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Introduction

Let X/k be a proper smooth variety of dimension r over a perfect
field k characteristic p >0. We define the higher de Rham-Witt
complexes by

Frd d

Wx(n)=0 WOy wak e Wy —0

in particular W2x(0) is the ordinary de Rham-Witt complex. These
complexes were used in [6] and [9] to study the torsion in crystalline
cohomology.

In this paper we study the higher de Rham-Witt complexes in the
case where X is a supersingular K3 surface defined over an al-
gebraically closed field k of characteristic p >2. We take the term
supersingular to mean that Bry =G, but do not assume that
rank NS(X)=22=b,.

It turns out that for sufficiently small n, the hypercohomology
HX(X, WQx(n)) is related to the cupproduct pairing on H%(X, Z,(1)),
in fact for n sufficiently small H(X, WQx(n)) injects into the dual of
H¥X,Z,(1)) ®z, W(k), thus the spaces involved in Ogus’
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246 N.O. Nygaard 2]

classification of supersingular K3 crystals [11] can be defined in terms
of the higher de Rham-Witt complexes.

Ogus shows that H3(X, Z,(1)) splits as an orthogonal sum under the
cupproduct pairing

(H%(X’ Zp(l))’( ’ ))=(T0’p< ’ >)®(Tl,( ’ ))

where the pairings {( , ) and ( , ) are perfect. Our main result is that
there is a natural isomorphism

To® k =ker Food C HX(X, WOx)

where oy is the Artin invariant of X, i.e., is determined by rank
Ty, = 20y. This isomorphism endows ker F°d with a natural pairing
namely ( , Ymod p on Ty@ k. Thanks to the results of [10] we have a
natural basis of ker Fd, we compute the matrices of the pairing { , )
and of the frobenius f = idy, @ Frob, on T, ®Q k in this basis, and give
a proof along the same lines as Ogus that H3(X, Z,(1)) has Hasse
invariant e, = —1.

In Section 2 we give a couple of applications of this theory. We
consider the action of an endomorphism g:X — X on the global
2-forms HYX, 2%). Such an endomorphism induces an endomor-
phism on ker F“d which is either zero or orthogonal with respect to
the pairing { , ), this proves that the action of g on H%X, 2%) is
either 0 or given by multiplication by a p®+ 1’st root of unity. (More
precise results can be obtained in terms of the coordinates of the
corresponding point in the period space of supersingular K3 crystals.)
A corollary of this result is that any automorphism of X has finite
order on H%x(X/k).

It is conjectured that o< 10 (it follows from linear algebra that
oo =< 11), this holds if rank NS(X) = b,, hence by Artin [1] if X is
elliptic. We consider the case where X has an involution  which
preserves the global 2-form (e.g. the Fermat surface X{+ X3+ X4+
X4=0 p=3mod4 or more generally a supersingular reduction of a
singular K3 surface over a numberfield [15] (p =3 mod 4)), using the
theory in Section 1 combined with the Woods Hole fixed point
formula we show that X has o, =<10.

0. Review of the slope spectral sequence of
a supersingular K3 surface

We state without proof the following result, which is Corollary 3.6
of [10].
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(0.1) THEOREM: Let X/k be a supersingular K3 surface over an
algebraically closed field of characteristic p >0, then
i) HY(X, 2% =0.
(i) H2,(X/W) is torsion free.
(ili) The differential in the slope spectral sequence

d: HY(X, W(0y)) — H¥X, WQ2%)

is surjective.

(iv) H¥(X, W2Y) = k,[[x]] where the action of F is given by F(x') =
xVfori>1and F(1)=0, V(x')=0 for all i.

(v) We have the following description of the E, term of the slope
spectral sequence:

k,[[V1] d _ 5 k,[[x1] 0 — Wi(k)
0 W(k)®H},(X, Z,(1)= H\(X, Wl 0
W(k) 0 0

0 i<0’o
i—ay iZ oo

where d is given by d(V¥) = {x

with oy determined by 20, = ord,(discr. H #X, Z,)) with cupproduct).
(vi) Fis a p-linear automorphism of H'(X, WQ).

1. The cohomology of WQx(n)

In this section we compute the hypercohomology groups
HX(X, WQx(n)) for X a supersingular K3 surface. It turns out that
they are torsion free for n < o, and that there are natural inclusions

HZy (XIW) — H(WQ (1)) — - - - —> H(WQk(av)).

Moreover H( W (o)) is isomorphic to the dual of H'(WQ2}) which
gives the isomorphism

Ty @ k =ker Fod
alluded to in the introduction.

In order to compute H}(W®2x(n)) we need a duality theorem in-
volving the higher cycles and boundaries in the de Rham complex.
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We prove this result in the general case since it might be of use in
later studies of the multiplicative structure of the de Rham-Witt
complex.

(1.1) DeFINITION: Let X/k be a scheme over a perfect field k of
characteristic p > 0. Define inductively X®” as the pull-back of X®"™
along the frobenius of Spec k. It follows that for all n, m with n =m
we have a commutative diagram:

Xem Frym

Frm xeom _ Jxem

|

abs

Spec k —=— Speck

where the interior square is cartesian and F"™ (the relative fro-
benius) is defined by the commutativity of the exterior diagram.

Assume from now on that X is smooth. Recall that the Cartier
operator is a p~'-linear surjective map

where Z Q% =kerd:0N%—-0%'. The kernel of C is B 2=
Imd: 2% 0%, so C induces an isomorphism

C:Z,0%/B, 2% —> 0.

We also have the inverse of the Cartier operator, which is a p-linear
map

C: 0% —> Q%/B,02%.

(1.2) DeFINITION: We define inductively abelian sheaves Z,0% and
B, by

Z0% =kerdC"':Z, Q% —> Q%!

and B,Q2% by requiring that
C™':B,.1%% —> B.0%/B 2%

is an isomorphism.
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It is immediate that these sheaves are the same as those defined by
Illusie in [6] 0(2.2.2) and [5] 2.3 so they are locally free Oxon,
submodules of F%Q%. As 0Oy modules their structure is given by

fro=fo

(1.3) LEMMA: There are exact sequences of Oxwe™ modules:
dCn-1

(i) 0_—)Zn03(__') P‘*Zn—l‘{2 -_— F*ﬂx(:’" b.

(i) F*-Q (p""‘)—‘—> F(Fy l-Qx/Bn lﬂx)—“) F"-Q' B, -Qx—’ 0.
If n — 1= m then there are exact sequences of Oxom modules
(i) 0—> Z, i/ F%™ B, —> F o(Zo_1 Q| F3 ™" B i) ——»
F*OQ&“").
(V) Foldichns,———2s Fo(F3 """ Z,0%/B, 2y) —>
FtmZ, 0%/ B2 —> 0.
PRrROOF: (i) and (ii) follow immediately from the definitions plus the

fact that F is finite and flat (X being smooth), (iii) and (iv) follow
from (i) and (i) in an obvious manner.

(1.4) THEOREM: Let X/k be a proper and smooth variety of dimen-
sion r. Assume n = m then for all i, j < r there is a perfect pairing of k

vectorspaces

H/I(X®", Z,0%|Fy™B,02%) x H(X®", Fy ™" Z,0% | B.0%")
— H"(X®", 2%om).

ProOOF: Recall first the following lemma due to Milne [8]. Let M, N
be locally free Ox modules with a perfect pairing

MxN-s 0%
then the pairing of Ox» modules
FMxF.N—Y% B 0% —" O%e

is perfect.
We use induction to construct perfect pairings of Oxem modules
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ZQ4|FL B, 0 x FL"Z, 0% B,Q% — 0%om.

Assume first m = 0.
n = 0: The pairing
Qi x Q% —s Q%
given by the wedge product is perfect.

n=1: (See also Milne [8]). Consider the following commutative
diagram

—1)i+! C
*la d F o2k — Q%o

FO%' x F0%

the diagram commutes by the following computation: Let w € F, 0%
and 7 € F 2% then

C(wrdr)—(—1D)*'C(dw A 7)
=CwArdr—(~1)*'dw A7) = C(d(w A 7)) = 0.

By Milne’s lemma the two lower pairings are perfect hence we have
induced a perfect pairing between the kernel and the cokernel (since d
is Oxw-linear).

n =2: By (i) and (ii) of (1.3) we have a diagram with exact rows

0 0

|

Z,00% x FiLO%[BO%'
F.Z )y x FF 0% /B02%) - F Q%o —s Qod

_pyitl c 4
(-1) dcl I F.n

F o0 x F Q8™
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The diagram commutes by the following computation:

weF*Z]Q‘x, TGF* rx_(i)+l)

C(F (o, C'd7))—- C((—1)*'dCw A 7))
=C(C(w A C'dr)) — (- 1)*'C(dCw A T)
= C(Cw A dr— (—1)*(dCw A 7))
=C(d(Cw A 1)) =0.

By the preceding case and by Milne’s lemma the two lower pairings are
perfect and since dC and C'd are Oxo? linear we have induced a perfect
pairing

Z,0% X F 05 BT 2 0od

where ( , )= C*A).
Assume now that the pairing

Z,.. Q% X Fy'Q%B,_1 Q%' — Q%o
given by C"'(A) is perfect, then the commutative diagram

0

o

0
1 |

ZYx X  FLO%' B0
Lo

FiZ, Qi X Fo(FY 05 B, 05) —~ F L Q%orh —— Qo

1*tac! l ~(n-1)
e Fut)

F 056" X F Q5%

shows that the induced pairing

cn(4)

Z 0% X Fr0% B 0% —— Q%om

is perfect.
For m# 0 we use the exact sequences (iii) and (iv) of (1.3) and get a
commutative diagram of Oxe¢"-modules:
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0 0
Z,0%|Fy B, 0% XFy™Z,.0%B0%"

l

FAZ, Q%I Fy " Ba2k) X F(F3 ' ™ Z,0% | B, 1 Q%)

/

- l)i+lan—l c—(n-1y c r
F . Q%0 —> Q%em

F(A)

) T X F o058
it follows using induction that we have a perfect pairing of Oxe» modules
Z0%|Fi™B, 0% x Fy™Z,0% |B,Q% — Q%om.

Now use Grothendieck duality on the smooth proper variety X®" to
deduce the statement of the theorem.

(1.5) DeFINITION: Let WQx(n) denote the complex

0 — WO —5 wol, -2 . -4 woy —s o,

where the W(k)-module structure on WOy is defined through o7 ",
the n’th power inverse frobenius map, such that all the differentials
in the complex becomes W (k)-linear.

Let now X/k denote a supersingular K3 surface over an algebraic-
ally closed field, let ord,(H#(X, Z,(1))) = 20.

(1.6) THEOREM: The W(k)-module HX(X, WQx(n)) is torsion free
for n = o,.

Proor: Consider the exact sequence of (pro-) complexes
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0 0 0

L

0—> WOy —— WOy, —> WOy/p —> 0

lF"" 1“,, lm

14

0—> WQk— WQk— WQk/p

bl

0—> WY — WYk — W0k/p

Lo

0 0 0

we get an exact squence of hypercohomology groups
H'(WQx(n)/p) —> H(WQx(n)) —— H(W2x(n))

so it is enough to show that H'(WQx(n)/p) =0 for n < oy.
We show first that W x(n)/p is quasi-isomorphic to the complex

d

0— W,..0/p — 04— 0% —> 0.

We follow the same method as Illusie [6] I 3.15. Let m = n and denote
by W,.{2x(n) the complex

0—> Wplx —5 W,_ 2y ——> W, 2% —0
we want to show that the natural projection
Wm+1n}((n)/l7 — WmnX(n)/p

is a quasi-isomorphism for all m = n.
Illusie shows [6] I 3.15 that there is an exact sequence
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0—> gr" ' Wi — gr"WQk —s W, . Q%/p

— W, 2%/p—0
where gr is the graded object associated to the filtration defined by
Fil" W = ker(WQy —> W, 0%)

and p is defined in [6] 1. 3.4.
We have gr"W = V"% +dv™Qi' ([6] 1 3.2) so we get a four
term exact sequence of complexes

0— V"o, —2 5 vme

—_— W,..HOX/P — W,O0xp—0

0— VP04 AV s VIR 1+ AV —— Wiy f2klp —— W Qklp — 0

0— V™ I0% 4+ dVr 0y s Vrh + AV — Wi f/p — Waou2k/p —> 0

so it is enough to show that the map between the two first complexes
is a quasi-isomorphism or equivalently that the complex

00— V"IOX/I_) V"'_’O’X
s VIO 4+ AV p (VI + AV
s V0l + dV Tk Ip (VI + AV — 0

is acyclic.
Now look at the following commutative diagram
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0 0

l l

V™r0ylp Vo0, AN V"'OngV"'"ox

l" 1F..

V2l + AV O (VI 4 dVRTIN0y) = VT + AV p (VR + dVTM0x)

! !

VR + dVRL PV + AV = VIT0k + AV p (VR0 + dV )

l l

0 0

the commutativity of the top square follows by the relation FdV = d.
It is clear that V" is bijective and since the left hand side complex
is acyclic ([6] I 3.13) the right hand side is as well and so

W.2x(n)lp —> W,_12%(n)/p is a quasi-isomorphism.

This reduces the theorem to proving that H' of the complex

0—> W, ,0x/p —> Q% —> 0% —> 0

vanishes.
Consider again an exact sequence of complexes

0 0 0
0— Wnox/F'_V—’ W,.10xlp —> Ox—— 0
lF"‘ld Fnd
0— Y = 0k — 00— 0
l p
J
0—0N} == N} — 00— 0
0" 0 0

Since H'(0x) =0, H' of the left hand complex maps onto H' of the
middle complex and so it is enough to show that

Fn-1d d

Hl(Wn0x/F .Q}( .Q%()=0 n = ogy.
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Using the isomorphism

W,04F —25 B,0Y (6] 1 3.122)
one computes this hypercohomology to be H%Z,Q2%/B,02%). By 1.4
H%Z,Q%/B,2%) is dual to H¥Z,1%/B,2%). In [10] (3.6) we have

shown (see 0.1) that dV": H(WOx)—> H(WQY) is surjective for
n < oy; using the commutative diagram

HA(WO,) =L H(WQY)

[

HAOx) =5 HYW,.,0Y%)

|

0 0
it follows that
dv": HYO0x) —> H W,,,Q%)

is surjective for n < 0.
By [6] 3.11.3 F": W, 2% —» 2} induces an isomorphism

F*: W, Q% VW,Qkx — Z,0%.

Now look at

2 4 2 1
H%(0x) —» HYB\%)

ave 1 l

HYW,..0%) —» H(Z,0Y)

1

HXZ,0%|B:02%)

we conclude that H*B,2%)->HXZ0N%) is surjective hence
H%Z,02%/B1022%) =0 for n = oy and the theorem is proved.



[13] Higher de Rham-Witt complexes of supersingular K3 surfaces 257
(1.7) DerFINITION: Define maps of complexes

V:WQx(n)—> WQx(n+1) and
F: W0Qy(n)— WQx(n+1) by

Frd d

0 WOx waQk wO% 0

bl

Fn+l4

0 WO, wnl - waoz 0

and
0 WO, ——L s Wl — WOy —s 0
I =
0 wo, 4 Wl —4 woi — 0.

It is clear from the definition of the W(k)-module structure on W0y
that V is linear and F is p-linear.

(1.8) PROPOSITION: The maps

V :HA(WQx(n)) — H(WQx(n + 1))
F :HA(WQx(n)) — H(WQx(n + 1))

are injective for n + 1 < o,.
ProOOF: By the definition of W2x(n) we have an exact sequence
0—> H'(WQ2Y) — HA(WQ2%(n))— ker F"d — 0

(we use HY(W0%) =0) with ker F*"d C H¥(WOy). This fits into a
commutative diagram

0— H'(WQL) —> H(WQ2x(n)) —>ker F"d —> 0

| I v

0—> H'(WQY)— H(WQ%(n + 1) —> ker F"*'d —> 0.
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Since V:ker F"d —ker F"*'d is injective this shows the injectivity of
V. The injectivity of F is shown similarly

(1.9) CorOLLARY: For n + 1< oy, we have
HX (WQx(n + 1)) = VH(WQx(n)) + FH(WQx(n)).
ProoF: This follows from the commutative diagram
0— H(WQx(n) —> HAWQx(n+1)—> H¥Ox)—> 0
; I |
0—> H(WQ(n — 1) —> H(WQx(n)) —> H¥(Ox)—> 0

From now on we will suppress V and identify HX W x(n)) with its
image in H(WQx(n + 1)), so we have an ascending chain

Hy (X]W) CH(WQX() C - - - CH(WQx(00)

and by (1.9) we have for n < oy
H(WQx(n) = >, F'H2(XIW).

Now we define a map
¢n :H(WQx(n)) — Hom(H'(WQY), W(k)) = H'(WQk)¥

as follows:

Since H'(WQ%) = H¥(X, Z,(1)) @ W(k) we have a nondegenerate
pairing on H'(WQ%) induced by the cupproduct pairing on
HH(X, Z,(1)).

Let x EHYWQx(n)) then px € H' (W) and hence we get an
element in H'(WQY%)" by the assignment z - (px, z). By (1.9) we can
find yo, y1, - . ., Yo € H%,(X/W) such that x =37, F'y,

Let z € H(WNY) then

(px,2) = Zﬁ (pF'y, 2) = Zo (F'py, 2) = Zﬁ (F'py;, z)

since the restriction of F to H'(WQY) is the automorphism F. Now
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write z = F'z;, z; € H(WA)), we get

n n

(px,z) =2 (F'py,z) = (F'py, F'z)) = 20 Py 2),

i=0 =0

the last equality holds since F is orthogonal with respect to the
pairing on H'(WQ). We have

(pyi, z)) = (pys, Zi)ng,ys =p(y, Z.')hrg,ys

and so (px,z)=p 2L (y» 2)n2,,. ie., (px,—)EpH'(WQ2)Y; now
define

bal(x) = % (ox, —) € H'(WQ".

(1.10) PROPOSITION: ¢, defines an injection
HYAWQx(n))—> H'(WQY)Y for n <oy

Proor: This follows from (1.5) and from the fact that the pairing
on H'(W)) is non-degenerate.

(1.11) LEMMA: ker F"d C HAW0Oyx) = k,[[V]] has rank n + o, with
basis {1, V, ..., Voorn 1},

ProoF: Since Im F"d DImd for all n =0 and since d is surjective
it follows that F"d is surjective, so Im F"d =Im F"*'d = H(WQ%).
Consider the commutative diagram

0 0

l l

00— ker F"d — HY(W0Oy)—> Im F"d — 0

l b

0— ker F*"*'d — H)(WOyx)—> Im F"*''d — 0

1 1

Coker —> H¥Oyx)=k
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it follows that rank F"*'d = rank F"d + 1, and since ker d has rank o,
with {1, V, ..., V°1} as basis the lemma follows.

In the following we shall use the quadratic residue symbol, hence
we assume p # 2.

(1.12) TueoreM: Let (Ty,p{ , DB (T, (, )) be an orthogonal
splitting of H¥(X, Z,)) with ( , ) and ( , ) perfect on T, and T, resp.
(Such a splitting exists by Ogus [11] 3.13.3) then there is a canonical
isomorphism

ker Food = To @ k.

ProoF: We have H#(X,Z,(1))" =(1/p)T,P T, so H(WQL)' =
/)T, QWk)B T, QW(k) and so H'(W2)'/H(WRk)=
A/p)To@ W) Ty W(k)=TyXk, hence there is a commutative
diagram

0— HY(WNY) — H(WQ2x(0y)) — ker Food — 0

| [ l

0— H(WQY)— H(WNYY — T,Qk— 0.
Since ¢,, is injective the induced map
ker Fod — To® k

is injective and since both spaces have dimension 20, it is an
isomorphism.

T,® k comes equipped with a perfect pairing namely ( , ) mod p,
and a frobenius f =idy, @ Frob,, the above isomorphism transports
these structures to ker Fod. On this space we have the natural basis
{1,V,..., V¥ 1} we are going to compute the matrices of { , ) and f
in this basis.

(1.13) ProrosITION: There is a p-linear automorphism
F:H(WQx(00)) > H(WQx(0y)) extending the automorphism F on
H'(WQY).

PROOF: Assume first that H(W{ (o, + 1)) is torsion free. Then the
argument of (1.10) shows that

Gopr1: H(WQRk(00 + 1)) —> H' (W)Y
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is injective, and it follows from the commutative diagram below and

(1.12)

0— H(WQi(00) —— Hi(wi(oo+ 1) —> H(Ox) —> 0

1#,,0 l¢ao+l

HI(WQI)V JR— HI(WQI)V

that @, is an isomorphism, hence V is surjective which is a
contradiction. Let T denote the torsion submodule of H(WQ x(oo +1))
so T # 0; consider the commutative diagram

- — O

|

0— H(Wi(ov) — H(WQi(ay+ 1) —> H¥(Ox) — 0

N
l

Since V is additive it is clear that T N VHA(WQx(ao)) =0 so T injects
into H%0x) = k hence a is an isomorphism, it follows that B8 is also
an isomorphism. Now we have

pPHY(WQx(ay+ 1)) = pM = pVH (WQx(00)) = pH(Wx(0v).

Let x € H(WQx(oy)), then Fx EH(WQx(oo+ 1)) hence there is a
y € H(WQx(0,)) such that pFx = py, this y is uniquely determined
since HY(WQx(oy)) is torsion free, now put Fx=y. Let z be an
element of H'(X2Y%), then pFz = pFz = Fpz = Fpz = pFz so p(Fz—
Fz)=0, i.e., Fz=Fz so F extends F, and the p-linearity follows
easily.
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To prove that F is an automorphism we will show that the diagram
below is commutative

00— HY (WY — H(WQ(0oy) — ker F°*d —> 0

Foor

0— HY(WN) — H(WQ%(0y)) — ker Food — (.

The map HA(WQx(oy))— To&® k can be described as follows: Take
x EH(WQx(oy)) then px€H'(WQY) and (1/p)px,—)E
H'(WQ%)" =((1/p)Ty® T)) ® W(k), take (1/p)(px, —) mod H'(WQ%)
in HI(WQY/H'(W2HY=(1/p)ToT,X k, then multiply by p to get
px € TyQ k.

The frobenius f on T,& k is the reduction mod p of the restriction
of F on H'(WQ}) to T,® W(k), so f(px) = F(px) = F(px) = pF(x)
which shows the commutativity of the diagram.

(1.14) ProrosITION: Consider the image of the composite map
ngys(X/ W) — Hz( wQ x(O’o)) —> ker Fod.

This is a maximal isotropic subspace with basis {V®, ..., V20 1},

PrOOF: Let &% denote this image, then the diagram below shows
that ¥ is generated by {V<,..., V20 '},

0— H'(WQ') — H (X/W)—>kerd — 0

L

00— HY(WQNH — HA(WQx(0y)) — ker Food — (.

The following computation shows that ¥ is isotropic: Let x,y €
H%,(XIW), then we have (px,py)=(l/p)px,py) mod p=
(1/p)(px, pY)uz,, mod p = p(x, y)uz,, mod p = 0. Since dim ker F*d =
20y, dim ¥ = oy and the pairing ( , ) is non-degenerate % must be
maximal isotropic.

(1.15) ProposITION: Let i:ker F'd >ker F*°d denote the in-
clusion then the following diagram is commutative
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ker Fod™' —> ker Fod

\ /

ker Fod
Proor: It suffices to show that

HA(WQx (a0 — 1)) — H(Wix(0v))

N

H(WQ2(a0))

commutes. Let x € H( W x(o, — 1)) then

pFVx = pFVx = pVFx = VpFx = pFx
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since H(W2x(a,)) is torsion free it follows that FVx = Fx. (Here we

have used that FV = VF, which is evident from the definition.)

(1.16) COROLLARY: dAImX Nf(H)=0o—1 and 3% fi(H)=

ker Fod.

Proor: This is clear from (1.14) and (1.15).

(1.17) CoroLLARY: The matrix of f in the basis {V?*!,

Vo2 ., V,1} is given by

Proor: It follows from (1.15) that f(V))= Vi~ for i = 1.

Since ¥ is maximal isotropic we must have (V2% Vo),
indeed (VZo»o—n’ Voo—l> = (fn—leao—l, fn—lvao+n-2> = (Vzuo—l’ Vao+n—2) =0
n > 1soif (V2! Vo =0 %+ kV® ' would be an isotropic subspace
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strictly containing %. Dividing by a suitable element of k we can then
assume that we have a basis {x, f(x),f4x),..., f* (x)} with
(x,fox))=1.Put b; ={x, fo*'(x)) i=1,...,00— 1.

(1.18) ProposITION: The matrix of the pairing ( , ) in the basis
{x, f(x), fi(x), ..., f*!(x)} is given by

0o (]
1 by by....by
1 by .... bf,o_z
0 1

O O . "'1...b'1’"°~2
1 O O

et 1

bar boya...by 1

Prookr: The i’th row is given by

('), %), (F71 ), fXD), o o (FF7 (), F207 ' (x))).
Assume i =< o, then f"'(x) E¥ and
), x)y == (1 x), f'x)) =0
0 n<i-—1

I, form(x)) = (x, f T (x)) ={1 n=i-1

bn—i+l n=l1

(1.19) LEMMA: The matrix of f in the basis
{x, f(x), f3(x),. .., f*7'(x)} is given by

00 01
10 0 a,
01 Do

’ 0 :
0....... 1 ay,

Proor: It suffices to show that
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Fx) =1+ x+ ayf (x) + asf2(x) + - - - + @y, f207'(x).
Write
%) = aix + arf (x) + asf(x) + - - - + @y f*7'(x)

we see from (1.18) that (f(x), f"(x))=0 for all n <20,—1 except
n =0, so we get

(f(x), f27(x)) = alf(x), x) = a,
since f is orthogonal we have
(fo(x), f2(x)) = (x, fox)) =1 s0 a;= 1.

(1.20) THEOREM: Let d denote the discriminant of the pairing ( , )
on Ty, then the Legendre symbol (%) satisfies

-G
p p/-
The Hasse invariant of H#(X, Z,(1)) is equal to —1.
PrROOF: Let ¢, ..., e,, be an orthogonal basis of To/pT, then d =

(eh el) L <e2cro, e200> mOd p.
In T,@ k we have

and f"(x) =3%q A?"¢, so the coordinate transformation between the
bases {ej, .. ., &,} and {x, f(x), ..., f>*7'(x)} is given by the matrix

AAp LA
A=1A AR Py
Ay ABs AR

and so we have

A {(elbeo." (ezao?ezao)} A=
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and taking determinants we get

0

o -
—_

(det A)*d = det =(=1)"

—O
(=]

1
b

o (5)=(“5)G)"

Let AT denote the matrix obtained by raising all the entries in A to
the p’th power then AF is the matrix of the coordinate transformation

{els .oy eZUO}—){f(x)a fZ(x), ceey f20'0(x)}’ SO
AF =f-A and hence
det AT =(det A’ =det f - det A,

by (1.19) we get det f = —1. This shows thatdet A ZF ,, hence (det A)%is

not a square in F,, so <(—d-§—tA—)) = —1 and (ﬂ) = .~(_ l) ]
P 4 p

Let d, =discr.(T;,( , )) then we have the following formula for the
Hasse invariant e,:

ep(HJZV(X, Zp(l)) = ep(Tl,( ’ ))ep(TO, P( ’ 1»(1’200‘1’ dl)

where (p?*~d, d)) is the Hilbert symbol.
Since Ty, ( , ) is perfect e,(T;) = 1, and also (p**d, d;) =1 so

ep(H)Z‘I(X’ Zp(l)) = ep(TO’ P( ) ))‘
Now

&(Top( , ) =(p,(~1)*d) = (—71)(;1)) _ (—?1)(_ (:p]- )=t

2. Applications to endomorphisms of X

In this section we consider an endomorphism g: X — X. Such an
endomorphism induces an endomorphism of ker F°d which is either
zero or orthogonal with respect to the pairing ( , ), this puts rather
strict restrictions on the way g can act on H%0x) and H%(2%).
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(2.1) THEOREM: Let g:X—>X be an endomorphism then the
endomorphism g..: H(Ox)— H*Ox) is either zero or multiplication by
a A € pyo0 (the p2+ 1°st roots of unity in k).

ProoF: The endomorphism g induces an endomorphism of Bfy =
G., hence an element & of End(G,) =k,[[F]l. Let g=
Ao+ A F+2,F?+--- then the action on the covariant Dieudonné
module of G, which is k,[[V]] is given by right multiplication by the
power series § = Ao+ A, V+ A, V2+. ... We have k,[[V]]= H(WOx)
and since the de Rham-Witt complex is functorial g must stabilize
ker d. But ker d is finite dimensional with basis (1, V, ..., V) so in
order to stabilize this subspace we must have A, = A, =---=0 and so
the action of g on HAWOyx) is given by

bo+ by V+by V2t e+ b,V 4+ - - k—> boho + bAJ"V
+b2A(‘)/”2V2+ s b ANV

Assume now that A,#0, the isomorphism T,& k =ker Fod is
functorial, and the endomorphism induced by g on Ty k is neces-
sarily orthogonal with respect to the pairing, (, ). We have
(V20! Yooy 3£ (), and so we get

<V20'0~1’ Va'o—l) — ()‘(l)lph’o" V2|10—l, A(l)/p"o" Voo—l)
= /\‘l)lpz"o*‘ /\(l)/p"o“< Vz""", V)

and so AJPP0AP =1 which is the same as A} =1. Now the
exact sequence

0 —> HAWOy) —— HX(W0y) —> H*(0yx)—> 0

shows that the action on H%(0y) is given by multiplication by A,, by
Serre duality the action on H%£2%) is multiplication by A;! hence the
theorem.

(2.2) REMARK: We get even stricter restrictions on Ay by consider-
ing the coordinates of the point in the period space of super singular
K3 crystals, A 'u,0. [11]. Let the point corresponding to
H2,(X/W) have coordinates (by,..., b,_1), i.e. in the notation of
(1.18) b; = {x, f*(x)). Assume for instance that b, # 0 then we have

bl — <x’ f""“(x)) — (A(l)/pho-‘x, )t(l,/pa"_zf"o”(x))

2041 ag—2 . 20— on—"
=A(l)/p (i} )\(l)/p p,, ie. /\(l)/p (] lA(l)/p 02 =1
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which gives Aq- A" =1, so A" =A;'. By (2.1) we also have
A8 = Ay  hence (A8 = A°s0 A§™ EF, and so also A, EF,, it follows
that A2=1.

ExaMPLE: Let Y be a singular K3 surface over C, i.e. the Neron-
Severi group of Y has maximum rank =20. Shioda and Inose [15]
have shown that Y is defined over a number field K. Moreover Y can
be constructed as a certain double covering of a Kummer surface
X =Km(C x C) where C is the elliptic curve HX(Y, Oy)/pr.HXY, Z).

Let 2 be a prime of k with N? =3 mod 4 and assume that C has
good supersingular reduction at ?. Let the subscript o denote reduc-
tion mod 2; it follows from the results of Shioda and Inose on the ¢
function of Y, that Y, and X, are supersingular K3 surfaces. Since X,
is the Kummer surface associated to a product of supersingular
elliptic curves it has oy(X;) = 1 and hence by Ogus’ Torelli theorem is
uniquely determined; in fact it is isomorphic to the Fermat hypersur-
face x§+x{+x%+x{=1, but this surface has an automorphism of
order 4 which multiplies the global 2-form by i, (= —1). Since Y is
constructed as a double covering of X it follows that Y, has an
automorphism with the properties above, in particilar we must have

p™"=—1mod4

which implies that oy(Yy) is odd. If oo(Y,) =1 then Y, itself is a
Kummer surface hence isomorphic to X,, if oo(Y,) =3 we can con-
sider the corresponding point in the period space (b, by) € A u,3,,,
but by the remark following the proof of 2.1, we see that b, =0, and
so there is at most a 1-dimensional family of supersingular K3’s with
oo = 3! which are reduction of a singular one.

Does this family exist? or do all singular K3 surfaces reduce to
Kummer surfaces?

It can be noted that for a given singular K3 surface Y there is only
a finite number of supersingular primes in K where the reduction can
be non-Kummer, indeed if one considers the lattice of transcendental
cycles Ty, and if % is such that p=N®P/t det Ty, then
NPt det NS(Y) hence NS(Y)Q® Z, is unimodular. We have an
injective specialization map

NS(Y)®Z,—> NS(Y)Q®Z,

! Assuming the conjectural Torelli theorem of Ogus [11].
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which splits since NS(Y)® Z, is unimodular, it follows that if rank
NS(Y,) = 22, then the p-adic valuation of the discriminant is 2 hence
oo(Yy) =1 so Y, is Kummer.

(2.3) COROLLARY: Let g:X —» X be an automorphism then the
induced automorphism gx: Hbr(X/k) - HLr(X/k) has finite order.

Proor: Consider the diagram

0 — E¥

I

0— Hi(X, Z,() @ W(k)—> Hy(XIW)—> E3*—0

r Pl

0—> H¥(X, Z,(1)) Q W(k) —> HZ,(X|W)—> E3*— 0

l L

HY(X, Z,1)®k — Hir(Xlk) —> E¥*—>0

where E3? is the E, term in the slope spectral sequence, it follows
that we have an exact sequence

0— EY — HH(X,Z,(1)) @ k —> Hbr(X/k) —> E*— 0.

We have H}X,Z,(1)Q@k=H#X,Z,)1)p@®k and since
H%X,Z,(1))/p is a finite group it follows that the automorphism
induced on H%(X, Z,(1)) ® k has finite order.

By (2.1) g, has finite order on E? C ker F%d so the exact sequence
shows that there is a power n of g, such that (g% —id)*=0 on
H}R(X/k), it follows then that (g% —id)” =0 or g%¥ = id.

As a final application of our theory we show how we in a special
case can conclude oy =< 10.

(2.4) THEOREM: Assume X has an involution 6 such that 04 = id on
H°Q%) then o< 10.

REMARK: It is a consequence of Artin’s conjecture that o, < 10 for
all supersingular K3’s.

ProoOF OF (2.4): Consider the exact sequence
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0— EY"— H¥X,Z,(1)) ® k —> Hpr(X/k)—> E}*— 0.

If 0p=11, then T,Q k = H},(X, Z,(1)) ® k, and the condition 6, = id
implies that @ acts trivially on H*WOyx) hence on T,® k and on E%2.
The exact sequence above then shows that

Tr 0,: Hpr(X/k) = 22,

and hence that the de Rham Lefshetz number
4
L8, X)= 2 (=1) Tr H r(X1k) =24 mod p.
1=0

Since 0 has order 2, the fixed point scheme is smooth. Let x € X,
and consider the action d6 of 6 on Tx,. The condition 6, =id on
H°0%) implies that det d§ = 1. Assume now that X’ has a 1-dimen-
sional component passing through x; this would give a vector v € Ty,
such that d6(v)=v, and since d@ can be diagonalized this would
imply d@ = id on Tx, which is a contradiction to the smoothness of
X°. It follows that X? is discrete and hence finite.

The Lefshetz fixed point formula in de Rham cohomology then
gives

#X° =24 mod p.

Let us compute the local factor det(1 — df). We can diagonalize d#, let

(g 2) be the matrix in diagonal form; then ab =detdd =1, and

a*=b*>=1 it follows that a = b = —1, so det(1 - df) =4. Since 0, is
trivial on H%%) it is also trivial on H*Oyx), so the Wood’s Hole
fixed point formula gives

_ #X°
2= g;,det(l—do) 4 modp

hence #X°? =8 mod p, so we get 8 =24 mod p = p = 2 contradiction.
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