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1. Introduction

Let p be a prime and let F be a field of characteristic different from
p. We will assume throughout this paper that p ~ 5 and that F

contains a primitive p-th root of unity. For any integer a such that
1 :5 a ::5 p - 2, let Ja denote the Jacobian variety of the curve yP =

xa(1- x) over F. In this paper we will prove several results about the

points of p-power order on Ja. Our most interesting results will

concern the case when F is Q(p1) or Qp(p1), where Q denotes the
rational numbers and Qp the p-adic numbers. However, we will begin
by stating two general results. We let F denote a fixed algebraic
closure of F.

THEOREM 1: The group Ja(F) of F-rational points on Ja contains a
subgroup isomorphic to (Z/(p ))3.

THEOREM 2: Let F(a)~ denote the field generated by all points of

p -power order on Ja(F). Then Gal(F(a)~/F) ~ Zdap, where 0 ~ da ~ p+1 2
and Zp denotes the additive group of p -adic integers.
We have a number of remarks to make about these theorems. If F

is a finite field of characteristic ~(~p), then the fact that Ja(F)
contains a subgroup of order p3 was noticed by Iwasawa. It follows
quite simply from the fact that the roots of the zeta function of
yP = xa (1- x) are certain Jacobi sums over F by using an elementary
congruence for these Jacobi sums which Iwasawa proves in [6]. Our
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proof of theorem 1 provides another, somewhat more conceptual
proof of this congruence. By a similar approach, congruences for
other Jacobi sums can also be derived. Also, as our arguments will
show, the result that Gal(F(a)~/F) is torsion-free is quite closely related
to Iwasawa’s congruence.
The value of da depends on the nature of the field F. Let Ê denote

the composite of all Zp-extensions (contained in F) of F. Theorem 2
of course shows that F(a)~ C F. If F is either a finite field or a finite
extension of the field Qe of e-adic numbers, then Gal(F/F) ~ Zp and
one can see easily that we must have F(a)~ = Ê and hence da = 1 in this
case. On the other hand, if F = Qp(p1), then it follows from local
class field theory that Gal(F/F) ~ ZP and therefore F(a)~ is consider-

ably smaller than F. The most interesting case to consider is when F
is the field K = Q(p1). Then one can show by class field theory
(using Leopoldt’s conjecture which is valid for K) that Gal(K/K) ~
Z(p+1)/2p. (See [2] and [4].) It turns out that "usually" K(a)~ = K. How-
ever, for certain values of a and p, K!:) is a proper subfield of K. This
occurs for example whenever p ~ 1 (mod 3) and a is either of the two
solutions to the congruence x2 + x + 1 ~ 0 (mod p). (This can be
explained by the fact that, for these values of a, Ja is not a simple abelian
variety. See [8].) There are also other cases where K(a)~ ~ K which we
will describe at the end of Section 3.

In contrast, it is conceivable that the group Ja(K) never contains
more than p3 points of p -power order. In section 5, we will give a
necessary and sufficient condition (involving cyclotomic units) for the
p-primary subgroup of Ja(K) to be just (Z/(p))3. Our condition is

satisfied if p does not divide the class number of the maximal real
subfield of K. Despite extensive calculations, there are no known p
that do divide this class number. (See [7] and [10].)
Our approach to proving the above theorems is to study the p -adic

representation of Gal(F/F) on the Tate module for la for the prime p,
using the fact that Ja is of CM-type. In the case F = K, this p-adic
representation can be described explicitly in terms of certain Jacobi
sums. Our final results depend on this explicit description of the
above p-adic representation. By following some of the arguments in
Iwasawa’s paper [6] (which depend on Stickelberger’s theorem on the
factorization of Jacobi sums), we can determine precisely the field
generated by points of order p on Ja over Qp and over Q. (For Q, we
also need to use an explicit reciprocity law proved by Artin and
Hasse.) For simplicity, we will just state our results for J = 03A0p-1a=1 Ja. Let
L and Lp denote the fields generated over Q and Qp respectively by
the points of order p on J. Then it is well-known that K C L and that
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Kp = Qp(p1), the completion of K at the prime over p. It turns out
that Gal(L/K) and Gal(Lp/Kp ) are both elementary abelian p-groups
and therefore one can consider them as representation spaces over
Z/(p) for the group 0394 = Gal(K/Q) ~ Gal(Kp/Qp). (If x E Gal(L/K) or
Gal(Lp/Kp) and 5 E L1, the action of 8 is x ~ 03B4x03B4-1, where 9 is any
automorphism of L or Lp extending 8.) The irreducible represen-
tations of 0394 over Z/(p) are one-dimensional and correspond to the
powers 03C9i(i = 1, ..., p - 1) of the character 03C9:0394 ~ (Z/(p))x defined by
w(5) = c mod p if 03B4(03B6p) = 03B6cp for a primitive p -th root of unity Cp in
K(and Kp). If V is any representation space for d over Z/(p), we let

We will also regard cv and its powers as characters of 0394 with values in

Z’ by using the canonical isomorphism of (ZI(p»’ into Z’. We can
then define Vi whenever V is a Zp-module on which 0394 acts. We can
now state our main results.

THEOREM 3: Let i + j = p. Then Gal(Lp/Kp)i fOl or Z/(p). It is

isomorphic to Z/(p) if and only if i is odd, ~ 1, and p does not divide
the numerator of the j-th Bernoulli number Bj.

THEOREM 4: Let C denote the group of cyclotomic units in the
maximal real subfield K+ of K. Then L = K({p~|~ E CI).

We want to add a few remarks concerning these theorems. First of
all, it is not hard to see from local class field theory that theorem 3
actually does determine Lp uniquely. One needs to know only the
so-called "indices of irregularity." Also, theorem 4 implies im-

mediately that Gal(L/K) ~ (Z/(p))t where t ~ p-3 2, since this is

the rank of C and the torsion subgroup of C has order prime to p. If we let
E+ denote the full unit group of K+, then it is well-known that [E+ : C]
is equal to the class number h+ of K+ and from this one finds that

t = p 2 3 p recisel y when p h+. Now the action of 0394 on C is such

that (C/Cp)j is isomorphic to Z/(p) when j is even but 0 p - 1 and is
otherwise trivial. Thus one can find a set of generators fqjl, where j is
even and 2 ~ j ~ p - 3, such that qjCP generates (C/ CP )j. It is not hard
to show that à acts on Gal(K(p~j)/K) by the character (,)’ (where
i + j = p). Thus Gal(L/K); is isomorphic to Z/(p) when ~j~ (Kx)p and
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is trivial otherwise. If we let (E+/C)p denote the p-primary subgroup
of E+/C, then 71j is a p-th power in K’ if and only if the wi-th
component (E+ / C)p,j is non-trivial. Thus the structure of (E+/C)p as a
0394-module completely determines the structure of Gal(L/K). The field
L itself is actually determined also, as we can see by using the fact
that L C K.
We also want to point out that theorem 3 could be derived from

theorem 4 by using the classical result that qj is a p-th power in Kp if
and only if p divides the numerator of Bj together with the obser-
vation that Lp is the completion of L for any prime dividing p.
However, we will give a simpler, direct proof of theorem 3.

2. Generalities

Let Ep denote a fixed primitive p -th root of unity in F. We begin by
considering the curve yP = f (x), where f (x) is a non-constant poly-
nomial over F whose irreducible factors occur with multiplicity not
divisible by p. In much of this section, we won’t need to assume that
p 0 2 or 3. We will study the divisor classes on the above curve from
two points of view - namely by using genus theory for the cyclic
extension F(x, y)/F(x) and also by using the fact that the Jacobian
variety Jp of the above curve has A = Z[Cp] ] as a ring of endomor-
phisms, where ep is a fixed primitive p -th root of unity in K.
We can determine the group of divisor classes for the above curve

which are defined over F and invariant under the action of

Gal(F(x, y)/F(x)) by the following standard genus-theoretic
arguments. To avoid a slight complication, we assume that f (x) has àt
least one linear factor over F. Let ~ E Gal(F(x, y)/F(x)) be defined
by ~(y) = Epy. Assume that D is a divisor of degree zero for F(x, y)
such that §(D)-D is a principal divisor, ~(D) - D = (z), say.

Clearly, N(z) E FX, where N is the norm map for the above cyclic
extension. In fact, our assumption about f(x) implies that N(z) E (Fx)p
as one can see by just noting that every residue class for a ramified
prime of F(x, y) corresponding to a linear factor of f (x) has a

representative from F and that z must be a unit at the ramified

primes. Hence, we may assume that N(z) = 1. Thus z = ~(w)/w for
some non-zero element w of F(x, y) and therefore D - (w) is in-
variant under 0 and in the same divisor class as D. Let Po P2, ..., Pt
denote the primes of F(x, y) ramified in the extension F(x, y)/F(x). It
follows that every divisor class of degree zero invariant under 0
contains a sum of the P;’s. These divisor classes have order dividing
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p. The only non-trivial principal divisors formed from the Pi’s are
multiples of (y) (up to divisors from F(x)). Thus we see that the
group of invariant divisor classes of degree zero for F(x, y)/F(x) is
isomorphic to (Z/(p )1-2. If e denotes the number of distinct irreduci-
ble factors of f (x) over F and if d = deg(f(x)), t = e + 1 if p t d since
in this case the infinite prime is ramified. If p ) d, then t = e.
The curve yP = f (x) has a birational automorphism (x, y) ~ (x, Epy)

(corresponding to 0) which induces an endomorphism Z of Jf defined
over F. Since 1+Z+Z2+...+Zp-1 is the zero-endomorphism, we
obtain a homomorphism of A = Z[Cp] into EndF(Jf) by mapping ep to
Z. If the genus of the above curve is positive, then this is an

isomorphism and, to simplify notation, we will identify A with its

image.
The Tate module Tf of Jf for the prime p can be viewed as a

module over A and therefore over Ap = A~ZZp. Of course, Ap is just
the ring of integers in Kp = Qp(03B6p). Now Ap is a principal ideal domain

and hence T must be a free Ap-module of rank r = 2g , where g is
the genus of yP = f (x). One could easily determine g by Hurwitz’
formula but one can also do this as follows. Let 1T = Cp - 1, a genera-
tor of the maximal ideal of Ap. Then r is equal to the dimension of
Tf/03C0Tf over Z/(p). If a E A, we will let Jf[03B1] denote the kernel of the
endomorphism of Jf corresponding to a. The group Jf[p] of p-division
points on Jf defined over F is isomorphic to Tf/p T f as an Ap-module
and contains Jf[03C0]. Hence we can see that pr = |Jf[03C0]|. But Jf[03C0] is

isomorphic to the group of divisor classes of degree zero of F(x, y)
invariant under Gal(F(x, y)/F(x)) and this just depends on the number
of distinct roots of f (x) and its degree d. In particular, if p is odd and if

f(x) = xa(1 - x) which 1 ~ a ::5 p - 2, then g = p - 1 2 and the cor-

responding Tate module Ta is a free Ap-module of rank 1.
From now on we will assume that p is odd and that f (x) is such that

g = p - 1 2. If cr E Gal(F/F), then the action of cr on T commutes with
that of Ap. Since Tf is a free Ap-module of rank 1, we have 03C3(t) =
p(o,)t for all t E Tf, where p is a homomorphism of Gal(F/F) into
U = Axp. Let Fm denote the subfield of F generated by the coordinates
of all p-power division points on Jf. Then Gal (F~/F) is of course

isomorphic to the image of p. The image of p also determines the
structure of the p-primary subgroup of Jf(F); it must be precisely
Jf[03C0sf], where sf is the largest integer such that 03C1(03C3) ~ 1 (mod 03C0sf) for

all (T E Gal(F/ F). One simple consequence of this is that Jf(F) will
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contain Jf[p"] if and only if sf ~ n(p - 1), since 7TP-lA = pA. This
would occur for example if Jf(F) contained a point of order pn+1.
We will assume from here on that f(x) factors into linear factors

over F. The genus theoretic arguments described above make it clear
that Jf(F) contains at least Jf[03C0]. It follows that Im(p) Ç U1, where we
are using the notation US for {u E V u --- 1 (mod 03C0s)} when s ~ 1. We
can say more. Let T ~ 0394 be defined by 7-(Cp) 03B6-1p. If a E Ap, we will
usually write 03C1(03B1) as â. We let U* = {u E U1| uù E Z’I. Then we will
show that Im(p) Ç U*. This in fact follows easily from Weil’s

pairing. Let M = lim 03BCpn as n ~ ~, where lip- is the group of pn -th
roots of unity in F and the inverse limit is defined by means of the
p-th power map from 03BCpn+1 to gpn. Then M == Zp and the action of
Gal(F/F) on M is given by a homomorphism K : Gal(F/F) ~ Zp. Now
if Cl, C2 are divisor classes for F(x, y) of order dividing p", choose Di
and fi(i = 1, 2) such that Di E Ci, Dt and D2 are disjoint, and pnDi =
(fi) where fi E F(x, y). Then (Ch C2) ~ f1(D2)/f2(D1) defines a non-
degenerate pairing Jf[pn]  Jf[pn]~03BCpn. Here f(D) is defined for

f e F(x, y) and for a prime divisor D disjoint from (f)) in the obvious
way and extended multiplicatively to non-prime divisors. It is clear

that for a E Gal(F/ F), (03C3(C1), 03C3(C2)) = (T« Ch C2)). Also, if 0 E
Gal(F(x, y)/F(x)) is the generator defined by 0(y) =,Epy, then (~(Ci),
~(C2)) = (Cl, C2). The Weil pairing Tf x Tf ~ M, which we denote by
, .), will then have the properties: (a(t1), t2&#x3E; = (th 03BA(03C3)03C3-1(t2)&#x3E; and
Z(t1), t2&#x3E; = (tl, Z-1(t2)&#x3E; for all tl, t2 E Tf. By using Zp-bilinearity, we
find that (ati, t2) = t1, ât2) for a E Ap. If a = p(a), it follows that
a = 03BA(03C3)03C1(03C3)-1, i.e. 03C1(03C3)03C1(03C3) = 03BA(03C3). This proves that Im(p) C U*.
We also mention in passing that if F is a finite field of order e’ and if
03C3 is the Frobenius automorphism over F, then 03BA(03C3) = ~’ and there-
fore, since 03C1(03C3) and its conjugates over Qp are the roots of the zeta
function for YP = f(x) over F, the above statement is just the Riemann
Hypothesis in this very special case.
The fact that Im(p) Ç U* has a few consequences that we want to

mention. First, if Jf(F) contains a point of order p n, then sf &#x3E;

(n - 1)(p - 1) and so 03BA(03C3) ~ 1 (mod pn-l7T) and therefore ~ 1 (mod pn)
for all o- E Gal(F/F). It follows that lipn C F. Secondly, it is easy to
see that d acts on Us/Us+1 by the character 03C9s. In particular, J acts as
(-1)S. Now if s ~ 0 (mod p - 1) and a E US ~ U* but ~ Us+h then
clearly aâ E Us+1 and hence s must be odd. Therefore we see that
either s f is odd or s f = 0 (mod p - 1). For example, if we knew that
Jf(F) did not contain all the p-division points of Jf, then it would
follow that the p-primary subgroup of Jf(F) is isomorphic to (Z/(p)S,
where s = sf is odd. We have one final general remark to make. Let FI
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denote the field generated by all points of order p on Jf. As a Galois
module and as an Ap -module, we have Jf[p] ~ Tf/pTf. It follows that
Gal(F/F1) = p-’(Up-1) and hence that Gal(F1/F) is isomorphic to a
subgroup of UllUp-1. We see easily from this that Gal(F1/F) is an

elementary abelian p -group, as we mentioned in the introduction.

3. The curves yP = xa(1 - x)

We just assume p is odd at first and that 1 :5 a ~ p - 2. Let po, p l,
and px denote the primes of F(x) corresponding to x, 1 - x, and 1/x.
These primes are ramified in the extension F(x, y)/F(x). Let Po, Pl and P.
be the primes of F(x, y) lying above po, pl, and p~. Let c denote the
divisor class containing D = Po - P~. Then c is invariant under the

action of 0 and the corresponding point on Ja(F) is a generator of
Ja[03C0]. We will show that Ja(F) contains Ja[03C02]. This is equivalent to
finding a divisor class CI of F(x, y) such that 0(cl) - cl = c. We begin
by showing that such a c, exists if and only if one can find a

z e F(x, y) such that N(z) = x, where N is the norm map for the

cyclic extension F(x, y)/F(x). The existence of c, amounts to the

existence of a divisor D’ E c with N(D’) = 0. If N(z) = x, then D’ =
D - (z) has this property since N(D) = p0 - p~ = (x). Conversely if
such a D’ exists, then we must at least be able to find a z’ E F(x, y)
with N(z’) = ax where a E Fx. But by considering residue classes
modulo Pl, we easily see that 03B1 = 03B2p where 03B2 ~ Fx and hence

z = 03B2-1 z’ has the required property.
We will now show that x is in fact a norm for the extension

F(x, y)/F(x). This is a consequence of the following rather well-
known lemma since both x and 1-x and therefore xa(1-x) are
clearly norms for the extension F(p1x)/F(x).

LEMMA 1: Let F be any field containing a primitive p-th root of
unity. Let u, v E Fx. Then u is a norm for the extension F(pv)/F if
and only if v is a norm for F(pu)/F.

PROOF: Let Ep be a primitive p -th root of unity in F. If either u or
v is a p -th power in F, the lemma is trivial. Assuming that this is not
the case, let Ou E Gal(F(pu)F) be defined by ~u(pu) = ~ppu.
Define ov similarly. Consider the cyclic aglebra A = [F(pu), ou, v].
Let V = pu. The field F(U) can be considered as a subalgebra of
A. As a vector space over F(U), A has a basis 1, V, V2, ..., Vp-’
where V03B1V-1 = 0,,(a) for all a E F(U) and VP = v. Furthermore, v is
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a norm for the extension F(U)/F if and only if A is isomorphic to
the algebra of p x p matrices over F. But we can clearly identify
F(pv) with the subalgebra F(V). Also UVU-1 = ~-1v(V) so that the
inner automorphism of d by V restricts to ~-1v on F(V). Since 1, U,
U2, ..., Up-1 is a basis for A_over F(V), we see that A is isomorphic
to the cyclic algebra [F(pv), ~-1v, u]. Since this is the p  p matrix

algebra if and only if u is a norm for F(pv)/F, lemma 1 is proved.
The following proposition follows immediately from what we have

said above and at the end of section 2. Theorem 1 of course follows

from this.

Theorem 2 also follows quickly. Letting pa denote the p-adic
representation of Gal(F/F) on the Tate module Ta for J,,, we have

Gal(F(a)~/F) == Im(Pa). But U* ~ Z(p+1)/2p X Z/(p) as a topological group
and U*~U2 ~ Z(p+1)/2p. Since Im(03C1a) ~ U*~U2, we obtain theorem 2.

In the case where F is a finite field of order er(with er ~ 1 (mod p)
since we are assuming that F contains a primitive p-th root of unity),
proposition 1 immediately gives a congruence for the roots of the zeta
function of yp = xa(1-x) over F. If cr denotes the Frobenius

automorphisms of F/F, then these roots are precisely the conjugates
of pa(o’) over Qp and they must be 1 (mod ) and even mod 7T3 if

p &#x3E; 3. The fact that u actually gives an endomorphism of Ja which
commutes with Z together with the fact that A is a maximal com-

mutative subring of End(Ja) shows that p,, (o,) is in A and not just Ap.
Let us assume that F is the residue class field A/F, where 9 is a prime
ideal dividinge. We also assume that Ep is Cp mod 9. Now the roots of
the zeta function are known to be the conjugates over Q of the Jacobi
sum

where 0 is the p-th power residue character mod 9 and g(t) is the
Gaussian sum for F corresponding to the character ~t. It is not

essential for our arguments to know which conjugate of a, is Pa(u).
But this could be found as follows. Because of the above congruence

03C1a(03C3) is determined by its factorization. The CM-type of Ja is known

to be Ka = {03B4 ~ 0394 |[03C9(03B4)) + [a03C9(03B4)]  p}, where [ ] denotes the first

digit in the p-adic expansion, and thus we have (03C1a(03C3)) = II8EKa 03A603B4-1.
(See [3].) On the other hand, by a theorem of Stickelberger we have
(g(1)p)=JR where R = 03A3p-1c=1 c03B4-1-c, where 5c ~ 0394 is determined by
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03B4c(03B6p) = 03B6cp. It follows that (03B1F) = FSa, with Sa = 1 p (03B41 + 8a - 03B41+a)R. By
comparing, one finds that 03C1a(03C3) = a,.
Now we come to the case F = K = Q(03B6p). Let G = Ga =

Gal(K(a)~/K) and let H = Ha be the inertia subgroup of G correspond-
ing to the prime (1T) of K, which is the only ramified prime in K(a)~/K
since K(a)~ C K. Letting I denote the group of fractional ideals of K

prime to p, the Artin symbol o-a = Q defines a homomorphism
o-,, of I to G. The image of I is dense in G by the Tchebotarev
density theorem. If 0 is a prime ideal of K(~ (03C0)), then o- ,0 is just the
corresponding Frobenius automorphisms and we have 03C1a(03C3F) = a,j.
The image 03C1a(G) is clearly just the closure of the subgroup generated
by the 03B1’s for all 9. We will follow Iwasawa [6] to study this image.
Let Io be the subgroup of I of principal ideals. The image of Io in G
under the Artin map is a dense subgroup of H. If a E I, then obviously
(Pa«(Ta)) = asa and if a E Io, then Pa (03C3a) = a Sa where a is any generator
of a such that z == 1 (mod 1T2). It follows easily that pa(H) = U2a.
We will conclude this section by determining da da(K)

rankZp(G). Since H has finite index in G, this amounts to finding
rankzp ( U 2 Sa

It is easy to determine this rank by decomposing U2 by the action
of 0394. If X = Wi, 1 ~ i :5 p - 1, then the X-component of U2 is isomor-
phic to Zp and Sa acts as multiplication by

Now B1,~ is non-zero precisely when X is odd or X is the

principal character. If ea = p+1 2 - da, then it is clear that ea is the

number of odd X’s such that y(a + 1) = 1 + X(a). It is easy to see that
this holds only when y(a) is a primitive 6-th root of unity and

X(a + 1) = X(a)2. Obviously, if p = 2 (mod 3), then ea = 0. On the other
hand, if p --- 1 (mod 3) and if a2 + a + 1 ~ 0(mod p), then X(a + 1) =

1 + ~(a) whenever X(a) 0 1. Thus da = p - 1 6 + 1 and one can see that
K(a)~ = KK’, where K’ is the subfield of K fixed by {1, Sa, 03B42a}. For such
a, la turns out to be isogenous over K to (J’a)3 where J’ is an abelian

variety of dimension p - 1 6 with the ring of integers of K’ as a ring of
endomorphisms. (See [8].)
There are many other pairs (a, p) for which ea is non-zero. The first

exceptional pairs occur for p = 67. In addition to the values of a
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discussed in the last paragraph (a = 29 and 37 for p = 67), we have ea = 2
for a = 6, 10, 19, 47, 56, and 60. (Note the easily explained symmetry
a H p - 1 - a.) The exceptional characters in these cases are the two
characters of 0394 of order 6. The following remark due to Lenstra shows
that similar exceptional pairs (a, p) occur for all sufficiently large p such
that p --- 7 (mod 12). A character X of order 6 of 0394 will then correspond to
an odd character mod p. Let g be a primitive root mod p. We have
~(a + 1) = 1 + ~(a) if a --- gx6 and a + 1 ~ g2y6 (mod p) with (x, p) =
(y, p) = 1. But the Riemann Hypothesis for the curve gx6 + 1 = g2y over
Z/(p ) provides many such values of a. (The genus of this curve is 10.)
More generally, if p == 6 r + 1 (mod 12 r) and if y is any character of 0394 of
order 6r, then X will again be odd and the existence of a’s satisfying
~(a + 1) = 1 + ~(a) for sufficiently large p follows by considering the
curve grx6r + 1 = g2ry6r over Z/(p). One can make ea arbitrarily large in
this way. We also want to remark that for any fixed value of a &#x3E; 1, one
can prove the existence of infinitely many primes p such that ea = ea(p)
is non-zero by using the Tchebotarev density theorem. We will omit the
details.

Finally, we want to point out here that the field K(a)~ is actually
completely determined by the exceptional X’s. By class field theory, it
is not difficult to show that if X is either an odd character or the

principal character of d, then there exists a unique ZP-extension KX
of K such that Kx/Q is a Galois extension and such that 0394 acts on
Gal(KX/K) by means of X. By noting that pa induces a 0394-isomorphism
of G with Im(pa), one can see that K(a)~ is precisely the composite of
the Kx’s for those y such that X(a + 1) ~ 1 + X(a).

4. The local field of p-division points

Let Kp = Qp(03B6p) and let L(a)p denote the extension of Kp generated
by the points of order p on Ja. Now Ha can be identified with

Gal(K(a)p,~/Kp). We will then have Gal(K(a)p,~/Lp) = {h ~ Ha|03C1a(h) = 1
(mod pAp)} and hence Gal(L(a)p/Kp) will be isomorphic to the cor-
responding quotient group of Ha. Using the fact that pa (Ha ) = USa2, we
find that as à -modules Gal(L(a)p/Kp) ~ Vsa, where V = U2/Up-l. Now as
mentioned earlier U;/ Ui+1 is isomorphic to Z/(p) with L1 acting by (ùi.
Thus, considering V as a representation space for 0394 over Z/(p), each
character X of 0394 occurs with multiplicity one in V except for wp-’ = cvo
and 03C91, which don’t occur in V at all. If X =,w’, 2:5 i ~ p - 2, then Sa acts
on Vx as multiplication by X(Sa) = ±(1 + X(a) - X(a + 1)) B1,x -i. For
these X’s, the x-component of Gal(L(a)p/Kp) is non-trivial precisely when
~(Sa) ~ 0 (mod pZp). It is well-known that p divides B1,~-1 if and only if p
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divides the Bernoulli number B;, where i + j = p. (Up to p-adic units,
both occur as values of the same p-adic L-function Lp(s, 03C9j).) There-
fore, if p ) B; then Gal(L(a)p/Kp)i will be trivial for every a. It is also
possible that 1 + X(a) - X(a + 1) is divisible by p for certain values of a.
Obviously this cannot occur for every a since then one would have
X = w which has been excluded. Also we note that only odd X’s can
occur non-trivially in Gal(L(a)p/Kp).
The above remarks allow us to determine L(a)p completely. By local

class field theory, Kp has a unique cyclic extension Lx of degree p
such that Lx/Qp is Galois and such that à acts on Gal(Lx/Kp) by the
character X, where X = 03C9i with 2 ~ i ~ p - 2. (This is not true for

X = w° and 03C91!) We see that L(a)p is just the composite of those L,,’s
for which ~(Sa) ~ 0 (mod pZp). Obviously L~ will be contained in L(a)p
for some a if and only if p f Bj. Theorem 3 follows immediately from
these considerations.

It is interesting to examine the structure of the p-primary subgroup
of Ja(Kp). Of course, Ja[1T3] is contained in Ja(Kp). (We are assuming
here that p ~ 5.) In order to have more than this, we would have to
have 03C1a(Ha) ~ U4. Hence a necessary and sufficient condition for

having j a [lr4l C Ja(Kp) is that (V3(Sa) ~ 0 (mod pZp). Now it is easy to
see that 1 + ~(a) ~ ~(a+1) (mod p) for ~ = 03C93 and 1 s a S p - 2.
Therefore 03C93(Sa) ~ 0 (mod pZp) if and only if p divides Bp-3. The first
such prime (and the only one less than 125,000) is p = 16843. (See [7]
and [10].) Of course, for this p we actually have Ja[03C05] ç Ja(Kp) for
every a(1 ~ a ~ p - 2). Now pBp-5 for this p and hence the p -

primary subgroup of Ja(Kp) will be precisely Ja[1T5] unless 03C95(a + 1) ~
03C95(a) + 1 (mod p). There are just two values of a within the range
1 ::5 a ~ p - 2 for which this congruence holds - the two solutions of
a2 + a + 1 0 (mod p). In fact, for these two values of a, we have
X(a + 1) = X(a) + 1 whenever X = 03C9i with i ~ 0 (mod 3). Since p f Bp-9
for the above p, we can see that, for these two values of a, the

p-primary subgroup of Ja(Kp) is Ja[1T9], an elementary abelian p-
group of order p9. In general, for p ~ 5, one can at least say that
Ja(Kp) never contains all the p-division points on Ja. This follows by
an easy argument using the trivial fact that B2 and B4 are not divisible
by p.

5. The global field of p -division points

Let L(a) denote the extension of K = Q(ep) generated by the points
of order p on Ja. The field L generated by the p-division points on J
is of course just the composite of the L(a),s. Now Gal(L(a)/ K) is a
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quotient group of Gal(K(a)~/K) and the representation pa induces an
isomorphism pa of Gal(L(a)/K) with a subgroup of V = U2/Up-l. In
fact, since Im(Pa) Ç U *, it follows that Im(Pa) C V* =
f v EV’ v’+T = 1}. Noticing that V* is isomorphic to Z/(p ) if i is odd

and 3 s i ~ p - 2 (and is trivial otherwise), we can see that L(a) can be
expressed as a composite of certain fields L(a), where i varies through
the values just mentioned and where L(a)i is a cyclic extension of K of
degree 1 or p which is Galois over Q with the action of à on

Gal(L(a)i/K) given by the character Wi. Now if i is as above and if

i + j = p, then j will be even and satisfy 2 s j s p - 3 and so we can
define another field Li = K(p~j), where qj is the cyclotomic unit in
the introduction. We will prove that L(a)i = L’i whenever wi(a + 1)
~ wi(a) + 1 (mod pZp) and L(a)i = K otherwise. Theorem 4 follows at
once from this because 03C9i(a + 1) ~ 03C9i(a) + 1 (mod pZp ) cannot hold
for all a unless i ~ 1 (mod p - 1) and this has been excluded.
To prove the above result, we use Bauer’s well-known theorem that

a Galois extension is determined by the set of primes which split
completely in it. Let 0 be a prime of K(~(03C0)) and let 03C3F denote the

Frobenius automorphism for Y in the extension K(.a)IK. Then it is
clear that -0 splits in the extension L(a)i/K if and only if the projection
of 03C1a(03C3J) onto the wi-th component V*i is trivial. Now let 03C1a(03C3J) =
a E U*. Of course a is just the Jacobi sum a, and depends on both 0

and a. Let e; denote the indempotent 1 03A303B4~0394 w-i(8)8 corresponding
to w’ in the group ring Zp[0394]. The projection of a onto the 03C9i-th

component U*i is just aei. Thus we see that 9 splits in L(a)/K if and
only if aei is a p-th power in U*i (or equivalently in U). Choose an
element e’i ~ Z[0394] whose coefficients are close enough to those of ei
p-adically to make all of the following arguments work. It will always
be clear that this is possible. We also assume that the coefficients of
e ’1 have sum equal to zero. We must examine when aei (which is now
in K) is a p -th power in U. We have the factorization

(03B1e’i) ~ .J; eiSa. It will be convenient to restrict attention to primes 0 whose
ideal class is in the p -primary subgroup P of the ideal class group of K. It
is not hard to see that a Galois p-extension of K is still determined by the
set of such primes that split completely in it.
The ideal class of .J; ei will be a typical element of Pi. So we see that Pi is

annihilated by 03C9i(Sa) = (1 + 03C9i(a) - 03C9i(a + 1)) B1,w-t and therefore by
B1,w-t (since i ~ 1 (mod p - 1) and a can be varied). This of course is just
the usual proof of this simple consequence of Stickelberger’s theorems.
For i = 3, 5, ..., p - 2, let p ni be the largest power of p dividing B1,03C9-i.
Then Pi has exponent dividing p ni.
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Now eiSa is close to e’i03C9’(Sa) in the p-adic topology on Zp[0394]. If p
divides 1 + 03C9i(a) - 03C9i(a + 1), then we will have (,e’ equal to a p -th
power of a principal ideal in K. It is not hard to see from this that a ei
is in (Kx)p and hence 9 splits in L(a)i. In this case, we see that L(a)i = K
as we stated above. Similarily, if Pi has exponent smaller than pni,
then we actually have L(a)i = K for all a.
We assume now that 1 + 03C9i(a) ~ 03C9i(a + 1) (mod pZp). Our result

will follow if we show that aei is a p-th power in Kp if and only if

= 1, where ( )0 is the p -th power residue symbol for K. This is

proved in [5] and we essentially are just going to reproduce his

argument here. If 7r = 03B6p - 1 as before, then we can take ~j to be 03C0e’j.

(This is a unit since the coefficients of the "approximate" idempotent
e’j have sum zero.) Using elementary properties of the power residue
symbol, we find that

Consider the cyclotomic field Kn = Q«(n) where (n is a primitive
pn+1-st root of unity and n - 0. (A slight change in notation - Cp will
now be written as Co.) We may assume that 03B6pnn = Co. Then if 1Tn =

(n -1, we have that Nn,0(03C0n) = 7To = 7T. Therefore, we see that

where (-)o,n denotes the p-th power residue symbol in Kn. Here a is
an arbitrary ideal of K prime to (ir). If (2013)n is the pn+1-th power
residue symbol in K,, then (2013)pnn = (-)0,n. Applying these elementary
facts to a = Fe’i and n = n;, we have

where b is some integer prime to p.
We recall the following result of Artin and Hasse [1]. Let 03B2 E Kn

satisfy 8 = 1 (mod 1Tn). Then
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where

where Tn denotes the trace from Qp(03B6n) to Q,. Now a simple cal-

culation shows that the trace of C" from Kn to K is p" Co. Hence if
71’n 7ro

E K, then r(03B2) = 1 p To( (0 log p03B2). If we view Kp as a representation
space for à over Q,, then we can decompose it into a direct sum of
the one dimensional spaces eiKp, 1 ~ i ~ p - 1. The Gaussian sum
gi = eao = 03A3p-1a=103C9-i (a)03B6a0 spans e;KP over Qp. If A E eiK, and B E ei2Kp,
then it is easy to see that AB E ei1+i2Kp and that

Now, letting 03B2 = aei, we obviously have

if ei is close enough p-adically to ei. To evaluate this, we must find the

projection e-j (0 on the 03C9-i-th component of K,. This is easily found

from the elementary identity

which can be derived by differentiating xP - 1 = (x - 1) (1 + x + x2 +
... + XP-I). We obtain

On the other hand, ei logp(03B1) = ti(a)gi, where ~i(03B1) E Zp and we will
have t¡(a) --- 0 (mod pZp ) if and only if aei is a p -th power in U. From
all of these remarks, we find that
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It follows that r(ai) ~ 0 (mod pn+1) if and only if ~i(03B1) = 0 (mod pZp),
providing what we needed.
We conclude this paper by coming back to the question of the

structure of the p -primary subgroup of Ja(K). It would be larger than
Ja[03C03] if and only if 03C1a(03C3J) = 03B1J ~ 1 (mod 1T4A) holds for all J. This
means that the projection of a, onto the w3-component of V* is

trivial. Since we have w3(a + 1) ~ 03C93(a) + 1 (mod pZp), our arguments
show that ~p-3 must be a p-th power in K. Hence Ja(K) contains
Ja[03C04] (and therefore Ja[03C05-]) if and only if (E+ / C)p-3 is non-trivial. We
also want to point out how to describe the structure of the p-primary
subgroup of Ja(K) as a representation space (over ZI(p» for the
natural action of Li. First note that Ja[03C0]~Ja(Q). Thus 0394 acts on

Ja[03C0] by the character w°. Now multiplication by 1T gives a group
theoretic isomorphisms Ja[03C0t+1]/Ja[03C0t] onto Ja[03C0t]/Ja[03C0t-1] for t ~ 1.

Using the fact that 03B4(03C0) ~ W(8)1T (mod 1T2Zp), one finds inductively
that Gal(Q/Q) acts on Ja [03C0t+1]/Ja [1Tt] through its quotient group d by the
character 03C9-t. Thus the semisimple action of L1 on Ja [1T3] ç Ja (K) has the
characters w , 03C9-1, and ùj as its constituents. One simple consequence
is that Ja(K+) has a subgroup isomorphic to (Z/(p))2, where K+ is the
maximal real subfield of K.
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