1.13: Let q1,..,qu ~ k[X] be irreducible, qi ~ qj and
non-associate whenever i 0 j; assume char k = 0 and let S =
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{q ~ k[X]|qi does not divide q for every i}. Put A = k[T](T) and
B’ = k [X]s with the ring homomorphism given by T ~ 03A0iqa-ii where the
ai’s are positive integers and Li ai = n. The maximal ideals of B’ are
the Mi = (qi)k[X](qi) and [k(m) : k] = deg qi (i = 1,..., u). We have:
K = k(T), L = k(X); so [L : K] = n. B’ is normal and tamely ramified
over A, therefore by 1.2 v (DBIA) = n - Li deg qi. Now, for a suitable
choice of the qi’s it is possible to obtain every value of v(DB’/A)
between 0 and n - 1 (compare with 1.6).

2. Seminormality

For general facts on seminormality see [6] or [11].

LEMMA 2.1: The following are equivalent:
(i) B’ is seminormal.
(ii) rad B’ = rad B.
(iii) tA(B/ B’) = f - g.
If moreover f = g, then (i), (ii), (iii) are also equivalent to :
(iv) B’ is normal.

PROOF: Let b be the conductor of B.

(i) ~ (ii) If B’ is seminormal, then B/b is reduced ([11] lemma 1.3, p.
588); so, after renumbering the m; ’s, we have: û =

m ~ ... fl ms ~ m1 n ... n m = rad B. But b ~ B’, so rad B C rad B’and
we are done.

(ii)~(i) b ~ rad B’ = rad B, therefore B/b = (B/rad B)/(b/rad B) =
(k1 ....  kr)/I (I a suitable ideal). Thus B/b = ki1  ..  kir which
implies B/û reduced and B’ seminormal ([6] cor. 2.7, p. 10).

(ii)~(iii) éA(B/B’) = tA(B/rad B) - fA(B’/rad B) = f - g iff rad B =

rad B’.

The rest is obvious.

THEOREM 2.2: Consider the following conditions :
(i) B’ is seminormal.
(ii) V (DB’/A) ~ n + f - 2g.
(iii) v(DB’/A) = n + f - 2g.
(iv) v(DB’/A) ~ n + f - 2g.
(v) B’ is seminormal and B is tamely ramified over A.

Then : (i) ~ (ii) and (iii), (iv), (v) are equivalent.

PROOF: (i) ~ (ii) By 2.1 we have fA(B/B’) = f - g, and therefore by
1.1 and 1.2 v(DB’/A) ~ n + f - 2(f - g) = n + f - 2g.
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(iii) - (iv) Trivial.
(iv) ~ (v) Let C be the seminormalization of B’ ([11] pp. 585-586):

by 1.1 we have v(DC/A) + 2~A(C/B’) = v(DB’/A) ~ n + f - 2g. But since
C is seminormal and the sum of the degrees over k of its residue
fields equals g, we have: n + f - 2g + 2~A(C/B’) ~ n + f - 2g, which
implies fA(C/B’) = 0 and C = B’.
Moreover B is tamely ramified over A. In fact: v(DB/A) +

2~A(B/B’) ~ n + f - 2g implies, by 2.1, v(DB/A) + 2(f - g) ~ n + f - 2g;
so v(DB/A) ~ n - f and the claim follows by 1.2.

(v) - (iii) Follows from 1.2 and from (i) ~ (ii).

COROLLARY 2.3: (i) v (DB’/A) ~ n + f - 2g.
(ii) v(DB’/A) = n + f - 2g iff B’ is seminormal and B is tamely

ramified over A.

PROOF: (i) Let C be the seminormalization of B’; by 1.1 we have
v(DB’/A) ~ v(DC/A) ~ n + f - 2g.

(ii) Follows from 2.2.

REMARK 2.4: Since f ~ g, then n + f - 2g ~ n - g, with strict in-

equality whenever f ~ g. Therefore 2.3 (i) is an improvement of 1.3 (i).

REMARK 2.5: From 2.2 it follows that if B’ is seminormal and B is

tamely ramified over A, then v(DB’/A):~ 2n - 2 (the upper bound is

obtained when f = n and g = 1).
Counterexample 1.11 shows that the converse is false, in general: in

fact B’ is not seminormal and still u(DB’/A) ~ 2·4-2.

The following example shows that for every n E N there exists B’
seminormal, with B tamely ramified over A, such that v(DB’/A) =
n, n + 1,.., 2n - 2 ; therefore, in particular, the maximum 2n - 2 is

attained.

EXAMPLE 2.6: With the same notations as in 1.13 put: A = k[T](T),
B = k[X]S, B’ = k + rad B.

B’ is seminormal by 2.1 and since B is tamely ramified over A,
from 2.2 it follows v(DB’/A) = n + 03A3i deg qi-2. Therefore, for a suit-
able choice of the qi’s, it is possible to obtain every value of v(DB’/A)
between n and 2n - 2.

PROPOSITION 2.7: (i) B’ is seminormal iff B’ is seminormal.
(ii) If B’ = C~D (direct sum of rings), then B’ is seminormal iff C

and D are seminormal.
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PROOF: (i) B’ is seminormal iff rad B’ = rad B (see 2.1) iff rad 13’ =
rad B iff rad B’ = rad B’ (see 1.7) iff B’ is seminormal (see 2.1).

(ii) If B’ is seminormal, then B’ is the largest subring of B such
that spec B - spec B’ is a homeomorphism with trivial residue field
extension. Therefore for C and D the same property holds; and
conversely.

In remark 2.5 we pointed out that v(DB’/A) ~ 2n - 2 is not a sufficient
condition in order for B’ to be seminormal. Now we want to find a

function F(n, f, g) such that v(DB’/A) ~ F(n, f, g) gives such a

sufficient condition (under suitable hypotheses). In the next theorem
we show that F(n, f, g) = n + f - 1 is the required function.

THEOREM 2.8: Assume that B is tamely ramified over A. If B’ is

seminormal, then v (DB’/A) ~ n + f-1.
The converse holds if either:

(i) n = 2, or
(ii) B’ is local, or
(iii) there exists a finite group G of automorphisms of B’ such that

B’G = A.

PROOF. By 2.2 v(DB’/A) = n + f - 2g : moreover 2g ~ 1, therefore

v(DB’/A) ~ n + f - 1, which proves the first part of the theorem.
(i) If B’ is local, we can apply (ii). If B’ is not local we have

f = g = 2, which implies B’ normal and then seminormal.
(ii) Let C be the seminormalization of B’ ; by 2.3 and 1.1 we have:

n + f - 2g ~ v(DC/A) ~ v(DB’/A) ~ n+f-1, which implies v(DB’/A) -
v(DC/A) ~ 2g - 1 and so 2~A(C/B’) ~ 2g -1. But, since B’ is local,
fA(C/B’) = g~B’(C/B’): then we have 2g~B’(C/B’) ~ 2g -1, which im-
plies eB,( C/ B’) = 0 and B’ is seminormal.

(iii) With the same notations as in the proof of 1.8 (ii) we have:

v(DBjIÂ) = (1/r)v(DB’/A) ~ [(n + f - 1)/r] ~ n/r + f/r - 1 = [L’j: K] +
[k(pj) : k] - 1, which implies B ; seminormal for every j, by (ii). Therefore
B’ itself is seminormal by 2.7.

REMARK 2.9: In general v(DB’/A) ~ n + f - 1 does not imply B’
seminormal, as shown by counterexample 1.2 of [5].

Moreover we can show, by the following counterexample, that
n + f - 1 is the best upper bound for v(DB’/A) in order to grant, under
the assumptions of 2.8, the seminormality of B’.
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COUNTEREXAMPLE 2.10: Let A = R[T2](T2), B’ = C[T2, T3](T2,T3) and
B = C[T](T). We have n = 4 and f = g = 2. Moreover ~B’(B/B’) = 1, so
,eA(BIB’) = 2. Since B is tamely ramified over A, from 1.3 it follows

v(DB/A) = 4 - 2 = 2 and by 1.1 v(DB’/A)=4+2=n+f; but B’ is not

seminormal, though it is local.

REMARK 2.11: We do not know if, in theorem 2.8, when (i) or (ii) or
(iii) are verified and V(DB’/A)~n+f-1, B happens to be tamely
ramified over A.

3. The Gorenstein case

THEOREM 3.1: Suppose B’ is Gorenstein and B is tamely ramified
over A.

If B’ is seminormal, then v(DB’/A) ~ n.
The converse holds if either:

(i) n = 2, or
(ii) B’ is local, or
(iii) there exists a finite group G of automorphisms of B’ such that

B’G = A.

PROOF: For every pj ~ Max B’, let pj = ~A(B’pj/rad B’pj): from [6]
th. 8.1, p. 46 it follows 2gj ~ pj and since f = Lj Pj we get 2g = 2 03A3jgj ~
f, and the claim follows from 2.2.
The converse follows from 2.8.

COROLLARY 3.2 ([5] 1.1 and 1.3): Let B’ = A[x] be a domain, and
suppose either char k = 0 or char k &#x3E; n.

If B’ is seminormal, then v(DB’/A) ~ n.
The converse holds if B’ is local.

PROOF: If G is the characteristic polynomial of x, we have B’ =
A[X]/(G) and, since A[X] is Gorenstein, B’ is also Gorenstein.
Moreover from the formula Sp epfp = n, it follows ep ~ n for every
p E spec B, which implies that B is tamely ramified over A (obviously e,
denotes the ramification index of p, and f = [k(p) : k]). Then the claim
follows from 3.1.

COROLLARY 3.3 ([4] 1.7): Assume that n = 2, that A contains a field
of characteristic ~ 2, and that B’ is a domain.
Then B’ is seminormal iff v(DB’/A) ~ 2.
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PROOF: B’ is monogenic over A([4] 1.1), then it is Gorenstein (see
proof of 3.2) and B is tamely ramified over A. Then the claim follows
from 3.1.

REMARK 3.4: In general v(DB’/A) ~ n does not imply that B’ is

seminormal, even when B’ is Gorenstein and B tamely ramified over
A (see counterexample 1.2 of [5]).

In [5] we proved that if B’ and k are as in 3.2, and if the

characteristic polynomial of x is Xn - a (a E A), then the following
are equivalent:

(i) B’ is seminormal.
(ii) v(DB’/A) ~ n.
(iii) a = utq, where u is a unit in A and q ~ n/(n - 1). Recently S.S.

Abhyankar made us to notice that when n ~ 3 (i), (ii), (iii) are also
equivalent to:

(iv) B’ is normal.

In fact, when n ~ 3, (iii) implies v(a) ~ 1: now, if v(a) = 0, then

v(DB’/A) = v(nnan-1) = 0 and B’ is normal by 1.1; if v(a) = 1, then B’ is
local and B’ is normal by 1.8.
Moreover (iv) - (i).
Now, supposing that A contains the nt’ roots of 1, then there is the

group G of automorphisms of B’, G = {03C31, .... , o-n 1, where 03C3i|A = idA
and 03C3i(x) = x . e’ (e a fixed primitive n th root of 1) for every i ; for this

group obviously B’G = A. Therefore it is natural to conjecture that
when n a 3, B’ is Gorenstein and either B’ is local or there is a finite

group G of automorphisms of B’ such that B’G = A, then v(DB’/A) ~ n
implies B’ normal (notice that by 3.1 B’ is seminormal). The following
counterexample gives a negative answer to the conjecture.

COUNTEREXAMPLE 3.5: Let A, B, B’ be as in 1.12. B’is Gorenstein
and seminormal; moreover by 2.2 we have v(DB’IA) = n + f - 2g =
4 + 2 - 2 ~ 4. But B’ is not normal.

4. Globalization

Suppose X, Y are locally noetherian schemes, with Y integral
normal, and let 0 : X ~ Y be a finite covering of degree n. From the
going-up and going-down theorems ([3] cor. 2, p. 38 and th. 3, p. 56) it
follows that if x E X is a point of codimension 1, then y = 0(x) E Y is
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a point of codimension 1, which implies that Cy is a discrete valuation
ring.
Now, when X is S2 the seminormality and normality of X can be

checked in codimension 1 (see [6] th. 2.6, p. 9 and the Krull-Serre
criterion, [7] th. 39, p. 125) i.e. it is enough to look at vy(Dy) for all
y E Y of codimension 1.

LEMMA 4.1: (i) If B’ is Gorenstein, then B’is S2.
(ii) If E is any normal domain, and B’ = E[x] is a domain integral

over A, then B’ is S2 and Gorenstein in codimension 1.

PROOF: (i) By definition B’ is Cohen-Macaulay, hence Sr for all r.

(ii) Since E is normal {1, x,.., xn-1} is a free basis of B’ as an

E-module. Now E is S2 and the fibers of the canonical embedding
E 4 B’ are also S2, being 0-dimensional: therefore since B’ is faith-
fully flat over E, B’ is S2 ([7] cor. 2, p. 154).
Moreover for every q E spec B’ of height 1, we have B’q = (ED[x])q

where D = q~E: now Eû[X] is Gorenstein because ED is a discrete
valuation ring and E~[x] is a domain (see proof of 3.2), then B q is

Gorenstein and we are done.

By assuming X to be S2 we can globalize 1.2, 1.8, 2.2, 2.8: by
assuming X to be S2 and Gorenstein in codimension 1, we can

globalize in particular 3.1.
We wish to remark explicitly that when we assume X to be integral

and locally monogenic over Y, then by 4.1 (ii) X is both S2 and
Gorenstein in codimension 1: which shows that the result obtained by
globalizing 3.1 generalizes the analogous results of [4] and [5].
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