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Introduction

Let XI k be a proper smooth variety of dimension r over a perfect
field k characteristic p &#x3E; 0. We define the higher de Rham-Witt
complexes by

in particular W03A9x(0) is the ordinary de Rham-Witt complex. These
complexes were used in [6] and [9] to study the torsion in crystalline
cohomology.

In this paper we study the higher de Rham-Witt complexes in the
case where X is a supersingular K3 surface defined over an al-

gebraically closed field k of characteristic p &#x3E; 2. We take the term

supersingular to mean that Êrx = Ga, but do not assume that

rank NS(X) = 22 = b2.
It turns out that for sufficiently small n, the hypercohomology

H2(X, W03A9X(n)) is related to the cupproduct pairing on H2fl(X, Zp(l»,
in fact for n sufficiently small H2(X, W03A9x(n)) injects into the dual of
H2fl(X, Zp(1))~Zp W(k), thus the spaces involved in Ogus’
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classification of supersingular K3 crystals [11] can be defined in terms
of the higher de Rham-Witt complexes.
Ogus shows that H2fl(X, Zp(1)) splits as an orthogonal sum under the

cupproduct pairing

where the pairings ( , ) and ( , ) are perfect. Our main result is that
there is a natural isomorphism

where 03C30 is the Artin invariant of X, i.e., is determined by rank
To = 2cro. This isomorphism endows ker F03C30d with a natural pairing
namely ( , ) mod p on To0 k. Thanks to the results of [10] we have a
natural basis of ker pUod, we compute the matrices of the pairing ( , )
and of the frobenius f = idTo Q9 Frobk on T0~k in this basis, and give
a proof along the same lines as Ogus that H2fl(X,ZP(1)) has Hasse
invariant ep = - 1.

In Section 2 we give a couple of applications of this theory. We
consider the action of an endomorphism g : X ~ X on the global
2-forms H°(X, 03A92X). Such an endomorphism induces an endomor-
phism on ker pUod which is either zero or orthogonal with respect to
the pairing ( , ), this proves that the action of g on HO(X, 03A92X) is

either 0 or given by multiplication by a p03C30+ l’st root of unity. (More
precise results can be obtained in terms of the coordinates of the
corresponding point in the period space of supersingular K3 crystals.)
A corollary of this result is that any automorphism of X has finite
order on H 2 DR (Xlk).

It is conjectured that 03C30~ 10 (it follows from linear algebra that
03C30~ 11), this holds if rank NS(X) = b2, hence by Artin [1] if X is

elliptic. We consider the case where X has an involution 03B8 which
preserves the global 2-form (e.g. the Fermat surface X41 + X42 + 3 +
X44 = 0 p ~ 3 mod 4 or more generally a supersingular reduction of a
singular K3 surface over a numberfield [15] (p ~ 3 mod 4)), using the
theory in Section 1 combined with the Woods Hole fixed point
formula we show that X has 03C30 ~ 10.

0. Review of the slope spectral sequence of
a supersingular K3 surface

We state without proof the following result, which is Corollary 3.6
of [10].
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(0.1) THEOREM: Let Xlk be a supersingular K3 surface over an
algebraically closed field of characteristic p &#x3E; 0, then

(i) H0(X, f2’ ) = 0.
(ii) H2crys(X/ W) is torsion free.
(iii) The differential in the slope spectral sequence

is surjective.
(iv) H2(X, W03A91X) = k03C3[[x]] where the action of F is given by F(xi) =

Xi-1 for i &#x3E; 1 and F(1) = 0, V(xi) = 0 for all i.

(v) We have the following description of the El term of the slope
spectral sequence :

where d is given by

with 03C30 determined by 2uo = ordp (discr. H2fl(X, Zp)) with cupproduct).
(vi) F is a p-linear automorphism of H’(X, W03A91X).

1. The cohomology of W03A9·X(n)

In this section we compute the hypercohomology groups

H2(X, W03A9X(n)) f or X a supersingular K3 surface. It turns out that

they are torsion free for n :5 03C30, and that there are natural inclusions

Moreover H2(W03A9X(03C30)) is isomorphic to the dual of H1(W03A91x) which
gives the isomorphism

alluded to in the introduction.
In order to compute H2(W03A9x(n)) we need a duality theorem in-

volving the higher cycles and boundaries in the de Rham complex.
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We prove this result in the general case since it might be of use in
later studies of the multiplicative structure of the de Rham-Witt

complex.

(1.1) DEFINITION: Let Xlk be a scheme over a perfect field k of
characteristic p &#x3E; 0. Define inductively X(p") as the pull-back of X(pn-1)
along the frobenius of Spec k. It follows that for all n, m with n ~ m
we have a commutative diagram:

where the interior square is cartesian and Fn-m (the relative fro-
benius) is defined by the commutativity of the exterior diagram.
Assume from now on that X is smooth. Recall that the Cartier

operator is a p-’-linear surjective map

where Z1. The kernel of C is B103A9iX =
Im d : 03A9i-1X ~ 03A9iX, so C induces an isomorphism

We also have the inverse of the Cartier operator, which is a p-linear
map

(1.2) DEFINITION: We define inductively abelian sheaves Zn03A9iX and
Bn03A9iX by

and Bnfl 9 by requiring that

is an isomorphism.
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It is immédiate that thèse sheaves are the same as those defined by
Illusie in [6] 0(2.2.2) and [5] 2.3 so they are locally free OX(pn)
submodules of Fn*03A9iX. As Ox modules their structure is given by
f·03C9=fpn03C9,

(1.3) LEMMA: There are exact sequences o f Ox(pn) modules :

If n - 1 ~ m then there are exact sequences of Ox(pn) modules

PROOF: (i) and (ii) follow immediately from the definitions plus the
f act that F is finite and flat (X being smooth), (iii) and (iv) follow
f rom (i) and (ii) in an obvious manner.

(1.4) THEOREM: Let Xlk be a proper and smooth variety of dimen-
sion r. Assume n a m then for all i, j ~ r there is a perfect pairing of k
vectorspaces

PROOF: Recall first the f ollowing lemma due to Milne [8]. Let M, N
be locally free (jx modules with a perfect pairing

then the pairing of Ox(p) modules

is perfect.
We use induction to construct perfect pairings of Ox(Pn) modules
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Assume first m = 0.

n = 0: The pairing

given by the wedge product is perfect.
n = 1: (See also Milne [8]). Consider the following commutative

diagram

the diagram commutes by the following computation: Let E F,f2’x
and T E F*03A9 then

By Milne’s lemma the two lower pairings are perfect hence we have
induced a perfect pairing between the kernel and the cokernel (since d
is OX(P)-linear).

n = 2: By (i) and (ii) of (1.3) we have a diagram with exact rows
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The diagram commutes by the following computation:

B y the preceding case and by Milne’s lemma the two lower pairings are
perfect and since dC and C-’ d are OX(p2) linear we have induced a perfect
pairing

where ( , ) = C2().
Assume now that the pairing

given by Cn-1() is perfect, then the commutative diagram

shows that the induced pairing

is perfect.
For m ~ 0 we use the exact sequences (iii) and (iv) of (1.3) and get a

commutative diagram of Ox(Pn)-modules:
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it follows using induction that we have a perfect pairing of Ox(Pn) modules

Now use Grothendieck duality on the smooth proper variety X(P") to
deduce the statement of the theorem.

(1.5) DEFINITION: Let W03A9X(n) denote the complex

where the W(k)-module structure on WÙX is defined through a--",
the n’th power inverse frobenius map, such that all the differentials
in the complex becomes W(k)-linear.

Let now X/k denote a supersingular K3 surface over an algebraic-
ally closed field, let ordp (H2fl(X, Zp(1))) = 2ao.

(1.6) THEOREM: The W(k)-module H2(X, W03A9X(n)) is torsion free
for n s 0"0.

PROOF: Consider the exact sequence of (pro-) complexes
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we get an exact squence of hypercohomology groups

so it is enough to show that H~(W03A9x(n)/p) = 0 for n ~ 0"0.
We show first that W03A9x(n)/p is quasi-isomorphic to the complex

We follow the same method as Illusie [6] 13.15. Let m = n and denote

by Wm03A9X(n) the complex

we want to show that the natural projection

is a quasi-isomorphism for all m~ n.
Illusie shows [6] I 3.15 that there is an exact sequence
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where gr is the graded object associated to the filtration defined by

and p is defined in [6] I. 3.4.

We have grm W03A9iX = Vm03A9ix + dVm03A9i-1x ([6] 1 3.2) so we get a four
term exact sequence of complexes

so it is enough to show that the map between the two first complexes
is a quasi-isomorphism or equivalently that the complex

is acyclic.
Now look at the following commutative diagram
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the commutativity of the top square follows by the relation FdV = d.
It is clear that V" is bijective and since the left hand side complex

is acyclic ([6] I 3.13) the right hand side is as well and so

Wm03A9x(n)/P - Wm-103A9x(n)/p is a quasi-isomorphism.

This reduces the theorem to proving that Hl of the complex

vanishes.
Consider again an exact sequence of complexes

Since H1(Ox) = 0, H’ of the left hand complex maps onto H’ of the
middle complex and so it is enough to show that
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Using the isomorphism

one computes this hypercohomology to be H0(Z103A91x/Bn03A91X). By 1.4
H0(Z103A91X/Bn03A91X) is dual to H2(Zn03A91X/B1603A91X). In [10] (3.6) we have
shown (see 0.1) that dVn : H2(WOX) ~ H2(W03A91X) is surjective for

n :5 03C30; using the commutative diagram

it follows that

is surjective for n ~ 03C30.
By [6] 3.11.3 F" : Wn+103A91X~03A91X induces an isomorphism

Now look at

we conclude that H2(B103A91X)~H2(Zn03A91X) is surjective hence

H2(Zn03A9X1/B103A91X) = 0 for n ~ cro and the theorem is proved.
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(1.7) DEFINITION: Define maps of complexes

and

It is clear from the definition of the W(k)-module structure on Wtx
that V is linear and fi is p-linear.

(1.8) PROPOSITION: The maps

are injective for n + 1 ~ oo.

PROOF: By the definition of Wf2* x (n) we have an exact sequence

(we use H0(W03A92X) = 0) with ker Fnd ~H2 (WOx). This fits into a
commutative diagram
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Since V : ker F"d - ker Fn+1d is injective this shows the injectivity of
V. The injectivity of fi is shown similarly

(1.9) COROLLARY: For n + 1 :5 ao we have

PROOF: This follows from the commutative diagram

From now on we will suppress V and identify H2(W03A9x(n)) with its
image in H2( Wilx(n + 1)), so we have an ascending chain

and by (1.9) we have for n :5 03C30

Now we define a map

as follows:

Since H1(W03A91X)=H2fl(X, Zp  we have a nondegenerate
pairing on H1(W03A91x) induced by the cupproduct pairing on

H2fl(X,Zp(1)).
Let x ~ H2(W03A9X(n)) then px ~ H1(W03A91X) and hence we get an

element in H1(W03A91X)v by the assignment z~(px, z). By (1.9) we can
find yo, y,, ..., yn E H2crys(X/W) such that x =03A3ni=0 FiYi.

Let z ~H1(W03A91x) then

since the restriction of F to H1(W03A91X) is the automorphism F. Now
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write z = F’zi, zi E H1(W03A91X), we get

the last equality holds since F is orthogonal with respect to the

pairing on H’(Wf2’). We have

and so (px, z) = p 03A3ni=1 (yi, zi)H2crys, i.e., (Px, -) ~ PH1(W03A91)v; now

define

(1.10) PROPOSITION: ~n defines an injection

PROOF: This follows from (1.5) and from the fact that the pairing
on H1(W03A91x) is non-degenerate.

(1.11) LEMMA: ker F"d C H2(WOX) = k03C3 [[V]] has rank n + oo with
basis {1 V,..., Vo+n-il.

PROOF: Since Im F nd D Im d for all n ? 0 and since d is surjective
it follows that Fnd is surjective, so Im Fnd = Im Fn+1 d = H1(W03A92X).
Consider the commutative diagram
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it f ollows that rank F"+’ d - rank Fnd + 1, and since ker d has rank ao
with 11, V,..., V’O-’l as basis the lemma follows.

In the following we shall use the quadratic residue symbol, hence
we assume p ~ 2.

(1.12) THEOREM: Let ( To, p ~, ~) (9 (TI, (, )) be an orthogonal
splitting of H2(X, Zp)) with (, ) and ( , ) perfect on To and Tl resp.
(Such a splitting exists by Ogus [11] 3.13.3) then there is a canonical
isomorphism

PROOF: We have H2fl(X, Zp (1))v= so H1(W03A91x)v=
(1/p)T0~ W(k) ~ T1 ~ and so H1(W03A91X)v/H1(W03A91x) =
(1/p)T0 ~ W(k)/T0 ~ W(k) ~ To ~ k, hence there is a commutative

diagram

Since cPuo is injective the induced map

is injective and since both spaces have dimension 2ao it is an

isomorphism.
To Q9 k cornes equipped with a perfect pairing namely ~ , ~ mod p,

and a frobenius f = idTo ~ Frobk, the above isomorphism transports
these structures to ker Feod. On this space we have the natural basis
{1, V,..., V203C30-1}, we are going to compute the matrices of ( , ) and f
in this basis.

(1.13) PROPOSITION: There is a p-linear automorphism
:H2(W03A9x(03C30))~H2(W03A9X(03C30)) extending the automorphism F on
H1(W03A91x).

PROOF: Assume first that H2(Wilx(uo+ 1)) is torsion free. Then the
argument of (1.10) shows that
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is injective, and it follows from the commutative diagram below and
(1.12)

that ~03C30+1 is an isomorphism, hence V is surjective which is a

contradiction. Let T denote the torsion submodule of H2(W03A9X(03C30+1))
so T ~ 0; consider the commutative diagram

Since V is additive it is clear that T ~  H2(W03A9X(03C30)) = 0 so T injects
into H2(OX) = k hence a is an isomorphism, it follows that 03B2 is also

an isomorphism. Now we have

pH2(W03A9·X(03C30 + 1)) = pM = p VH2(Wilx(uo» = pH2(W03A9·x(03C30)).

Let x E H2(Wax(uo», then Êx E H2(Wilx(uo + 1)) hence there is a

y E H2(W03A9·x(03C30)) such that pÉx = py, this y is uniquely determined
since H2(W03A9·X(03C30)) is torsion free, now put Fx = y. Let z be an
element of H1(X03A91X), then pFz = pF,z = Fpz = Fpz = pFz so p (Fz -
Fz) = 0, i.e., Fz = Fz so F extends F, and the p-linearity follows
easily.
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To prove that F is an automorphism we will show that the diagram
below is commutative

The map H2(W03A9·X(03C30))~ To 0 k can be described as follows: Take
x E H2(W03A9·X(03C30)) then px E H1(W03A91X) and (1/P)(Px, -) E
H1(W03A91x)v= ((1/P)T0 ~ T1) ~ W(k), take (1/p)(px, -) mod H1(W03A91X)
in H1(W03A91)v/H1(W03A91) =(1/p)T0T0~k, then multiply by p to get
px E ToQ9 k.
The frobenius f on To (D k is the reduction mod p of the restriction

of F on H1(W03A91x) to To 0 W(k), so f(px) = F(px) = F(px) = pF(x)
which shows the commutativity of the diagram.

(1.14) PROPOSITION: Consider the image of the composite map

This is a maximal isotropic subspace with basis 1 Vo, ..., V203C30-1}.

PROOF: Let Je denote this image, then the diagram below shows
that Je is generated by 1 Vo, ..., V203C30-1}.

The f ollowing computation shows that Je is isotropic : Let x, y E

H2crys(X/W), then we have ~px,py~ = (1/p)(px,py) mod p =

(1/p)(px, py)H2crys mod p = p(x, y)H2crys mod p = 0. Since dim ker Fuod =
2uo, dim Je = Uo and the pairing (, ) is non-degenerate Je must be
maximal isotropic.

(1.15) PROPOSITION: Let i : ker F03C30-1d ~ ker F03C30d denote the in-

clusion then the following diagram is commutative
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PROOF: It suffices to show that

commutes. Let x E H2(W03A9·X(03C30-1)) then

since H2(Wilx(up» is torsion free it follows that x = Éx. (Here we
have used that FV = VF, which is evident from the definition.)

(1.16) COROLLARY: dim K ~ f (K) = 03C30-1 and 03A303C30-1i=0 fi(K) =
ker F03C30d.

PROOF: This is clear from (1.14) and (1.15).

(1.17) COROLLARY: The matrix of f in the basis {V203C30-1,
V203C30-2, ..., V, 1} is given by

PROOF: It follows from (1.15) that f(Vi) = Vi-1 for i ~ 1.

Since Je is maximal isotropic we must have (y2uo-l, V03C30-1~~ 0,
indeed (V203C30-n, V03C30-1~ = ~fn-1V203C30-1, fn-1V03C30+n-2~ = ~V203C30-1, vuo+n-2) = 0
n &#x3E; 1 so if (V2°°-’, V03C30-1) = 0 K + kV"0-’would be an isotropic subspace
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strictly containing Je. Dividing by a suitable element of k we can then
assume that we have a basis {x, f(x), f2(x),..., f203C30-1(x)} with

(x, f03C30(x)~ = 1. Put bi = (x, f03C30+1(x)~ i = 1, ..., 03C30- 1.

(1.18) PROPOSITION: The matrix of the pairing (, ) in the basis
{x, f(x),fi(x),...,f203C30-1(x)} is given by

PROOF: The i’th row is given by

Assume i ~ cro then fi-1(x) E 3if and

(1.19) LEMMA: The matrix of f in the basis

{x, f(x), f2(x),...,f203C30-1(x)} is given by

PROOF: It suffices to show that
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Write

we see from (1.18) that (f ’O(x), f "(x» = 0 for all n :5 2oo - 1 except
n = 0, so we get

since f is orthogonal we have

(1.20) THEOREM: Let d denote the discriminant of the pairing ( , )

on To, then the Legendre symbol (d) satisfies

The Hasse invariant of H2fl(X, Zp(1)) is equal to -1.

PROOF: Let ei, ..., e203C30 be an orthogonal basis of To/pTo then d ~
~e1, el) ... (e2uo, e203C30~ mod p.

In To ~ k we have

and fn(x)=03A3203C30i=1 Af"ei, so the coordinate transformation between the
bases {e1,..., e203C30} and {x, f(x),..., f203C30-1(x)} is given by the matrix

and so we have
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and taking determinants we get

Let F denote the matrix obtained by raising all the entries in ll to
the p’th power then 039BF is the matrix of the coordinate transformation
{e1,..., e203C30}~{f(x), f 2(x), ..., f203C30(x)}, so

~F=f·A and hence

det F = (det )P = det f · det ,

by (1.19) we get det f = -1. This shows that det  ~ Fp, hence (det A )-2 is

not a square in Fp

Let dl = discr.( Ti, ( , )) then we have the following formula for the
Hasse invariant ep:

where (p2Uod, d1) is the Hilbert symbol.
Since TI, ( , ) is perfect ep(T1) = 1, and also (p203C30d, dl) = 1 so

Now

2. Applications to endomorphisms of X

In this section we consider an endomorphism g : X - X. Such an
endomorphism induces an endomorphism of ker F03C30d which is either
zero or orthogonal with respect to the pairing ( , ), this puts rather
strict restrictions on the way g can act on H2(OX) and H0(03A92x).
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(2.1) THEOREM: Let g : X ~ X be an endomorphism then the

endomorphism g*:H2(Ox)~(~x) is either zero or multiplication by
a À E 03BCp03C30+1 (the p03C30+ l’st roots of unity in k).

PROOF: The endomorphism g induces an endomorphism of Brx =

Ga, hence an element g of End(a)=k03C3[[F]]. Let g =
03BB0 + 03BB1F + 03BB2F2 + ··· then the action on the covariant Dieudonné

module of Ga which is k03C3[[V]] is given by right multiplication by the
power series  = 03BB0 + 03BB1V + 03BB2V2 + ···. We have k03C3[[V]] = H2(WOX)
and since the de Rham-Witt complex is functorial g must stabilize
ker d. But ker d is finite dimensional with basis (1, V, ..., V03C30-1) so in
order to stabilize this subspace we must have 03BB1 = À2 = ... = 0 and so
the action of g on H2(WOX) is given by

Assume now that 03BB0 ~ 0, the isomorphism To 0 k = ker F"od is

functorial, and the endomorphism induced by g on T0 ~ k is neces-
sarily orthogonal with respect to the pairing, ( , ~. We have

~V203C30-1, V--’) 7é 0, and so we get

and so 03BB1/p203C30-10 03BB1/p03C30-10 = 1 which is the same as 03BBp003C30+1 = 1. Now the
exact sequence

shows that the action on H2(OX) is given by multiplication by Ào, by
Serre duality the action on H0(03A92X) is multiplication by Aj’ hence the
theorem.

(2.2) REMARK: We get even stricter restrictions on Ào by consider-

ing the coordinates of the point in the period space of super singular
K3 crystals, A03C30-1/03BCp03C30+1 [11]. Let the point corresponding to

H2crys(X/W) have coordinates (b,, ..., b,-,), i.e. in the notation of

(1.18) bi = ~x, f03C30+i(x)~. Assume for instance that b1 ~ 0 then we have
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which gives Ao. ÀguO+1 = 1, so 03BBp03C30+1 = 03BB-10. B y (2.1) we also have

03BBp03C300 = Ào. hence (À6uoy = 03BBp03C300 so Àguo E Fp and so also ko E Fp, it follows
that 03BB20 = 1.

EXAMPLE: Let Y be a singular K3 surface over C, i.e. the Neron-
Severi group of Y has maximum rank = 20. Shioda and Inose [15]
have shown that Y is defined over a number field K. Moreover Y can
be constructed as a certain double covering of a Kummer surface
X = Km(C x C) where C is the elliptic curve H2( Y, OY)/pr*H2(Y, Z).
Let e be a prime of k with Ne 3 mod 4 and assume that C has

good supersingular reduction at P. Let the subscript o denote reduc-
tion mod P; it follows from the results of Shioda and Inose on the C
function of Y, that Yo and Xo are supersingular K3 surfaces. Since Xo
is the Kummer surface associated to a product of supersingular
elliptic curves it has uo(Xo) = 1 and hence by Ogus’ Torelli theorem is
uniquely determined; in fact it is isomorphic to the Fermat hypersur-
face X40+X41+ X42+X43 = 1, but this surface has an automorphism of
order 4 which multiplies the global 2-form by i, (i2 = -1 ). Since Y is
constructed as a double covering of X it follows that Yo has an
automorphism with the properties above, in particùlar we must have

which implies that ao(Yo) is odd. If oo(Yo) = 1 then Yo itself is a

Kummer surface hence isomorphic to Xo, if 03C30(Y0) = 3 we can con-
sider the corresponding point in the period space (bh b2) E A2/03BCp3+1,
but by the remark f ollowing the proof of 2.1, we see that b 1= 0, and
so there is at most a 1-dimensional family of supersingular K3’s with
03C30 = 3’ which are réduction of a singular one.
Does this family exist? or do all singular K3 surfaces reduce to

Kummer surfaces?
It can be noted that for a given singular K3 surface Y there is only

a finite number of supersingular primes in K where the réduction can
be non-Kummer, indeed if one considers the lattice of transcendental
cycles Ty, and if P is such that p = N9J,( det T y, then

NP ~ det NS( Y) hence NS(Y) ~ Zp is unimodular. We have an

injective specialization map

1 Assuming the conjectural Torelli theorem of Ogus [11].
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which splits since NS(Y) ~Zp is unimodular, it follows that if rank
NS( Yo) = 22, then the p-adic valuation of the discriminant is 2 hence
03C30(Y0) = 1 so Yo is Kummer.

(2.3) COROLLARY: Let g : X ~ X be an automorphism then the

induced automorphism g* : H2DR(X/k)~ H2DR(X/k) has finite order.

PROOF: Consider the diagram

where E0,22 is the E2 term in the slope spectral séquence, it follows
that we have an exact sequence

We have H2fl(X,Zp(1))~k = H2fl(X, Zp)(1))/p~k and since

H2fl(X, ZP(1))/p is a finite group it follows that the automorphism
induced on H2fl(X, Zp(1))~k has finite order.
By (2.1) g* has finite order on E0,22 C ker F03C30d so the exact sequence

shows that there is a power n of g* such that (gn*- id)2 = 0 on
H2DR(X/k), it f ollows then that (gn* - id)P = 0 or gnp* = id.
As a final application of our theory we show how we in a special

case can conclude uo:5 10.

(2.4) THEOREM: Assume X has an involution 03B8 such that 8* = id on
H0(03A92X) then 03C30~10.

REMARK: It is a conséquence of Artin’s conjecture that uo:5 10 for
ail supersingular K3’s.

PROOF OF (2.4) : C onsider the exact sequence
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If 03C30 = 11, then T0~=H2fl(X, Zp(1)) ~k, and the condition (J*=id
implies that 0 acts trivially on H2( WOx) hence on To Q9 k and on E0,22.
The exact sequence above then shows that

and hence that the de Rham Lef shetz number

Since 0 has order 2, the fixed point scheme is smooth. Let x E X e,
and consider the action d8 of 0 on TX,x. The condition 0* = id on
H0(03A92X) implies that det d8 = 1. Assume now that Xe has a 1-dimen-
sional component passing through x ; this would give a vector v E TX,x
such that d03B8(03BD) = v, and since d03B8 can be diagonalized this would
imply d8 = id on TX,x which is a contradiction to the smoothness of
X e. It follows that X03B8 is discrete and hence finite.
The Lefshetz fixed point formula in de Rham cohomology then

gives

Let us compute the local factor det(1- d03B8). We can diagonalize d03B8, let

(a0 0b) be the matrix in diagonal form; then ab = det d03B8 = 1, and
a2 = b2 = 1 it follows that a = b = -1, so det(1- d03B8) = 4. Since 03B8* is

trivial on H0(03A92X) it is also trivial on H2(OX), so the Wood’s Hole
fixed point formula gives

hence #X03B8 ~ 8 mod p, so we get 8 ~ 24 mod p ~ p = 2 contradiction.
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