COMPOSITIO MATHEMATICA

J. H. M. STEENBRINK Cohomologically insignificant degenerations

Compositio Mathematica, tome 42, nº 3 (1980), p. 315-320 <http://www.numdam.org/item?id=CM 1980 42 3 315 0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 42, Fasc. 3, 1981, pag. 315–320 © 1981 Sijthoff & Noordhoff International Publishers – Alphen aan den Rijn Printed in the Netherlands

COHOMOLOGICALLY INSIGNIFICANT DEGENERATIONS

J.H.M. Steenbrink

Introduction

The following two problems in singularity theory appear to be closely related. On the one hand, given a complete singular variety X over C, to construct a filtered complex of sheaves $(\underline{\Omega}_X, F)$ on X, which computes the Hodge filtration on the cohomology of X (see the next section for a more precise statement). This problem has been treated by Philippe du Bois [1]. On the other hand one can ask, for which flat map germs $f: (\mathcal{X}, X) \rightarrow (x, 0)$ with $f^{-1}(0) = X$, the Hodge numbers h_h^{pq} of $H^*(X)$ and the limit Hodge structure on $H^*(\mathcal{X}_{\infty})$ (cf. [5, 7]) are equal for all $p, q, n, \ge 0$ with pq = 0. If this is the case, such a degeneration is called cohomologically insignificant. The preceding paper [4] of Igor Dolgachev contains many results on these.

We prove the following local criterion:

THEOREM 2: Suppose X is a complete algebraic variety over C such that $\mathcal{O}_X \cong \underline{\Omega}_X^0$. Then every proper and flat degeneration f over the unit disk S with $f^{-1}(0) = X$ is cohomologically insignificant.

EXAMPLE: If in a degeneration of curves, X is a multiple elliptic fibre, then X is cohomologically insignificant, but $\mathcal{O}_X \neq \underline{\Omega}_X^0$. See [4], Theorem (3.10).

In [4], Igor Dolgachev conjectures, that every family over the disk, whose singular fibre is reduced and has only insignificant limit singularities in the sense of Mumford and Shah (cf. [6]), is cohomologically insignificant.

0010-437X/81/03315-6\$00.20/0

J.H.M. Steenbrink

QUESTION: Suppose X is an algebraic variety over C which has only insignificant limit singularities. Is it true that $\mathcal{O}_X \cong \underline{\Omega}_X^0$?

Using Theorem 3 one checks easily that this the case for those from the list of J. Shah [6].

The filtered De Rham complex of a singular variety

According to Du Bois [1], for every algebraic variety X over \mathbb{C} there exists a complex $\underline{\Omega}_X$ of analytic sheaves on S, whose differentials are first order differential operators, together with a decreasing filtration F on it, such that the following properties are satisfied:

(i) the complex Ω_X is a resolution of the constant sheaf \mathbb{C} on X;

(ii) the differential in the graded complex $Gr_F\Omega_X$ is \mathcal{O}_X linear;

(iii) the pair $(\underline{\Omega}_X, F)$ is functorial in X (in a suitable derived category);

(iv) there exists a natural morphism of filtered complexes

$$\lambda: (\Omega_X^{\cdot}, \sigma) \to (\Omega_X^{\cdot}, F)$$

where Ω_X is the holomorphic De Rham complex and σ its "filtration bête" (cf. [2], Definition (1.4.7)); if X is smooth then λ is a filtered quasi-isomorphism.

(v) if X is complete, then the spectral sequence

$$E_1^{pq} = \mathrm{H}^{p+q}(X, \operatorname{Gr}_F^p \Omega_X^{\cdot}) \Rightarrow \operatorname{H}^{p+q}(X, \mathbb{C})$$

degenerates at E_1 and abuts to the Hodge filtration of $H^*(X, \mathbb{C})$, which carries Deligne's mixed Hodge structure (cf. [3]).

Let Ω_X^0 denote the complex $Gr_F^0 \Omega_X^{\cdot}$.

THEOREM 1: Let $f: X \to S$ be a proper and flat morphism of complex algebraic varieties. For $s \in S$, let X_s denote the fibre $f^{-1}(s)$ over s. If for all $s \in S$ the map

$$Gr^0_F(\lambda): \mathcal{O}_{X_s} \to \underline{\Omega}^0_{X_s}$$

is a quasi-isomorphism, then for all $i \ge 0$ the sheaf $R^i f_* \mathcal{O}_X$ is locally free on S and for all $s \in S$ the natural map

 $R^{i}f_{*}\mathcal{O}_{X}\otimes_{\mathcal{O}_{S}}|\mathbf{k}(s)\rightarrow H^{i}(X_{s},\mathcal{O}_{X_{s}})$

is an isomorphism. Cf. [1], Théorème 4.6.

If X is a complete algebraic variety, let us denote

$$h_n^{pq}(X) = \dim_{\mathbb{C}} Gr_F^p Gr_{p+q}^W H^n(X, \mathbb{C});$$

the numbers h_n^{pq} are the Hodge numbers of $H^n(X, \mathbb{C})$.

Then one clearly has

$$\sum_{q\geq 0} h_n^{pq}(X) = \dim_{\mathbb{C}} Gr_F^p H^n(X, \mathbb{C})$$

for all $p, n \ge 0$. Hence if X is complete and $\mathcal{O}_X \cong \underline{\Omega}_X^0$, then in view of property (v) one obtains

$$\dim_{\mathbb{C}} H^{n}(X, \mathcal{O}_{X}) = \sum_{q \ge 0} h_{n}^{0, q}(X) = \sum_{q \ge 0} h_{n}^{q, 0}(X).$$

In the next theorem we consider degenerations with singular fibre X, that is flat projective mappings $f : \mathscr{X} \to S$ where \mathscr{X} is a complex space, S is the unit disk in the complex plane and f is smooth over the punctured disk $S^* = S \setminus \{0\}$, and $X = f^{-1}(0)$.

Let *H* denote the universal covering of S^* , i.e. the upper half plane, and let X_{∞} denote the family $\mathscr{X}_{x_s}H$ over *H*. We endow $H^*(X_{\infty})$ with the limit Hodge structure (cf. [5], [7]). One has a natural map

$$sp: H^*(X) \to H^*(X_{\infty})$$

which is a morphism of mixed Hodge structures.

THEOREM 2: Let $f : \mathcal{X} \to S$ be a degeneration with singular fibre X, satisfying $\mathcal{O}_X \cong \Omega^0_X$. Then for all $n \ge 0$:

$$Grf_{F}^{0}(sp): Gr_{F}^{0}H^{n}(X) \xrightarrow{\sim} Gr_{F}^{0}H^{n}(X_{\infty}).$$

In other words: f is a cohomologically insignificant degeneration.

PROOF: As X is a deformation retract of \mathcal{X} , the map

$$(R^n f_* \mathbb{C}_{\mathscr{X}})_0 \to H^n(X, \mathbb{C})$$

is an isomorphism for all $n \ge 0$. Because $\mathcal{O}_X \cong \underline{\Omega}_X^0$ and X is complete, the map

$$H^n(X, \mathbb{C}) \to H^n(X, \mathcal{O}_X)$$

is surjective. Hence there exist sections $\sigma_1, \ldots, \sigma_h$ of $R^n f_* \mathbb{C}_{\mathscr{X}}$ over S such that their images in $H^n(X, \mathcal{O}_X)$ form a basis. Let $\bar{\sigma}_i$ denote the image of σ_i under the natural map

$$R^n f_* \mathbb{C}_{\mathscr{X}} \to R^n f_* \mathcal{O}_{\mathscr{X}}.$$

Because $R^n f_* \mathcal{O}_{\mathscr{X}}$ is locally free, the sections $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_h$ give a basis on some small neighborhood of 0 in S. This means, that the map

$$Gr_F^0H^n(X,\mathbb{C}) \to Gr_F^0H^n(X,\mathbb{C})$$

is an isomorphism for |t| sufficiently small. In particular the images of $\sigma_1, \ldots, \sigma_h$ in $H^n(X_{\infty}, \mathbb{C})$ are linearly independent; because morphisms of mixed Hodge structures are strictly compatible with the Hodge filtrations, the images of $\sigma_1, \ldots, \sigma_h$ in $Gr_F^0H^n(X_{\infty}, \mathbb{C})$ are also linearly independent. Moreover the fact that $R^nf_*\mathcal{O}_{\mathscr{X}}$ is locally free implies that for $t \neq 0$:

$$\dim_{\mathbb{C}} Gr_{F}^{0}H^{n}(X,\mathbb{C}) = \dim_{\mathbb{C}}H^{n}(X,\mathbb{O}_{X})$$
$$= \dim_{\mathbb{C}}H^{n}(X_{t},\mathbb{O}_{X_{t}}) = \dim_{\mathbb{C}}Gr_{F}^{0}H^{n}(X_{t},\mathbb{C})$$
$$= \dim_{\mathbb{C}}Gr_{F}^{0}H^{n}(X_{\infty},\mathbb{C}).$$

Hence $Gr_F^0(sp)$ is an isomorphism.

.

Examples where $\mathcal{O}_X \cong \Omega^0_X$.

(a) If X is a reduced curve, then $\mathcal{O}_X \cong \underline{\Omega}_X^0$ if and only if at every singular point of X the branches are smooth and their tangent directions are independent. If X lies on a smooth surface, it can only have ordinary double points; more generally, if X has embedding dimension n at $x \in X$, then

$$\hat{\mathcal{O}}_{X,x} \cong \mathbb{C}[[z_1,\ldots,z_n]]/(z_i z_j : i \neq j).$$

See [1], Proposition 4.9.

(b) Suppose X is a normal surface, $\pi: \tilde{X} \to X$ a resolution of its

318

singularities, $E_x = \pi^{-1}(x)_{\text{red.}}$ for $x \in X$. Then $\mathcal{O}_X \cong \underline{\Omega}_X^0$ if and only if $(R^1 \pi_* \mathcal{O}_{\bar{X}})_x \cong H^1(E_x, \mathcal{O}_{E_x})$ for all $x \in \text{Sing}(X)$. See [1], Proposition 4.13 and its proof.

Hence if X has embedding dimension three, its singularities can only be rational double points, simple-elliptic or cusp singularities. See [4], Corollary 4.11.

(c) If X has only quotient singularities, then $\mathcal{O}_X \cong \underline{\Omega}_X^0$. See [1], Théorème (5.3).

(d) Suppose X is a complex variety, $p: \tilde{X} \to X$ its normalisation, $\mathscr{C} = \operatorname{Ann}_{\mathscr{O}_X}(p_*\mathcal{O}_X)$ the conductor ideal sheaf. Let $A = V(\mathscr{C})$ be the subscheme of X defined by \mathscr{C} and let $\tilde{A} = \pi^{-1}(A)$.

Let $\Delta = V(\mathscr{C})$ be the subscheme of X defined by \mathscr{C} and let $\tilde{\Delta} = p^{-1}(\Delta)$. Let $q = P | \tilde{\Delta}$.

THEOREM 3: With the above notations, suppose that $\mathcal{O}_{\bar{X}} \cong \underline{\Omega}_{\Lambda}^0$, $\mathcal{O}_{\Delta} \cong \underline{\Omega}_{\Lambda}^0$ and $\mathcal{O}_{\bar{\Delta}} \cong \underline{\Omega}_{\Lambda}^0$. Then

$$\mathcal{O}_X \cong \Omega^0_X.$$

PROOF: One has a commutative diagram

$$0 \to \mathcal{O}_{X} \xrightarrow{u} \mathcal{O}_{\Delta} \bigoplus p_{*}\mathcal{O}_{\bar{X}} \xrightarrow{v} q_{*}\mathcal{O}_{\bar{\Delta}} \to 0$$

$$\downarrow^{\lambda_{X}} \qquad \downarrow^{(\lambda_{\Delta}, \lambda_{\bar{X}})} \qquad \downarrow^{\lambda_{\bar{\Delta}}}$$

$$0 \to \underline{\Omega}_{X}^{0} \xrightarrow{u} \underline{\Omega}_{\Delta}^{0} \oplus p_{*}\underline{\Omega}_{X}^{0} \xrightarrow{v} q_{*}\underline{\Omega}_{\Delta}^{0} \to 0$$

where $u(f) = (f_{|\Delta}, p^*f)$ and $v(g, h) = q^*(g) - h_{|\overline{\Delta}}$.

Exactness of the top row is a general fact, while exactness of the bottom row follows from [1], Proposition (4.11) and the remark that p and q are finite morphisms. The assumptions of the theorem mean that $(\lambda_{\Delta}, \lambda_{\bar{X}})$ and $\lambda_{\bar{\Delta}}$ are quasi-isomorphisms. Hence λ_X is a quasi-isomorphism.

COROLLARY: If X is a general projection surface (see [4], Definition (4.16)) then $\mathcal{O}_X \cong \Omega^0_X$. For in that case, \tilde{X} is smooth and Δ and $\tilde{\Delta}$ are curves with only singularities of the type mentioned in (a).

REMARK: Application of Theorem 2 in the cases (a), (b) and (d) generalizes some of the theorems from [4] to the case of degenerations whose total space is not necessarily smooth.

J.H.M. Steenbrink

REFERENCES

- P. DU BOIS: Complexe de De Rham filtré d'une variété singulière. Preprint, Université de Nantes 1979.
- [2] P. DELIGNE: Théorie de Hodge II. Publ. Math. IHES 40 (1971) 5-58.
- [3] P. DELIGNE: Théorie de Hodge III. Publ. Math. IHES 44 (1975) 5-77.
- [4] I. DOLGACHEV: Cohomologically insignificant degenerations of algebraic varieties. Compositio Math. 42 (1981) 279-313.
- [5] W. SCHMID: Variations of Hodge structures: the singularities of the period mapping. Inventiones Math. 22 (1973) 211-330.
- [6] J. SHAH: Insignificant limit singularities and their mixed Hodge structure. Annals of Math. 109 (1979) 497-536.
- [7] J.H.M. STEENBRINK: Limits of Hodge structures. Inventiones Math. 31 (1976) 229–257.

(Oblatum 13-II-1980 & 27-III-1980)

Mathematisch Instituut Wassenaarseweg 80 2333 AL LEIDEN, The Netherlands