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Introduction

In a recent paper [12] Shintani investigated the Euler products
associated with automorphic forms on SU(2, 1) which are eigen-
functions on the Hecke operators. He showed, in particular, how the
action on the Hecke operators transforms the Fourier-Jacobi series of
such forms and gave an integral representation of the associated
Dirichlet series with Euler product. Such an integral representation
with Euler product was also considered by Piatetski-Shapiro [7]. On
the other hand, there is a lifting from ordinary elliptic modular forms
to automorphic forms on SU(2, 1), defined by a certain theta function
of two variables [4]. In this paper we show that the lift of a Hecke
eigenform is again a Hecke eigenform and that the Dirichlet series of
the lift has a nice expression in terms of that of the original form. In
effect we show that the lifting in question is compatible with Lang-
lands’ principal of functoriality.
More precisely, let K = Q(i), let o, be the Galois automorphism of

K/Q, and let

Then 2 iR defines a Hermitian form of signature (1, 2) on V = K3. Let
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be the group of similitudes of R, and let

be the corresponding Hermitian symmetric space. Let O = Z[i], and
for the lattice L = O3 C V, let

For g E G(R) and 03B4 E D, set

where (a3, b3, c3) is the bottom row of g. Then for any k E Z, k &#x3E; 5

and k = 0(4) there is a lifting

where Sk-,(Fo(4), (-4)) is the space of cusp forms of weight k - 1 on
Sj, the upper half plane, and Ak(G(L)) is the space of holomorphic
functions F on D satisfying

for all g E G(L).
Our result is the following: If f(03C4) = 03A3~n=1 a(n)e(n03C4) ~

Sk-1(.ro(4), (-4)) is a Hecke eigenform, then so is 2(f), and

where 03B6(s, ~, F) is the Dirichlet séries attached to a form on D,
L(s, f) = 03A3~n=1 a(n)n-S, f03C1(03C4) = 03A3~n=1 a(n)e(n03C4), and X is the grossen-
character of K defined by

Now the function 03B6(s, X, F) is the L-function of F associated, by
Langlands [5], to a certain representation p of the L-group of G. If we
let
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where

then there is a homomorphism a : LH~LG of L-groups such that,
locally, with the exception of the Euler factor for p = 2, C, (s, X, 0( f))
is the Euler factor associated to f for the representation p - a of LH.
Our proof of (0.1) is based on the classical technique used by

Eichler [2, Satz 21.3] to relate the actions of Hecke operators and
generalized Brandt matrices in spaces of 0-functions. On the other
hand, Rallis [8] gave a representation theoretic proof of Eichler’s
result. In [9] Rallis applied his method to check local functoriality for
the correspondences determined by the Weil representation for the
dual reductive pair (Om, Spn). It should be possible to extend Rallis’
method to the dual reductive pairs ( U( V), U( V’)).
The existence of a holomorphic analytic continuation and func-

tional equation for e(s, X, :£(f)) is an immediate consequence of

(0.1). Eventually these properties will be obtainable for all F by the
method of Shintani and Piatetski-Shapiro.

In § 1 we specialize the machinery of [4] to the present case. We
then recall the definition of the Hecke operators acting in Ak(G(L))
and state the theorem, which relates the action of the Hecke opera-
tors on the two variables of the theta function defining the lifting.
This theorem has the above relation between Dirichlet series as an

immediate consequence. The proof of the theorem is given in §2. In
§3, we discuss functoriality.

1 would like to thank Professor Shintani for a conversation which

stimulated this paper, and Professor M. Karel for his advice about
LG.

§1. The lif ting and Hecke operators

Let K, R, G, D, etc. be as in the introduction, and define a Her-
mitian form on V by

Note that this is the negative of Shintani’s form. For L C V as before,
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let

be the dual lattice. Here tr(03B1) = trK/Q(03B1), 03B1 E K. Also, for 03B4 E D, let

and let

and let

Now for 03B4 E D, the vector P (3) E V spans a positive line in V; and we
may define the majorant (,), of (,) associated to 03B4 by

Then for k ~ Z &#x3E; 0, h E L* and 03C4 = x + iy ~ L, set

According to Proposition 2.1 of [4], if y = (a d) ~ Fo(4) then

where 03C8(d) = (sgnd)(-4 |d|) is the quadratic character associated to

K/Q. Also if g e G(L),

Set 8(T, 3) = 8( T, h, 0) and suppose that k = 0 mod 4 so that 8(T, 03B4) ~ 0.
Then by Theorem 5.3 of [4], if f E Sk-1(03930(4), 03C8) and k &#x3E; 5 the func-

tion
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is a holomorphic form on D of weight k with respect to G(L);
L(f) E Ak( G(L»).
Note that the automorphy factor J(g,03B4)k corresponds to the case

1 = k, m = 0, d = 0 in Shintani p. 2 [12].
Now we recall the definition of the Hecke operators for G follow-

ing Shintani [12]. For a prime P of K with P = (?r), 1T E K, define a
subset S(P) C G(Q) as follows:
(1) If P ~ P03C3, p = PP03C3, let

S(P) = f g E M3(O) ~ G(Q) |03BC(g) = p and g has elementary divisors

(2) If P = pu, let

Then S(P) is a union of G(L) double cosets and may be written as a
finite disjoint union

For F E Ak(G(L)) define

The T(P)’s generate a commutative algebra of operators on

Ak(G(L)). If F E Ak(G(L)) is a simultaneous eigenfunction of all the
T(P)’s with

and if e is a grossencharacter of K, then there is a Dirichlet series
with Euler product associated to F and e in the following way:

and
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where X = ~(P) = ()k. Define the Euler factor at pa

(2) If P = pu = (p ) is unramified in K/Q, set

and define the Euler factor at p

where E = (-I)k/4, and set

Then define

Also recall that if f E Sk-,(FO(4), 03C8), the Hecke operator T’(p)k-1,03C8
acts on f via

where 03C8(2) = 0. In the notation of [ 11; (3.4.1)], set

where 0393’ = Fo(4).
Now our main result, to be proved in the next section, describes the

action the T(P)’s on the theta function 03B8(03C4, 03B4).

THEOREM: (1) If P ~ P03C3, P = (7r), then



[7]

(2) If P = P" is unramified in K/Q. Then

(3) If P = (1 + i), then

REMARK: The theorem is an analogue of a classical result of

Eichler [2, Satz 21.3] and the method of proof is similar to his. The
thoerem is an explicit special case of the general results of Howe [3].

COROLLARY 1: Suppose that f E Sk-l(ro(4), 03C8) is a normalized
Hecke eigenform such that L(f) ~ 0. Then L(f) is an eigenfunction of
all the T(P)’s with eigenvalues given by :

where X = ~(P) = ’r in the first case, and E = (_1)k/4.
PROOF: This follows immediately from the theorem and well known

adjointness properties of the Hecke operators with respect to the
Petersson inner product (,). Note that L(f) = ( f, 0) and that (1 + i)k =
~2k/2.

COROLLARY 2: For a normalized Hecke eigenform f E Sk-l(ro(4), «/1)
such that L(f) ~ 0, we have

where LK(s, X) is the Hecke L-series for the grossencharacter X and
L(s, f ) is as in the introduction. Thus the function
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has an entire analytic continuation and satisfies the functional equa-
tion :

where G2(S) = (203C0)1-sT(s).

PROOF: If P ~ pu, we substitute the values given in Cor. 1 for 03BB (P)
and A(P’) into Q1(X) and obtain

Similarly for Q2(Y) we get

Now setting X = Xp k/2-s and Y = Xp k/2-s yields

and

Since à, = .p(p )ap = ap, we get, after a shift of k/2 in s, the required
identity on Euler factors.

Similarly if P = P03C3 = (p) is unramified, the value for 03BB(P) given in
Cor. 1 yields

for Q(X); and putting X = pk-2s gives

Since ap=03C8(p)ap=-ap this is the required identity, again with a
shift of k/2 in s.

Finally, if P = (1 + i ) we obtain
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Setting X = ~((1 + i))2k/2-s and noting that ~((1 + i» = E, we get

which is just

since a2à2 = 2k-2, [6].
The functional equation of D(s, X, 5t(f)) follows immediately from

those of its factors.

§2. Proof of the Theorem

For g E G(Q), let g = 1£(g)g-’. Then g ~ G(Q), (gX, Y) = (X, g’Y)
and 03BC(g’) = g(g). Also, G(L)’ = G(L) and; since L is a maximal

lattice in the sense of [10], the set f g E G(Q) |gL C L} is also stable
under t.

Now let S(P) = ~j G(L)g; as before, and for X E L set

Note that the gjL’s are certain sublattices of L independent of the
choice of coset representatives; and that the multiplicities m(P, X)
only depend on the G(L) orbit of X, since G(L) simply permutes the
sublattices in question.
For convenience write

Then applying T(P) to O( T, h) yields:

where we use the identity
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and the fact that 03BC(g) = N(P) for all g E S(P).
Next we must compute the multiplicities m(P, X).
For each rational prime p, let Kp = K Q9Q Qp, Op = O~Z Zp, Vp = Kp

and Lp = t’. Also let Gp = G(Qp) and let

Then for a prime P of K with p = P n Q, set

so that S(P)p C Gp, G(L)pS(P)pG(L)p = S(P)p, and in fact the above
union is still disjoint. For p’ ~ p,

so that

and

where now the g;’s can be any set of coset representatives for G(L)p
in S’(P)p. Further observe that if ordp 03BC(gj) = a, then

since

and 03BC(gj)-1p03B1 is a unit of 6p. By the same argument m(P, X) only
depends on X mod pa Lp.

PROPOSITION: (1) Suppose that P ~ pu, P = (ir). Let
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Then

(2) Suppose that P = pu = (p) is unramified. Let

and

Then

(3) Suppose that P = pu is ramified, so P = (03C0), 17" = (1 + i), and
p = 2. Let

and
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Then

PROOF: By the above remarks, the function m(P, X) is actually
defined on Lp/ N(P)Lp and is constant on G(L)p orbits in this set.

Therefore to compute m(P, X) we need only find a set of G(L) p orbit
representatives and a set of coset representatives gj.

(1) If P ~ P03C3, P = (1T) with 1T E Kp, and take idempotents e and e’
in Kp. Then

and

Note that we may assume that 7r is chosen so that the corresponding
element of Qp x Qp is [p, 1]. Set RI = eR, R2 = e03C3R. Then

since g2 = cg* with gt = R-’gIR2, gl = tg-11. The action of [g, c] E

GL3(Qp) X Qp on [X, Y] E Qp x Qp is given by

Since R2 E GL3(Zp),

The above action is equivalent to the "standard" action

under the isomorphism 1  R2:Q3p  Q3p~Q3p  Q3p. It is then easy to
determine orbit representatives for GL3(Fp) Fxp, and hence for
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G(L),, in

For example, we may take

and these correspond to the cases Cl, Co+, Co-, Coo, and ’otherwise’
above.

Now Shintani [12, Lemma 2], found a nice set of coset represen-
tatives for S(P’),IG(L),. For w E Kp and u E Qp, set

and let

Then H(L) p C G(L) p, and Shintani proved that

It follows easily that

give a set of coset representatives for S(P03C3)p/G(L)p where w runs
over representatives for Op/7TOp and u runs over representatives for
Zp/pZp. Since S(P03C3)p = S’(P)p, we may take the above representatives
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as our g;’s. The images of these g;’s in GL3(Q p ) x GL3(Qp) under the
isomorphism corresponding to the above "standard" action will be

and

where a and b run over a set of representatives for Zp/pZp and the
image of 2i in Qp x Qp is [03C9, -03C9)].
The images of these elements in M3(Fp) x M3(Fp) have cokernels of

dimension 3, and the multiplicities m(P,X) given in (1) of the pro-
position are obtained by counting the number of these cokernels
which contain X. We may, of course, take X to be one of our orbit

representatives above.
If P = P03C3 = (p) is unramified, we must determine G(L) p orbits in

Lp/p2Lp. First observe that there are precisely three G(L)p orbits in
Lp/pLp represented by 0, ’(0,1,0), and t(0, 0, 1). In fact

and R determines a non-degenerate Hermitian form on this space. If

G, is the group of similitudes of this form, then

and so Gp, and hence G(L) p, acts transitively on {X ~
LP/pLp |(X, X) ~ 0 mod p}. If X E F)2 with (X, X) = 0 but X ~ 0, then
we may complete X to a Witt basis X, Y, Z for F)2 with (X, Y) = 1,
( Y, Y) = (X, Z) = ( Y, Z) = 0 and (Z, Z) = 1. Thus such X form a single
G(L)p orbit.
Now suppose that X E Lp/p 2Lp with (X, X) ~ 0 mod p2 but

XÉ pLp. Then there exists g E G(L)p such that

and a = 1 + px3 E Cx. Then
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where

The condition ( Y, Y) = 0 mod p2 is equivalent to

and hence

Therefore

with b E Zp, and so

This shows that the set CI in (2) of the proposition corresponds to a
single G(L) p orbit in Lp/p2 Lp; and by the previous remarks, the set

breaks up into three orbits corresponding to Co, Coo and Cooo above.
(2) Let H(L) p be as before. Then Shintani shows that
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where c runs over a set of representatives for Z,lp7,p. It follows

easily that

are a set of coset representatives for S(P),IG(L),, where a runs over
Zp/p2Zp, b runs over ûplpcp, and c is as before. Since S(P))p = S(P)p
in this case, we may take these coset representatives as the g;’s.
Again if we consider the cokernels of these g;’s acting in Lp/ p2 Lp, we
find the claimed values for m (P, X) as the number of such cokernels
which contain X.

(3) Finally in the case P = P03C3 is ramified, so P = (03C0), 1T = (1 + i),
p = 2; there are in fact 11 G(L)p orbits in Lp/pLp for which we may
choose representatives t(1 + ir, 0, 0), t(1 + 7r, 03C0, 0), t(1, 1T,0), and

t(1, 0, 0) corresponding to C1; t(1T, 0, 0) corresponding to Co; t(O, 1T,0)
corresponding to Coo; 0 corresponding to Cooo, and t (1, 0, 1T), t(03C0, 1, 0),
t(0,1 + 1T,0) and t(0, 1, 0) corresponding to ’otherwise’. Applying
Lemma 2 of Shintani, we find coset representatives

and

for S(P)p/G(L)p. Using these as our gj’s - again S(P)tp = S(P)p - we can
compute the m (P, X)’s as in the previous cases, and the proposition is
proved.

REMARK: Although we have considered only the case K = Q(i), the
proof of the previous proposition, at least in cases (1) and (2), is
identical for an arbitrary quadratic extension K/k. Therefore both the
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theorem of § 1 and the resulting relation between the L-series of the
lift and that of the original form should hold in the general case.

PROOF OF THE THEOREM: We use the values for m(P, X) just
determined.

If P ~ pu, P = (03C0) with 77- E K, (2.2) becomes

On the other hand,

Since

the first term on the right side of (2.3) is just p2 times the first term on
the right side of (2.4). Also we have

so that this term is just p2 times the last term in (2.4). Now

So that

and the first part of the theorem is proved.
If P = P’ = (p) is unramified, (2.2) becomes:
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while

If we write AI, A2, A3 and A4 for the four terms on the right side of (2.5)
and Bi, B2 and B3 for the terms on the right side of (2.6); then, as in the
previous case;

At the same time

so that

Finally

and so

as claimed.
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If P = (1 + i), p = 2; (2.2) becomes:

while

Thus the first term on the right side of (2.7) is p203B8|1 T’(p)k-l,. The
second term on the right side of (2.7) is

Finally, we note that if 0393’ = r,(4),

so that

Since for h E L*,

and

we obtain

where
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Then the second term on the right side of (2.9) is just

On the other hand, in the last term on the right side of (2.7) we have:

Finally, setting ir = 1 + i and writing X = 03C0 Y, we have:

Setting Y’ = p-103C0Y we have:

hence

and (2.10) becomes

This completes the proof of the theorem.

§3. Functoriality

Let G and H be the reductive groups over Q defined in the

introduction. Following the notation of [1] we find that

and that the action of 03C3 is given by
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where g = tg-1 and

Then we take LG = LG0 03C3&#x3E;. Similarly

and the action of a is given by:

Let LH = LH0 03C3&#x3E;.
Now the Euler product considered by Shintani arises in the follow-

ing way. Let pO by the 3-dimensional representation of LaO given by

and let

Let

If F E Ak(G(L)) is a Hecke eigenform with eigenvalues À(P) and
central character X as in § 1, representatives in LT0  03C3p of the cor-
responding semi-simple LG0-conjugacy classes in LG’ x (Tp are deter-
mined as follows. If p = PP03C3, with P ~ pu in KI Q,

and
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and

Note that, in the latter case, the condition that t be (T-invariant forces

t2 = 1 and t-13 = t1 as well.
We then find that, for p ~ 2, Shintani’s Euler factor is

where (Tp is the Frobenius in Gal(K/Q) at p.
We now construct an L-homomorphism. First define 03B10:LH0 ~ LG0

by

for h = 
a b E GL2(C). This can be extended to a homomorphismc d

03B1: LH~LG by taking

Finally, to a normalized Hecke eigenform f E Sk-1(03930(4), Ç) we
associate, for each p, p ~ 2, the semi-simple LH°-conjugacy class in
LH0  Op represented by the element

where

and Op is the Frobenius at p. Here
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and

We then find that, for p ~ 2, the eigenvalue 03BB(P) associated to

03B1(s  03C3p) E ’T’ X1lTp is just as in Corollary 1, and that

This shows that, in the notation of [l, 7.2],

for classical Hecke eigenforms f E Sk-1(03930(4), Ç), and hence that, for
such forms the Weil representation defines a global lifting compatible
locally at almost all p with the L-homomorphism a.
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