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ON THE JACOBIAN VARIETY OF SOME ALGEBRAIC CURVES

Ralph Greenberg*

1. Introduction

Let p be a prime and let F be a field of characteristic different from
p. We will assume throughout this paper that p =5 and that F
contains a primitive p-th root of unity. For any integer a such that
l=a=p-2, let J, denote the Jacobian variety of the curve y? =
x%(1—x) over F. In this paper we will prove several results about the
points of p-power order on J, Our most interesting results will
concern the case when F is Q(° \/T) or Q,(° \/T), where Q denotes the
rational numbers and Q, the p-adic numbers. However, we will begin
by stating two general results. We let F denote a fixed algebraic
closure of F.

THEOREM 1: The group J,(F) of F-rational points on J, contains a
subgroup isomorphic to (Z/(p)) .

THEOREM 2: Let F'® denote the field generated by all points of
p-power order on J,(F). Then Gal(F’|F)= Z%, where 0=d, < B—;—l
and Z, denotes the additive group of p-adic integers.

We have a number of remarks to make about these theorems. If F
is a finite field of characteristic ¢(# p), then the fact that J,(F)
contains a subgroup of order p* was noticed by Iwasawa. It follows
quite simply from the fact that the roots of the zeta function of
y? = x? (1 — x) are certain Jacobi sums over F by using an elementary
congruence for these Jacobi sums which Iwasawa proves in [6]. Our

* Supported in part by a National Science Foundation grant.
0010-437X/81/03345-15$00.20/0

345



346 Ralph Greenberg 2]

proof of theorem 1 provides another, somewhat more conceptual
proof of this congruence. By a similar approach, congruences for
other Jacobi sums can also be derived. Also, as our arguments will
show, the result that Gal(F®/F) is torsion-free is quite closely related
to Iwasawa’s congruence.

The value of d, depends on the nature of the field F. Let F denote
the composite of all Z,-extensions (contained in F) of F. Theorem 2
of course shows that F@ C F. If F is either a finite field or a finite
extension of the field Q, of ¢-adic numbers, then Gal(F/F) = Z, and
one can see easily that we must have F® = F and hence d, = 1 in this
case. On the other hand, if F = Q,,("\/T), then it follows from local
class field theory that Gal(F/F) = Z% and therefore F is consider-
ably smaller than F. The most interesting case to consider is when F
is the field K = Q("\/T). Then one can show by class field theory
(using Leopoldt’s conjecture which is valid for K) that Gal(K/K) =
ZP*Y2 (See [2] and [4].) It turns out that “usually” K = K. How-
ever, for certain values of a and p, K© is a proper subfield of K. This
occurs for example whenever p = 1 (mod 3) and a is either of the two
solutions to the congruence x?+x+1=0 (mod p). (This can be
explained by the fact that, for these values of a, J, is not a simple abelian
variety. See [8].) There are also other cases where K¥ # K which we
will describe at the end of Section 3.

In contrast, it is conceivable that the group J,(K) never contains
more than p* points of p-power order. In section 5, we will give a
necessary and sufficient condition (involving cyclotomic units) for the
p-primary subgroup of J,(K) to be just (Z/(p))’. Our condition is
satisfied if p does not divide the class number of the maximal real
subfield of K. Despite extensive calculations, there are no known p
that do divide this class number. (See [7] and [10].)

Our approach to proving the above theorems is to study the p-adic
representation of Gal(F/F) on the Tate module for J, for the prime p,
using the fact that J, is of CM-type. In the case F = K, this p-adic
representation can be described explicitly in terms of certain Jacobi
sums. Our final results depend on this explicit description of the
above p-adic representation. By following some of the arguments in
Iwasawa’s paper [6] (which depend on Stickelberger’s theorem on the
factorization of Jacobi sums), we can determine precisely the field
generated by points of order p on J, over Q, and over Q. (For Q, we
also need to use an explicit reciprocity law proved by Artin and
Hasse.) For simplicity, we will just state our results for J =I1222 J,. Let
L and L, denote the fields generated over Q and Q, respectively by
the points of order p on J. Then it is well-known that K C L and that



[3] On the Jacobian variety of some algebraic curves 347

K, = Q,(*V/1), the completion of K at the prime over p. It turns out
that Gal(L/K) and Gal(L,/K,) are both elementary abelian p-groups
and therefore one can consider them as representation spaces over
Z|/(p) for the group A = Gal(K/Q) = Gal(K,/Q,). (If x € Gal(L/K) or
Gal(L,/K,) and & € A, the action of & is x —> x5!, where & is any
automorphism of L or L, extending 8.) The irreducible represen-
tations of A over Z/(p) are one-dimensional and correspond to the
powers w'(i =1,...,p — 1) of the character »:A4 - (Z/(p))* defined by
w(8)=c mod p if 8()=¢; for a primitive p-th root of unity ¢, in
K(and K,). If V is any representation space for A over Z/(p), we let

Vi={v € V|8(v)=w(s)v forallsec A}

We will also regard w and its powers as characters of A with values in
Z, by using the canonical isomorphism of (Z/(p))* into Z;. We can
then define V; whenever V is a Z,-module on which A acts. We can
now state our main results.

THEOREM 3: Let i+j=p. Then Gal(L,/K,);={0} or Z/(p). It is
isomorphic to Z|(p) if and only if i is odd, # 1, and p does not divide
the numerator of the j-th Bernoulli number B,.

THEOREM 4: Let C denote the group of cyck)tomic units in the
maximal real subfield K* of K. Then L=K({*Vn l n € C}).

We want to add a few remarks concerning these theorems. First of
all, it is not hard to see from local class field theory that theorem 3
actually does determine L, uniquely. One needs to know only the

so-called ‘“indices of irregularity.” Also, theorem 4 implies im-
mediately that Gal(L/K)=(Z/(p))' where t= pT_3’ since this is
the rank of C and the torsion subgroup of C has order prime to p. If we let
E* denote the full unit group of K*, then it is well-known that [E*: C]

is equal to the class number h* of K* and from this one finds that

t=T precisely when pt h*. Now the action of 4 on C is such

that (C/C?); is isomorphic to Z/(p) when j is even but # p —1 and is
otherwise trivial. Thus one can find a set of generators {=,}, where j is
even and 2 < j < p — 3, such that n;C” generates (C/C”);. It is not hard
to show that A acts on Gal(K(*V1;)/K) by the character o' (where
i+j=p). Thus Gal(L/K); is isomorphic to Z/(p) when n;& (K*)* and
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is trivial otherwise. If we let (E*/C), denote the p-primary subgroup
of E*/C, then m; is a p-th power in K* if and only if the o'-th
component (E*/C),; is non-trivial. Thus the structure of (E*/C), as a
A-module completely determines the structure of Gal(L/K). The field
L itself is actually determined also, as we can see by using the fact
that LC K.

We also want to point out that theorem 3 could be derived from
theorem 4 by using the classical result that n; is a p-th power in K, if
and only if p divides the numerator of B; together with the obser-
vation that L, is the completion of L for any prime dividing p.
However, we will give a simpler, direct proof of theorem 3.

2. Generalities

Let €, denote a fixed primitive p-th root of unity in F. We begin by
considering the curve y? = f(x), where f(x) is a non-constant poly-
nomial over F whose irreducible factors occur with multiplicity not
divisible by p. In much of this section, we won’t need to assume that
p#2 or 3. We will study the divisor classes on the above curve from
two points of view —namely by using genus theory for the cyclic
extension F(x, y)/F(x) and also by using the fact that the Jacobian
variety J, of the above curve has A = Z[{,] as a ring of endomor-
phisms, where ¢, is a fixed primitive p-th root of unity in K.

We can determine the group of divisor classes for the above curve
which are defined over F and invariant under the action of
Gal(F(x,y)/F(x)) by the following standard genus-theoretic
arguments. To avoid a slight complication, we assume that f(x) has 4t
least one linear factor over F. Let ¢ € Gal(F(x, y)/F(x)) be defined
by ¢(y) = €,y. Assume that D is a divisor of degree zero for F(x, y)
such that ¢(D)—D is a principal divisor, ¢(D)— D =(z), say.
Clearly, N(z) € F*, where N is the norm map for the above cyclic
extension. In fact, our assumption about f(x) implies that N(z) € (F*)”
as one can see by just noting that every residue class for a ramified
prime of F(x,y) corresponding to a linear factor of f(x) has a
representative from F and that z must be a unit at the ramified
primes. Hence, we may assume that N(z) =1. Thus z = ¢(w)/w for
some non-zero element w of F(x,y) and therefore D —(w) is in-
variant under ¢ and in the same divisor class as D. Let P,, P,, ..., P,
denote the primes of F(x, y) ramified in the extension F(x, y)/F(x). It
follows that every divisor class of degree zero invariant under ¢
contains a sum of the P;’s. These divisor classes have order dividing
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p. The only non-trivial principal divisors formed from the P;’s are
multiples of (y) (up to divisors from F(x)). Thus we see that the
group of invariant divisor classes of degree zero for F(x, y)/F(x) is
isomorphic to (Z/(p))' 2. If e denotes the number of distinct irreduci-
ble factors of f(x) over F and if d = deg(f(x)), t =e+1if p } d since
in this case the infinite prime is ramified. If p l d, then t =e.

The curve y” = f(x) has a birational automorphism (x, y) = (x, €,y)
(corresponding to ¢) which induces an endomorphism Z of J; defined
over F. Since 1+Z+2Z?+...+ 27! is the zero-endomorphism, we
obtain a homomorphism of A = Z[{,] into Endg(J;) by mapping ¢, to
Z. If the genus of the above curve is positive, then this is an
isomorphism and, to simplify notation, we will identify A with its
image.

The Tate module T; of J; for the prime p can be viewed as a
module over A and therefore over A, = AQ);Z,. Of course, A, is just
the ring of integers in K, = Q,(¢,). Now A, is a principal ideal domain
28
p—7r
the genus of y? = f(x). One could easily determine g by Hurwitz’
formula but one can also do this as follows. Let = = ¢, — 1, a genera-
tor of the maximal ideal of A,. Then r is equal to the dimension of
T/ =T; over Z/(p). If « € A, we will let J;[a] denote the kernel of the
endomorphism of J; corresponding to a. The group Ji[p] of p-division
points on J; defined over F is isomorphic to T;/pT; as an A,-module
and contains J;[w]. Hence we can see that p’ = |J;[«]|. But J[#] is
isomorphic to the group of divisor classes of degree zero of F(x,y)
invariant under Gal(F(x, y)/ F(x)) and this just depends on the number
of distinct roots of f(x) and its degree d. In particular, if p is odd and if

p—

2
responding Tate module T, is a free A,-module of rank 1.

From now on we will assume that p is odd and that f(x) is such that

g= P_;l If o € Gal(F/F), then the action of o on T; commutes with
that of A,. Since T; is a free A,-module of rank 1, we have o(t) =
p(o)t for all t € T;, where p is a homomorphism of Gal(F/F) into
U = A;. Let F, denote the subfield of F generated by the coordinates
of all p-power division points on J;.. Then Gal (F./F) is of course
isomorphic to the image of p. The image of p also determines the
structure of the p-primary subgroup of J;(F); it must be precisely
Ji[w*], where s; is the largest integer such that p(o) =1 (mod 7*) for

all ¢ € Gal(F/F). One simple consequence of this is that J:(F) will

and hence T; must be a free A,-module of rank r = where g is

f(x)=x°(1—x) which 1=a=<p-2, then g= 1 and the cor-
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contain Jy[p"] if and only if s;=n(p —1), since #n”'A =pA. This
would occur for example if J;(F) contained a point of order p"*'.

We will assume from here on that f(x) factors into linear factors
over F. The genus theoretic arguments described above make it clear
that J;(F) contains at least J;[#]. It follows that Im(p) C U,, where we
are using the notation U, for{u € V , u=1(mod 7°)} when s = 1. We
can say more. Let 7 € A be defined by 7({,) =¢{,". If a € A,, we will
usually write 7(a) as a. We let U*={u € U, | uii € Z3}. Then we will
show that Im(p) C U*. This in fact follows easily from Weil’s
pairing. Let M =lig_1 M,n as n—>o, where pp is the group of p"-th
roots of unity in F and the inverse limit is defined by means of the
p-th power map from p,~+ to u,». Then M =Z, and the action of
Gal(F/F) on M is given by a homomorphism « : Gal(F/F )= Z;. Now
if C;, C, are divisor classes for F(x, y) of order dividing p", choose D;
and f;(i = 1, 2) such that D, € C;, D, and D, are disjoint, and p"D, =
(f:) where f,€ F(x,y). Then (C,, Cy)) - fi(Dy)/f(D,) defines a non-
degenerate pairing J;[p"]1 X J;[p"]—> u,. Here f(D) is defined for
f € F(x, y) and for a prime divisor D disjoint from (f)) in the obvious
way and extended multiplicatively to non-prime divisors. It is clear
that for o €Gal(F/F), (a(C)), o(Cy) = o((C;, Cy). Also, if ¢ E
Gal(F(x, y)/F(x)) is the generator defined by ¢(y) = ¢,y, then (¢(C)),
¢(C)) =(Cy, Cy). The Weil pairing T; x T; > M, which we denote by
{-,-), will then have the properties: (o(t,), t,) = (t;, k(o)o (t,)) and
(Z(t), tr) = (t;, Z\(ty) for all t,, t,€ T,. By using Z,-bilinearity, we
find that {(at,, t,)=(t,, at,) for a € A,. If a =p(0), it follows that
a = k(o)p(o)!, i.e. p(o)p(o)= k(o). This proves that Im(p) C U*.
We also mention in passing that if F is a finite field of order ¢" and if
o is the Frobenius automorphism over F, then k(o) = ¢" and there-
fore, since p(o) and its conjugates over Q, are the roots of the zeta
function for y? = f(x) over F, the above statement is just the Riemann
Hypothesis in this very special case.

The fact that Im(p) C U* has a few consequences that we want to
mention. First, if J(F) contains a point of order p”, then s;>
(n—1)(p—1) and so k(o) =1 (mod p"~'m) and therefore = 1 (mod p")
for all o € Gal(F/F). It follows that upn C F. Secondly, it is easy to
see that A acts on U/ U,,, by the character w*. In particular, J acts as
(—1)*. Now if s#0 (mod p—1) and a € U, N U* but & U,,,, then
clearly aa € U,,, and hence s must be odd. Therefore we see that
either s; is odd or s; =0 (mod p —1). For example, if we knew that
Ji(F) did not contain all the p-division points of J;, then it would
follow that the p-primary subgroup of J;(F) is isomorphic to (Z/(p)",
where s = s; is odd. We have one final general remark to make. Let F,
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denote the field generated by all points of order p on J;.. As a Galois
module and as an A,-module, we have J;[p]= T(/pT;. It follows that
Gal(F/F,)=p '(U,_,) and hence that Gal(F,/F) is isomorphic to a
subgroup of U,/U,-,. We see easily from this that Gal(F,/F) is an
elementary abelian p-group, as we mentioned in the introduction.

3. The curves y* = x°(1—x)

We just assume p is odd at first and that 1 <=a <p —2. Let po, pi,
and p.. denote the primes of F(x) corresponding to x, 1 —x, and 1/x.
These primes are ramified in the extension F(x, y)/F(x). Let Py, P;and P,
be the primes of F(x, y) lying above py, p,, and p.. Let ¢ denote the
divisor class containing D = Py— P.. Then ¢ is invariant under the
action of ¢ and the corresponding point on J,(F) is a generator of
J.[7]. We will show that J,(F) contains J,[7?]. This is equivalent to
finding a divisor class ¢; of F(x,y) such that ¢(c,) — ¢, = c. We begin
by showing that such a ¢, exists if and only if one can find a
z € F(x,y) such that N(z) =x, where N is the norm map for the
cyclic extension F(x, y)/F(x). The existence of ¢, amounts to the
existence of a divisor D' € ¢ with N(D')=0. If N(z) =x, then D' =
D —(z) has this property since N(D)= p,— p.=(x). Conversely if
such a D’ exists, then we must at least be able to find a 2z’ € F(x, y)
with N(z') = ax where a € F*. But by considering residue classes
modulo P;, we easily see that o =3” where B € F* and hence
z = B7'z’ has the required property.

We will now show that x is in fact a norm for the extension
F(x, y)/F(x). This is a consequence of the following rather well-
known lemma since both x and 1—x and therefore x“(1—x) are
clearly norms for the extension F(°Vx)/F(x).

LEMMA 1: Let & be any field containing a primitive p-th root of
unity. Let u, v € F*. Then u is a norm for the extension F(°\/v)|% if
and only if v is a norm for F°\Vu)| %.

PROOF: Let €, be a primitive p-th root of unity in %. If either u or
v is a p-th power in %, the lemma is trivial. Assuming that this is not
the case, let ¢, € Gal(#(°*Vu)/%) be defined by ¢,*Vu)=¢"Vu.
Define ¢, similarly. Consider the cyclic aglebra o = [#(°Vu), du, V).
Let V="V u. The field F(U) can be considered as a subalgebra of
oA. As a vector space over %(U), o has a basis 1, V, V2,..., V!
where VaV™' = ¢,(a) for all « € #(U) and V? = ». Furthermore, v is
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a norm for the extension F(U)/% if and only if & is isomorphic to
the algebra of p X p matrices over %. But we can clearly identify
F(* \/;) with the subalgebra #(V). Also UVU ™' = ¢,'(V) so that the
inner automorphism of & by V restricts to ¢;' on (V). Since 1, U,
U?, ..., U is a basis for o over F(V), we see that & is isomorphic
to the cyclic algebra [F(°V'v), ¢3', ul. Since this is the p X p matrix
algebra if and only if u is a norm for F(*Vv)|F, lemma 1 is proved.

The following proposition follows immediately from what we have
said above and at the end of section 2. Theorem 1 of course follows
from this.

ProPOSITION 1: If p =3, J,[#*) C J.(F). If p >3, J[7)1 C J.(F).

Theorem 2 also follows quickly. Letting p, denote the p-adic
representation of Gal(F/F) on the Tate module T, for J,, we have
Gal(F”/F)=Im(p,). But U*= Z?*"2x Z/(p) as a topological group
and U*N U,=Z%*"?. Since Im(p,) C U* N U,, we obtain theorem 2.

In the case where F is a finite field of order ¢"(with ¢ =1 (mod p)
since we are assuming that F contains a primitive p-th root of unity),
proposition 1 immediately gives a congruence for the roots of the zeta
function of y? =x%(1—x) over F. If o denotes the Frobenius
automorphisms of FJF, then these roots are precisely the conjugates
of p,(a) over Q, and they must be =1(mod 7*) and even mod 7 if
p >3. The fact that o actually gives an endomorphism of J, which
commutes with Z together with the fact that A is a maximal com-
mutative subring of End(J,) shows that p,(c) is in A and not just A,.
Let us assume that F is the residue class field A/#, where £ is a prime
ideal dividing ¢. We also assume that ¢, is {, mod $. Now the roots of
the zeta function are known to be the conjugates over Q of the Jacobi
sum

ar== 3 #0¢e(1-x =)

x#0,1
where ¢ is the p-th power residue character mod $ and g(t) is the
Gaussian sum for F corresponding to the character ¢‘. It is not
essential for our arguments to know which conjugate of a; is p,(o).
But this could be found as follows. Because of the above congruence
p.(o) is determined by its factorization. The CM-type of J, is known
tobe K,={6€4 ,[w(6)1+[aw(8)]<p}, where [ ] denotes the first
digit in the p-adic expansion, and thus we have (p.(d)) = ek, $° .
(See [3].) On the other hand, by a theorem of Stickelberger we have
(g(1)*) = $R, where R =32l c8:., where 8. €A is determined by
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8.(&,) = L5 Tt follows that (ay) = $%, with S, =% (8,+ 8, — 81,0)R. By

comparing, one finds that p,(c) = a,.
Now we come to the case F=K=Q(). Let G=G,=

Gal(K'®/K) and let H = H, be the inertia subgroup of G correspond-

ing to the prime () of K, which is the only ramified prime in K/K

since K@ C K. Letting I denote the group of fractional ideals of K

K@K
qa

prime to p, the Artin symbol o, = ( ) defines a homomorphism

a—> o, of I to G. The image of I is dense in G by the Tchebotarev
density theorem. If £ is a prime ideal of K(# (w)), then oy is just the
corresponding Frobenius automorphisms and we have p,(os) = ay.
The image p,(G) is clearly just the closure of the subgroup generated
by the ay’s for all £. We will follow Iwasawa [6] to study this image.
Let I, be the subgroup of I of principal ideals. The image of I, in G
under the Artin map is a dense subgroup of H. If a € I, then obviously
(pa(d,)) = 0% and if a € I, then p,(o,) = a% where a is any generator
of a such that @ =1 (mod #?). It follows easily that p,(H) = U3,

We will conclude this section by determining d, =d,(K)=
rank (G). Since H has finite index in G, this amounts to finding
rankz (U3).

It is easy to determine this rank by decomposing U, by the action
of A. If y=w', 1 <i=p —1, then the y-component of U, is isomor-
phic to Z, and S, acts as multiplication by

x(Sa)==(1+x(a)— x(a+1))By,-.

Now B;, is non-zero precisely when x is odd or x is the
_ptl1
T2
number of odd y’s such that y(a +1) =1+ y(a). It is easy to see that
this holds only when x(a) is a primitive 6-th root of unity and
x(a + 1) = x(a)’. Obviously, if p =2 (mod 3), then e, = 0. On the other
hand, if p =1(mod 3) and if a?+a+1=0(mod p), then y(a+1)=
1+ y(a) whenever y(a) # 1. Thus 4, =—2—6_—1+ 1 and one can see that
K@ = KK'’, where K’ is the subfield of K fixed by {1, 8,, 2}. For such
a, J, turns out to be isogenous over K to (J.)* where J, is an abelian
p—1
6
endomorphisms. (See [8].)
There are many other pairs (a, p) for which e, is non-zero. The first
exceptional pairs occur for p =67. In addition to the values of a

principal character. If e, —d,, then it is clear that e, is the

variety of dimension with the ring of integers of K’ as a ring of
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discussed in the last paragraph (a =29 and 37 for p = 67), we have e, =2
for a =6, 10, 19, 47, 56, and 60. (Note the easily explained symmetry
a & p —1—a.) The exceptional characters in these cases are the two
characters of A of order 6. The following remark due to Lenstra shows
that similar exceptional pairs (a, p) occur for all sufficiently large p such
that p =7 (mod 12). A character y of order 6 of A will then correspond to
an odd character mod p. Let g be a primitive root mod p. We have
x(a+1)=1+x(a) if a=gx® and a + 1 =g%y® (mod p) with (x,p) =
(y, p) = 1. But the Riemann Hypothesis for the curve gx®+ 1 = g%y over
Z/(p) provides many such values of a. (The genus of this curve is 10.)
More generally, if p =6r+ 1 (mod 12r) and if x is any character of A of
order 6r, then x will again be odd and the existence of a’s satisfying
x(a+1)=1+ y(a) for sufficiently large p follows by considering the
curve g'x% + 1= g¥y% over Z/(p). One can make e, arbitrarily large in
this way. We also want to remark that for any fixed value of a > 1, one
can prove the existence of infinitely many primes p such that e, = e,(p)
is non-zero by using the Tchebotarev density theorem. We will omit the
details.

Finally, we want to point out here that the field K is actually
completely determined by the exceptional x’s. By class field theory, it
is not difficult to show that if y is either an odd character or the
principal character of A, then there exists a unique Z,-extension I('X
of K such that K,/Q is a Galois extension and such that A acts on
Gal(IZX/K) by means of y. By noting that p, induces a A-isomorphism
of G with Im(p,), one can see that K? is precisely the composite of
the IZX’s for those y such that y(a + 1) # 1+ y(a).

4. The local field of p-division points

Let K, = Q,(,) and let L{” denote the extension of K, generated
by the points of order p on J,. Now H, can be identified with
Gal(K@/K,). We will then have Gal(K/L,)={h€& H, | p.(h)=1
(mod pA,)} and hence Gal(L{"/K,) will be isomorphic to the cor-
responding quotient group of H,. Using the fact that p,(H,) = U5+, we
find that as A-modules Gal(L{"/K,) = V%, where V = U,/U,_,. Now as
mentioned earlier U/U,,, is isomorphic to Z/(p) with A acting by w'.
Thus, considering V as a representation space for A over Z/(p), each
character y of A occurs with multiplicity one in V except for w?™! = @°
and o', whichdon’toccurin Vatall. If y = w’,2<i < p ~2,then S, acts
on V, as multiplication by x(S,) = *(1+ x(a)~— x(a+1)) B,,-1. For
these x’s, the y-component of Gal(L$/K,) is non-trivial precisely when
x(S,) # 0(mod pZ,). It is well-known that p divides B, - if and only if p
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divides the Bernoulli number B;, where i +j = p. (Up to p-adic units,
both occur as values of the same p-adic L-function L,(s, »’).) There-
fore, if p ,B,- then Gal(L”/K,); will be trivial for every a. It is also
possible that 1 + y(a) — x(a + 1) is divisible by p for certain values of a.
Obviously this cannot occur for every a since then one would have
x = o which has been excluded. Also we note that only odd x’s can
occur non-trivially in Gal(L{’/K,,).

The above remarks allow us to determine L\” completely. By local
class field theory, K, has a unique cyclic extension L, of degree p
such that L,/Q, is Galois and such that A acts on Gal(L,/K,) by the
character y, where y = ' with 2=<i=p —2. (This is not true for
x = 0’ and w'!) We see that L' is just the composite of those L,’s
for which x(S,) #0 (mod pZ,). Obviously L, will be contained in L{"”
for some a if and only if p }( B;. Theorem 3 follows immediately from
these considerations.

It is interesting to examine the structure of the p-primary subgroup
of J,(K,). Of course, J,[7*] is contained in J,(K,). (We are assuming
here that p =5.) In order to have more than this, we would have to
have p,(H,)C U,. Hence a necessary and sufficient condition for
having J,[7*] C J,(K,) is that &*(S,) =0 (mod pZ,). Now it is easy to
see that 1+ y(a)# x(a+1) (mod p) for y=w® and 1=a=<p-2.
Therefore w*(S,) =0 (mod pZ,) if and only if p divides B,_;. The first
such prime (and the only one less than 125,000) is p = 16843. (See [7]
and [10].) Of course, for this p we actually have J,[7°]C J,(K,) for
every a(l=a=p—2). Now p{B,_s for this p and hence the p-
primary subgroup of J,(K,) will be precisely J,[7°] unless w’(a +1) =
w’(a)+1 (mod p). There are just two values of a within the range
1 <a =p -2 for which this congruence holds -the two solutions of
a*+a+1=0 (mod p). In fact, for these two values of a, we have
x(a+1)=x(a)+ 1 whenever x = o' with i# 0 (mod 3). Since p * B,
for the above p, we can see that, for these two values of a, the
p-primary subgroup of J,(K,) is J,[#°], an elementary abelian p-
group of order p®. In general, for p =5, one can at least say that
J.(K,) never contains all the p-division points on J,. This follows by
an easy argument using the trivial fact that B, and B, are not divisible

by p.
5. The global field of p-division points

Let L denote the extension of K = Q({,) generated by the points
of order p on J,. The field L generated by the p-division points on J
is of course just the composite of the L®s. Now Gal(L“/K) is a
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quotient group of Gal(K'?/K) and the representation p, induces an
isomorphism p, of Gal(L“/K) with a subgroup of V = U,/U,_;. In
fact, since Im(p,)C U*, it follows that Im(p,)C V*=
{ve Vl v!*7 = 1}. Noticing that V* is isomorphic to Z/(p) if i is odd
and 3<i=p —2 (and is trivial otherwise), we can see that L® can be
expressed as a composite of certain fields L{*, where i varies through
the values just mentioned and where L{” is a cyclic extension of K of
degree 1 or p which is Galois over Q with the action of 4 on
Gal(L/K) given by the character »’. Now if i is as above and if
i+j=p, then j will be even and satisfy 2=<j=p —3 and so we can
define another field L= K(* \/;’_j), where 7; is the cyclotomic unit in
the introduction. We will prove that L{¥ =L} whenever w'(a +1)
# w'(a)+ 1 (mod pZ,) and LY = K otherwise. Theorem 4 follows at
once from this because w'(a+1)=w'(a)+1 (mod pZ,) cannot hold
for all a unless i =1 (mod p — 1) and this has been excluded.

To prove the above result, we use Bauer’s well-known theorem that
a Galois extension is determined by the set of primes which split
completely in it. Let $ be a prime of K(#(w)) and let o4 denote the
Frobenius automorphism for $ in the extension K“/K. Then it is
clear that $ splits in the extension L{*/K if and only if the projection
of p.(os) onto the w'-th component V% is trivial. Now let p,(os) =
a € U*. Of course a is just the Jacobi sum a4 and depends on both .$

and a. Let ¢; denote the indempotent pL—l Ssea @ (8)8 corresponding

to o' in the group ring Z,[A]. The projection of @ onto the w'-th
component U#* is just a% Thus we see that $ splits in L{/K if and
only if «% is a p-th power in U*% (or equivalently in U). Choose an
element e} € Z[A] whose coefficients are close enough to those of e
p-adically to make all of the following arguments work. It will always
be clear that this is possible. We also assume that the coefficients of
e} have sum equal to zero. We must examine when a* (which is now
in K) is a p-th power in U. We have the factorization
(a®) = $%% It will be convenient to restrict attention to primes $ whose
ideal class is in the p-primary subgroup P of the ideal class group of K. It
is not hard to see that a Galois p-extension of K is still determined by the
set of such primes that split completely in it.

The ideal class of #¢ will be a typical element of P;. So we see that P; is
annihilated by ‘(S,) =(1+ »'(a) — w'(a + 1)) B, and therefore by
B, (since i# 1 (mod p — 1) and a can be varied). This of course is just
the usual proof of this simple consequence of Stickelberger’s theorems.
Fori=3,5,...,p—2,let p™ be the largest power of p dividing B, ,-i.
Then P; has exponent dividing p".
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Now e)S, is close to ejw'(S,) in the p-adic topology on Z,[A]. If p
divides 1+ w'(a)— w'(a + 1), then we will have («¢%) equal to a p-th
power of a principal ideal in K. It is not hard to see from this that «*
is in (K*)? and hence . splits in L{®. In this case, we see that L{¥ = K
as we stated above. Similarily, if P; has exponent smaller than p",
then we actually have L{* = K for all a.

We assume now that 1+ w'(a)= w'(a+1) (mod pZ,). Our result
will follow if we show that a% is a p-th power in K, if and only if

(%) =1, where (<), is the p-th power residue symbol for K. This is
0

proved in [5] and we essentially are just going to reproduce his
argument here. If = = ¢, — 1 as before, then we can take »; to be m*.
(This is a unit since the coefficients of the ‘“‘approximate’ idempotent
e} have sum zero.) Using elementary properties of the power residue

( .>0 ( c)l) ( )
¢ ¢ jei (|.

Consider the cyclotomic field K, = Q(¢,) where £, is a primitive
p"*'-st root of unity and n =0. (A slight change in notation - ¢, will
now be written as {,.) We may assume that (2" ={,. Then if 7, =
¢, — 1, we have that N,(m,) = m, = 7. Therefore, we see that

(), (%),

where (—)o,, denotes the p-th power residue symbol in K,. Here a is
an arbitrary ideal of K prime to (). If (—), is the p"*'-th power
residue symbol in K,, then (—)?" = (—),,. Applying these elementary
facts to a = $% and n = n;, we have

(52, (), = ().
g4 0 fﬁp" " ?’i n’
where b is some integer prime to p.

We recall the following result of Artin and Hasse [1]. Let B € K,
satisfy B8 =1 (mod m,). Then

<&>= "B)
B/u "7
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where

r(8) = isi T (£ log ).

where T, denotes the trace from Q,({,) to Q,. Now a simple cal-

culation shows that the trace of % from K, to K is p" % Hence if
n 0

B € K, then r(B) =% TO(% log ,,B). If we view K, as a representation
0

space for A over Q,, then we can decompose it into a direct sum of
the one dimensional spaces ¢K,, 1=<i=<p—1. The Gaussian sum
g = el =32""\w ' (a)l§ spans eK, over Q,. If A€ ¢,K, and B € ¢,K,,
then it is easy to see that AB € ¢;,,K, and that

_f0if i +i,#0(mod p—1)
Ty(AB) = {(p —1AB if i, +i,=0 (mod p — 1).
Now, letting B8 = a*, we obviously have

r(B) =% To(é e;log, a) E—;— T(,(% & logp(a)) (mod p"*'Z,)

o

if e} is close enough p-adically to e;. To evaluate this, we must find the

/4

projection e_; ;0 on the w™-th component of K,. This is easily found
0

from the elementary identity

4o 1 1 2 3 -1
Nt —==(1+LH+28+383+ -+ -1
oy p p( &o & {o p )8

which can be derived by differentiating x» —1=(x—-1) (1+x +x*+
-+« +xP™Y. We obtain

Q = —i .
€_; o Bl,w ig_i

On the other hand, ¢, log,(a) = ¢(a)g:, where ¢, (a) € Z, and we will
have €(a)=0 (mod pZ,) if and only if a® is a p-th power in U. From
all of these remarks, we find that

I% T4, logy () =+ (p = DBy.14(a).

0
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It follows that r(a‘) =0 (mod p"*") if and only if ¢(a)=0 (mod pZ,),
providing what we needed.

We conclude this paper by coming back to the question of the
structure of the p-primary subgroup of J,(K). It would be larger than
J,[#3] if and only if p,(oy) = ay=1 (mod 7w*A) holds for all $. This
means that the projection of a, onto the w’-component of V* is
trivial. Since we have w’(a + 1) # w*(a)+ 1 (mod pZ,), our arguments
show that m,_; must be a p-th power in K. Hence J,(K) contains
J.[7*] (and therefore J,[#°]) if and only if (E*/C),_3 is non-trivial. We
also want to point out how to describe the structure of the p-primary
subgroup of J,(K) as a representation space (over Z/(p)) for the
natural action of A. First note that J,[#]C J,(Q). Thus A acts on
J.[7] by the character »°. Now multiplication by 7 gives a group
theoretic isomorphisms J,[7**'1/J,[7*] onto J,[#')J,[#"""] for t=1.
Using the fact that 8(7) = w(8)m (mod 7*Z,), one finds inductively
that Gal(Q/Q) acts on J,[7**']/J,[#*] through its quotient group A by the
character ™. Thus the semisimple action of A on J,[73] C J,(K) has the
characters »°, »™!, and o2 as its constituents. One simple consequence
is that J,(K*) has a subgroup isomorphic to (Z/(p))?, where K" is the
maximal real subfield of K.
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