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Introduction

In our paper [3] a series of important unitary representations of the
group Gx of all smooth functions on Riemannian manifold X taking
values in a compact semisimple Lie group G has been constructed
and considered. Those representations can be obtained in the follow-
ing way.

Let 03A9(X; g) be the space of smooth 1-forms 03C9(x) on X taking values
in the Lie algebra g of the group G, that is w(x) is a linear operator from
the tangent space TxX into g. Let us introduce the norm in n(X; 9) by the
formula

where 03C9*(x):g ~ TxX is the operator conjugate to w (x) (it is defined
since TxX and g have natural structures of Euclidean spaces), dx is the
Riemannian measure on X.

Define the unitary representation V(g) of the group Gx in the space
!1(X; g) by

Define the Maurer-Cartan cocycle f3g on G’ taking values in 03A9(X; g)
by

0010-437X/81/02217-27$00.20/0
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The representation U of the group Gx is EXP/3 V in the sense of

[1], [2]. It means that U acts in the Fock space EXP H = Cf) S"HC
where H=03A9(X;g) is the completion of 03A9(X;g), HC is the com-

plexification of H, snHc is the symmetrized tensor product of n
copies of Hc. The action of the operator U(g) on the vectors

EXP 03C9 =   (8) w, w E f2 (X; g) (which form a total set in

EXP H) is defined by

(A more convenient realization of this représentation using the Gaus-
sian measure is given in §5).
The representation U of the group G’ draws a great interest. After

the paper [1], it has been almost simultaneously discovered by several
authors: [17], [7], [3], [15]. There are a lot of variants and

modifications of this construction in [3]: constructing of represen-
tations by a vector field, a fibre-bundle and so on.

In this paper we continue to consider these representations and
correct a mistake which took place in the proof of its irreducibility in
[3] (the statement of lemma 4 §2 of [3] is false). This correction
requires a new development of the treatment of measures on an
infinite-dimensional space of functions on X. It is interesting that
some properties of the measures depend on the dimension of X. Let
us mention one of the results (lemma 10): if dim X ~ 4, IL is the

Gaussian measure on the space of distributions on X with Fourier
transform exp(- 111 2  VI, V2 are two singular measures concen-
trated on the set of generalized functions of the form 03A3 03BBi03B4xi, then the
measures 03BC * vi and M * P2 are singular. A proof of this result is based
on the following property of the Sobolev space W’(X) (lemma 3): if
X is a compact Riemannian manifold and dim X ~ 4 then there exists
a Hilbert-Schmidt extension of W2(X) not containing the generalized
functions of the form 1 À¡8Xi.
The main result of this work is the proof of the irreducibility of the

representations U(g) for dim X ~ 4. Thus not only the question of
irreducibility for dim X = 1 is open, as it has been stated in [3], but
also that for the cases dim. X = 2 and dim X = 3. Irreducibility for
dim X - 5, G = SU(2), X being an open set in R’ has been proved
before in [7]. Besides, for dim X ~ 4 we give a new proof of the
non-equivalence of the representations corresponding to different
Riemannian metrics on X.
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In the main, the plane of the proof of the irreducibility is a

repetition of that of [3]. The analysis of the spectral function of the
Laplace-Beltrami operator is the crucial point (§1), dimension 4 being
critical (see footnote to §6). This paper can be read independently of
[3], though its contents doesn’t include that of [3].
Let us give briefly the plan of the paper. In § 1, we prove the main

lemmas about Hilbert-Schmidt extensions of the space W2(X),
dim X ~ 4. There are auxiliary facts about representations of abelian
groups in §2. In §3, we propose an example of non-singularity of the
Gaussian measure with its convolution and a criterion of singularity
of measures. §4 contains the main results about convolutions of the
Gaussian measures generated by the Laplace-Beltrami operators on
X whose measures are concentrated on the delta-functions. In §5, the

spectrum of the restriction of the representation of Gx to a com-
mutative subgroup is considered. At last in §6, we prove the theorems
of irreducibility and non-equivalence of the representations of Gx for
dim X ~ 4 and consider the difficulties appearing in dimensions 1, 2, 3.
In an appendix the formulas for the representations of the Lie algebra
of Gx are given.
The authors are grateful to R. Hoegh-Krohn for pointing out the

flaw in lemma 4 of §2 in [3] and M. Solomyak for a useful con-
sultation.

§1. The extensions of the space  12(X)

Let X be a compact Riemannian manifold with a boundary ~X ~~,
X = XB~X, dx a Riemannian measure on X, 0394 the Laplace-Beltrami
operator. We consider the real Sobolev space W2(X) (i.e. the com-
pletion of the space of compactly supported functions on X with
respect to the norm ~f~ = |fX 0394f · fdx| l2).

Let {Uk}~k=1 be the orthonormal basis in W2(X) of the eigenfunctions
of the Dirichlet problem for the Laplace-Beltrami operator à, ordered
accordingly non-decrease of the eigenvalues.

LEMMA 1: If dim X ~ 4 then there exists c = {ck} E 12, Ck &#x3E; 0 such

that

everywhere on X.
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PROOF: Let us take Then Let

m = dim X, 03BBk be the kth eigenvalue of à. We will prove that the

following estimate is true in X :

with C &#x3E; 0 and p (x) &#x3E; 0 on X. Since ~m (03BB) = In In 03BB for m = 4 and

çm(A ) &#x3E; À 1/4-~ for m &#x3E; 4, this estimate implies the lemma.
Denote by vk(x) the eigenfunctions of the Laplace-Beltrami opera-

tor, normalized in L2(X, dx), then Uk(X) = vk(x). Since Àk - C1k2/m we.VTk
have k + 1~ C203BBkm/2. Therefore

Let us express the right-hand sum in terms of the spectral function
E(x, x ; 03BB) of à. Since E(x, je ; A) = 03A303BBk~03BB 03BD2k(x) we have

Now we use the classical asymptotic formula of Carleman for the
spectral function E(x, x ; À) [14]:

We get

and therefore



221

COROLLARY. If dim X ~ 4 then

PROOF: By the Cauchy inequality

and the statement follows from

REMARK: It can be proved that the series 1 u4k(X) diverges as a
k

power one for dim X &#x3E; 4 and as a logarithmic one for dim X = 4.
Now we prove a statement generalizing lemma 1.

LEMMA 2: Let n E Z+ and x1, ..., xn be mutually disjoint points in

X. Then for any 03BB1, ..., 03BBn E R, E 03BB2i ~ 0 we have

PROOF: Owing to (1) it is sufficient to prove that

on any compact subset of the complement of the diagonal in X x X.
Repeating the same reasonings as in the proof of lemma 1 we get

Let us use the following estimate for the spectral function which is
true on any compact subset of X x XBdiag:

(see [12]). It is clear that (3) and (4) imply (2).
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Let C~() the space of all compactly supported C°°-functions on X
and F(X)= [COO(X)]’ the space of Schwartz’s distributions. Every
nonzero element f E 12(X) defines the nonzero functional on C~()
by the formula:

Then we can imbed 12(X) in F(X).

LEMMA 3: Let X be a compact Riemannian manifold, dim X ~ 4.
There exists a Hilbert-Schmidt extension il of 12(X), fI ~ F(X)
which doesn’t contain the generalized functions of the form 1 03BBi03B4xi, xi
being mutually disjoint points in X and 03A3 03BB 2i ~ 0.

PROOF: Let us consider the (generalized) decomposition of the
space of distributions on X with respect to the system {uk}~k=1, i.e. the
mapping

Its natural domain of definition in F(X) contains any Hilbert-Schmidt
extension of 12(X). Indeed, the image of T contains any space being
a Hilbert-Schmidt extension of l2.
T maps the space W2(X) into 12 , a delta-function 03B4x into the

sequence {uk(x)}~k=1 and any linear combination 03A3i 03BBi03B4xi into the

sequence fli 03BBiuk(xi)}~k=1. Let us take ck from lemma 2 and consider
the extension H’ of the space 12 with respect to the operator 0393 : 0393ek =
ckek. It is a Hilbert-Schmidt extension and by lemma 2 the space
H’ C R~ doesn’t contain the sequence Ili 03BBiuk(xi)}~k=1, x; being mutually
disjoint points in X and li 03BB2i ~ 0. The space fl = T-’H’ is the required
Hilbert-Schmidt extension of W2(X).

REMARK: As a matter of fact the statement of lemma 3 is true

for any Riemann manifolds X, dim X ~ 4. This result can be got from
lemma 3 by partitioning X into compact manifold. However we need
not obtain the result in this paper.
Now we make clear the différence between the cases dim X = 4

and dim X &#x3E; 4. For dim X &#x3E; 4 the space H from lemma 3 can be
described explicitly. Namely, it is known from the Sobolev space
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theory [11] that if and only if l ~ m2 then W2(X) as subset of F(X)2

doesn’t contain delta-functions 8x and their linear combinations. On

the other hand, if and only if l&#x3E;1+m4 the implication W2(X) C
~2(X) is a Hilbert-Schmidt extension. Consequently if m2 ~ 1 &#x3E; 1 + m
then W2(X) is a space required in lemma 3. This inequality can be

solved for m ~ 5 1 = m
This reasoning shows that for m = 4 H can not be described in

terms of W2(X) (and any "power" terms, but only "logarithmic"
terms). It is clear that a choice of an extension (ck = 1 ~k+1 In(k+1)
suitable for m = 4 suits for m &#x3E; 4 as well.

§2. Disjointness of spectral measures

Let X be a Borel space and {03BC03B1} be a measurable family of
measures on X where a runs through a space A with a measure v.

(Measurabitity of {03BC03B1} means that the mapping (a, Y)~03BC03B1(Y), where
a E A, Y E ~,~ is the algebra of the measurable sets in X, is

measurable on A x U.)

DEFINITION: The family {03BC03B1} is called v-singular mod 0 if for almost
all (with respect to v x v) pairs (a’, a ") the measures and 03BC03B1" are
singular. The family {03BC03B1} is called v-disjoint (or disjoint if it is clear

what measure v is considered) if for any measurable subsets AI and
A2 in A of positive v-measure, such that v(Ai n A2) = 0, the measures

fA, 03BC03B1dv(03B1) and fA2 2li,,dv(a) are singular.

REMARK: As easy examples show, generally speaking singularity of
{03BC03B1} doesn’t imply disjointness.

Let G be an abelian topological group possessing a sufficient set
of continuous characters ~ : G ~ S1. We assume that for any con-
tinuous unitary representation U of G in a complex Hilbert space Y
there exists an isomorphism T of W onto a direct integral of Hilbert
spaces,



224

with g a Borel measure on Ô (Ô is the space of the measurable

characters), which transfers U(g), g E G into the operators

This assumption is true of course for any locally compact group
and for some others. In particular it is true for the group 03B1X of §5.’
The rest of §2 relates to the groups with the assumption being true.
The measure ¡.L on Ô is defined by U uniquely up to equivalence

and is called the spectral measure of U. The realization of the

representation of G in the space J 6 Xxd03BC(x) is called the spectral
decomposition of the initial representation U.
We give here two statements about the spectral measures.

(1) Two unitary representations of G are disjoint (that is they
contain no equivalent subrepresentations) if and only if their spectral
measures are singular.

(2) The spectral measures of the direct sum and the tensor product
of two representations of G are equivalent to correspondingly the
sum and the convolution of their spectral measures.

DEFINITION: A measurable family of unitary representations Ua of
G where a runs through (A, v) is called disjoint if the family of the
spectral measures 03BC03B1 of Ua is disjoint (with respect to the given Borel
measure v on A).

In other words the set of representations Ua is called disjoint if for
any subsets AI, A2 of A with positive v-measure and 03BD (A1 nA2)=0,
the representations ~A1 Uadv(a) and ~A2 Uadv(a) are disjoint.

Let us assume that a representation U of G is decomposed into a
direct integral of representations

It means that U is equivalent to the representation in a direct integral
of Hilbert spaces

’ It is false for example for the multiplicative group of classes of mod 0 measurable
mappings Si -+ Si.
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given by

Ua being a representation of G in Ha.
The next lemma is a simple measure theoretic variant of Schur’s

lemma.

LEMMA 4: If a family of representations of G is disjoint then the
commutant of U (that is the ring of operators in H commuting with
U(g)) consists of

where Ba is a measurable operator function taking values in the

commutant of Ua.

PROOF: Let an operator B commute with the operators of the

representation. Then f or any A1 ~ A with v (A1) &#x3E; 0 the space

~A1 Hadv(a) is invariant with respect to B (owing to disjointness with
its direct complement). Consequently B is decomposed into a direct
integral.

COROLLARY: Under the assumption of the lemma the W*-algebra
generated by the operators U(g) contains the operators of multi-
plication by every bounded v-measurable function a(03B1): f(03B1)~
a(a)f(a).2

Indeed, every such operator commutes with the operators B i.e. it

belongs to the bicommutant of U which by von-Neumann’s theorem
is the weak closure of the algebra generated by operators U(g).

LEMMA 5: Let a representation U of G be decomposed in a tensor

product U = U’o U" of representations U’ and U" with the cor-

responding spectral measures IL’ and IL". If the family of measures

{03BC’x}, 03BC’x = Hc’(’ - X) is p,"-disjoint then the weakly closed operator

2 ln [3] this statement (§2 lemma 5) contained the condition of singularity (instead of
disjointness) of the Ua. Notice that without the assumption of singularity of the Ua the
statement is false.
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algebra generated by the operators U(g), g E G contains all operators
E 0 U"(g) (and therefore all operators U’(g) 0 E).

PROOF: Let U" =  U (x ) be the spectral decomposition of the
representation U". Then

Since the spectral measure of U’ @ U"x is 03BC’x = IL’(. - X) it follows that
by the condition of the lemma the family of representations U’ ~ U"
is disjoint. It follows from corollary of lemma 4 that the W*-algebra
generated by U (g) contains the operators of multiplication by func-
tions ag(X) = X, g), i.e. the operators EQ U"(g).
We emphasize that lemma 5 is true for any multiplicities of the

spectra of U’ and U".

§3. A condition of singularity of the Gaussian measure
together with its convolution

Let 1£ be the standard Gaussian measure in R~, i.e. the Gaussian
measure with zero mean and Fourier transform

The following proposition is widely known. The measure ji and its
translation 03BCy = 03BC(·- y) are equivalent (that is mutually absolute
continuous) if and only if y E l2. It is also well known that if two
Gaussian measures are not equivalent, then they are singular (see for
example [13]).

Let now v be a Borel measure in R~. Let us consider the con-

volution IL * v that is the measure which is defined on cylindrical sets
A by

It is clear that singularity of ji and li * v implies that v(12) = 0. Taking
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in mind the statement given above one could assume that the opposite
implication is true as well, that is v(12) = 0 implies singularity of 1£ and
g * v. (It is just that what was affirmed in lemma 4 of §2 in [3]. The
mistake was the unjustified passage to the limit in the expression for
the density.) However this is wrong. A counterexample can be given
even when v is a Gaussian measure.

EXAMPLE: Let v be a Gaussian measure with zero mean whose

correlation operator T is Hilbert-Schmidt but not nuclear. The con-

volution IL * v is a Gaussian measure as well the correlation operator
C = E + r (E is the identity operator). Owing to Feldman’s theorem
[10] the measures li and 03BC, * v are equivalent. On the other hand,
since r is not nuclear, V(/2) = 0 by the Minlos-Sazonov theorem (see
[10]).
A criterion of singularity of the standard Gaussian measure g

together with its convolution can be gotten from the following lemma
generalizing Ismagilow’s lemma [7].

LEMMA 6: Let r be a strictly positive Hilbert-Schmidt operator in
(2, H C Roo be the completion of 12 with respect to the norm Ilyllr =
(ry, y~1/2. Then there exists a subset A C lRoc such that 03BC(A) = 1 and
IL (A - z) = 0 for any zé fi.

PROOF: Let us introduce the expression

where Tn = Pnrpn, Pn is the projection onto the space spanned by the
first n eigenvectors of T (about Wick regularisation - the sign : : -

see for example [9]). It is known (see [9]) that if T is a Hilbert-

Schmidt operator then CPr(X) is defined and finite almost everywhere
with respect to IL. (Notice that if Sp r = 00, the sequences (Tnx, x~ and
Sp Tn don’t converge.) Let us put

According to what has been said above, 03BC(A) = 1. We prove that
IL (A - z) = 0 for any z~ fl.
For that purpose we use the following simple fact about the

standard Gaussian measure 03BC in Roc (see for example [6]). The series
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03A3~n=1 dnyn either converges almost everywhere with respect to 03BC (if
d E l2) or has neither a finite nor infinite sum almost everywhere (if
d~ l2). Thus 03BC{y: }03A3~n=1 dnyn = m) = 0 for any d E R’.

Since 1£ doesn’t change by orthogonal transformations, the operator
T in lemma can be assumed to be diagonal: Ten = Cnen, Cn &#x3E; 0, where
en = (o, ..., 0, 1, 0, ...), the unit is on the n th place. According to the
remark above

for any z ~R~. Let z~ . Then since lim~0393nz, z~ = (Fz, z~ = ~, the
following implication is true:

{x : lim(2(Tnx, z) + (Tnz, z)) is finite} C {x : lim(Tnx, z) = ~}.
n n

Consequently

1£ lx : lim(2(Tnx, z) + (Fnz, z)) is finite} = 0.
n

Since 03BC{x:lim(~0393nx,x~-Sp0393n) is finite} = 1 it f ollows that
n

glx: Or(x + z) is finite} = g lx : lim((Tnx, x) - Sp Tn + 2~0393nx, z) +
n

(Tnz, z)) is finite} = 0 i.e. 03BC(A - z) = 0.

COROLLARY 1: With the notations of lemma 6, if v is a Borel

measure on R~ such that 03BD() = 0 then 1£ and IL * v are singular.

Indeed (IL * v)(A) = fRBH IL (A - z)dv(z) = 0 because, by lemma 6,
03BC (A - z) = 0 if z~ fi. Since 03BC (A) = 1 the measures IL * v and 03BC are
singular.
A convenient criterion for the singularity of the measures is given

by the next corollary.

COROLLARY 2: Let 1£ be the standard Gaussian measure in Roc. If
there exists an element c = {ck} ~ l2, Ck &#x3E; 0 such that v{x :
EZ=1 CkX2k  ~} = 0 then IL and IL * v are singular.

Indeed one can apply corollary 1 to the case when Ten = cnen,
n = 1, 2,....
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§4. Convolutions with a Gaussian measure in the space
of distributions on X

Let X be a Riemannian manifold with a boundary aX (aX may be
empty), X = X, ax, IL be the Gaussian measure in the space F(X)
of distributions on X associated with the Laplace-Beltrami operator,
i.e. the measure with Fourier transform exp(-12~ ~12). We introduce
for convenience the following notations:

LEMMA 7: If X is a compact Riemannian manifold, dim X ~ 4 then
there exists a subset A C F(X) such that IL (A) = 1 and IL (A - ep) = 0
for any ep E 03A6R, ep ~ 0.

The statement is a straight consequence of lemmas 3 and 6.

COROLLARY: If X is a compact Riemannian manifold, dim X ? 4,
and v is a measure on the space F(X) such that v(03A6R B{0}) = 1 then
the measures IL and IL * v are singular.

Now we consider a Riemannian manifold X. Let Y ~ X be an open
subset with compact closure . Let us consider the functions with

supports in Y and restrict to them distributions from F(X). We get
the projection 7T: F(X)~ F(Y) and 7TlLx = ILY where 1£x, ILY are the
Gaussian measures associated with the corresponding Laplace-
Beltrami operators on X and Y.

LEMMA 8: Let Y C X be the same as above, dim X - 4. Then there
exists a subset A C F(X) such that 03BCX(A) = 1, 03BCY(03C0A-03C0~) = 0 for
any ep Ei 45 provided 7Tep ~ 0.

The statement follows from lemma 7.

COROLLARY: Let X be a Riemannian manifold, dim X ~ 4, {Yn}~n=1
be a countable base of open sets in X with compact closure, 7Tn be the
projection F(X )~ F(Y). There exists a subset A C F(X) such that
gx(A) = 1 and 03BCYn(03C0nA - 03C0n~) = 0 for any n and ep e 0 provided
03C0n~~ 0.
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Let us put for any n An = 03C0n-1(03C0nA) and introduce for any ~ e 0 the
set

where t/1 E CP, supp.p C supp ’P and 03C0n03C8~ 0 (similar sets were con-
sidered in [7]).

LEMMA 9: Let A be a set as in the corollary of lemma 8 (dim X ~
4). Then ~1, ~2 EE 0 and cp 1 ~ ç2 imply (A ept + ’PI) fl (A ep2 +~2) = cp.

PROOF: Let us assume on the contrary that there exist ~1 ~ ~2 such
that (A ept + CPt) n (A ep2 + cp2) ~ 0, i.e. there exist ai E A epi, i = 1, 2, such
that a + cp = a2 + Ç02. Since ~1 ~ ~2 there exists a point x 1 belonging to
the support of çi 1 with a coefficient À and to that of ~2 with a

coefficient À’ =;é À. Let for definiteness 03BB ~ 0, 03BB’ can be equal to 0. Let
Yn be a basis of neighbourhood of x 1 and let Yn contain no other
points of the supports of ~1 and Ç02. Then from the equality 03C0n(a1 +
cp 1) = 03C0n(a2 + ~2) it follows that 1Tna1 = 03C0na2 + k5xI’ where k 0 0. But
this is impossible since on the one hand 1Tna1 E 1TnA B( 7TnA + k8xt) and
on the other 03C0na2 + k03B4x1 ~ 7TnA + k03B4x1.

LEMMA 10: Let X be a Riemannian manifold, dim X ~ 4, 03BC be the

Gaussian measure in the space of distributions on X with Fourier
transform exp(-2II ~12), Pl and V2 be singular measures on F(X),
VI( l/J) = v2(03A6) = 1. Then the measures 03BC* Pl and g * v2 are singular. In
particular if 03BD1({0}) = 0 then the measures IL * VI and IL are singular.

PROOF: We take A in the same way as above and put B° =
A ep + ~ (~ E 0). The mapping cp H Bep is measurable as a mapping of
e into the family R(F(X)) of the Borel subsets of f(X) (both spaces
are provided with the natural Borel structure). Therefore if Q C B is a
Borel set then BQ = ~ ~~Q Bep is measurable with respect to every Borel
measure. Let QI n Q2 = 0 and Vl(Ql) = V2(Q2) = 1. By lemma 9 B Q1 n
BQ2 = U  (Bpl fl Bep2) = ~. On the other hand
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because 03BC (A03C8) = li (A) = 1. By analogy (03BC * V2)(B22) = 1 and the

lemma is proved.
Using the disjointness of a measure family (see §2) one can

re-formulate the statement of lemma 10 in the following way.

LEMMA 10’: Let X and 03BC be the same as in lemma 10 and let v be a

measure in the space of distributions on X such that v(O) = 1’. Then

the family of measures 03BC~ = 03BC(· - cp) is v-disjoint.

REMARK: All lemmas of this section will remain true if the set Z in

the definition of 0 is substituted by any countable subset of R.

LEMMA 11: Let two Riemannian structures Tl,’r2 be given on a

compact manifold X, dim X ~ 4, and ILl, IL2 be Gaussian measures
generated by these structures in the space of distributions F(X). Then
there exists a subset A C F(X) which satisfies one of the following
conditions :

(i) IL2(A) = 1 and 03BC1(A - ~) = 0 for any cp E OR 101,
(ii) 03BC1(A) = 1 and 03BC2(A - cp) = 0 for any cp E OR {0}.

PROOF: The Riemannian structure ri generates an inner product in
the function space on X :

a; being the Laplace-Beltrami operator on the Riemannian manifold
(X, ri), i = 1, 2. It is clear that these inner products are equivalent, i.e.

(f, g)2 = (Bf, 9)1 where B is a positive bounded invertible operator.
Let, as above, 12(X) be a completion of the space of compactly
supported functions on X, {uk}~k=1 be the orthonormal basis in W2(X)
of the eigenfunctions of the Dirichlet problem for 03941. Let us consider
the mapping (5) from the space of distributions on X into R~. It maps
W’(X) into 12, functions ~ = 03A3i03BBi03B4x1 into sequences Ili 03BBiuk(xi)}~k=1,
the measures 03BC1, 03BC2 correspondingly into the standard Gaussian

measure li and the Gaussian measure IL2 with the correlation opera-
tor B = bij Il.

Let us consider the following sets in R~:
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where ck =1 ~k+1 ln(k+1) . Since r = IICk8ikil is a Hilbert-Schmidt
operator with respect to the inner products (,)i and (,)2, the expres-
sions 03A3k Ck(X2k -1) and 03A3k ck(x2k - bkk) give almost everywhere (cor-
respondingly with respect to IL  and 03BC’2) finite quadratic functionals
with zéro mean. Theref ore 03BC’i(A’i) = 1, i = 1, 2.
We assume now that Lk Ck(1-bkk) ~-~ and show that it implies

03BC’i(A’2 - a ) = 0 f or any a = {ak}, ak = Li 03BBiuk(xi). Indeed

Since 03A3k cka2k = 00 by lemma 2 and since 03A3k ck(1- bkk) ~ -~, the series
03A3k ck (1- bkk + a2k) diverges. On the other hand 03A3k ck (x2k -1)  ~ al-

most everywhere with respect to 03BC’1 i and since 03A3k c2ka2k  ~ it follows
that 03A3k ckakxk  ~ almost everywhere with respect to 03BC’1. Con-

sequently IL i(A2 - a) = 0.
Let A2 be the inverse image of A2 in F(X). Then 03BC2(A2) = 1 and the

statement proved above implies that 03BC1(A2 - ~) = 0 for any ~=

03A3i03BBi03B4i (~~0).
If 03A3k ck(1 - bkk)= -00 then similar reasonings prove that the inverse

image A1 of A’1 satisfies 03BC2(A1 - ~) = 0 f or any ~ = 03A3i 03BBi03B4xi (~~ 0).

COROLLARY 1: Under the conditions of lemma 11, if v is a measure
on F(X) concentrated on 03A6RB{0} then either 03BC103BC2*03BD or

03BC2 03BC1 * v.

COROLLARY 2: Under the same conditions, if 03BC103BC2 and v is a
measure on F(X) concentrated on 03A6R and satisf ying v({0}) &#x3E; 0 then

IL * v and 1L2 * v are not equivalent.

Indeed, by the corollary 1 and the singularity of the measures 03BC1, 1L2
either 03BC1~03BC2 * v or 03BC2~03BC1 * v. On the other hand v({0}) &#x3E; 0 implies
that ILl 03BC1 * v, 1L2  1L2 * v. Consequently ILl * 03BD~03BC2 * v.

REMARK: Notice that convolutions of two singular Gaussian
measures 03BC1, 1L2 with a measure v can turn out equivalent.



233

EXAMPLE: Let li, be the standard Gaussian measure on R~, 1L2 and
v be the Gaussian measures with correlation functionals In ( 1-
n -1/2)X2n and Ln nx2. Then IL 11 IL2 and at the same time IL 1 * 03BD ~ 1L2 * v.

§5. On the spectrum of a representation of the abelian
group ax

We consider the group Gx of smooth mappings of a Riemannian
manifold X into a compact semisimple Lie group G. Let U be the
unitary representation of Gx being defined in the Introduction. We
will use here another model of this representation (see [3]).

Let 03A9(X; g) be the pre-Hilbert space of g-values 1-forms on X with
the unitary representation V of G x acting there and j8 : Gx~ 03A9(X; g)
be the Maurer-Cartan cocycle (see Introduction). Let furtherF be
the conjugate space to 03A9(X; g) and 03BC be the Gaussian measure on F
with Fourier transform X (03C9) = exp(. U acts in the Hilbert

space L203BC(F) by the following formula

(see [3] about equivalence of the representations).
Let now a C g be a Cartan subalgebra of the Lie algebra g of G, ax

be the abelian group of compactly supported C~-mappings X ~a. nX
is said in §2 to satisfy the condition formulated there and therefore
for any unitary representation of ax the spectral measure is defined.
Let us define the unitary representation of ax in L203BC(F) by the

formula

Here we give a summary of properties of W and its spectral
measure (see [3] §4 lemmas 1-4).

(1) Let m denote the orthogonal complement in g to a, Fa, 3Fm be the
subspaces of, correspondingly, a-valued and m-valued generalized
1-forms on X, 03BC,,1, IL. be the standard Gaussian measures on 3Ca and

Fm. Then

where W,,, Wm are the representations in the corresponding spaces
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L203BCa(Fa) and L203BCm(Fm) which are defined by

Thus the spectral measure of W is equal to the convolution of the
spectral measures of Wa and Wm.

where Vm is the representation in the space f2 (X; m)c given by

snVm (n &#x3E;0) is the symmetrized tensor product of n copies of Vm;
S° Vm is the unity representation.

(3) The spectral measure g of Wa is equivalent to the Gaussian
measure on (ax)’ with zero mean and Fourier transform ~(a)=
exp(-2(da, da~), a E aX.

(4) By the decomposition Wm =  SnVm, the spectral measure v of

Wm is equivalent to the sum of the spectral measure Po of the unity
representation (i.e. the measure concentrated on the point 0) and the
spectral measures vn of SnVm (n = 1, 2, ...).
Let X denote the set of the roots of 8 with respect to a. Let van,

ai EE X, n = 1, 2, ..., denote the measure in (ax)’ concentrated on the
set of distributions of the form ~ + ··· +  where ~~03B1~, a ) = 03B1(03B1(x))
and equivalent on this set to the measure dx)... dxn. Then vn is

equivalent to the sum of  (n = 1, 2, ...).
We denote now by 1Jt the set of distributions of the form

ç (j + ... +  where a; ~ 03A3, xi E X, n = 0, 1, ... and note that v(03A8) = 1.

LEMMA 12: If dim X ~ 4 then the family of measures 03BC~ = 03BC(· - cp),
ç ~ 03A8 is v-disjoint (see §2).

PROOF: Let us fix a unit vector e E a such that the numbers a (e)
are mutually distinct as a runs through the non-zero elements of X.
Let R1 ~ a be the one-dimensional space spanned by e, Rx1 ~ aX be
the space of compactly supported C°°-smooth real functions on X, let
(R1X)’ be the space conjugate to Rx1. We consider the projection
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and dénote by 03BC’, v’ the projections of 03BC and v on (Rx1)’. Owing to the
properties-(3), (4) of the measures JL and v, 03BC’ is the Gaussian measure
on (Rfy with zéro mean and Fourier transf orm X(f) = exp(-12),
v’ is concentrated on the set ,
03B1i ~ 03A3, n = 0,1,2,....}.

Consequently, by lemma 10’ the f amily of measures 03BC’~’=
03BC’(· - ~’), ~’ E T1Jf is v’-disjoint. Then the family of measures 03BC"~= 03BC’03C4~
is v-disjoint since, by the choice of e, the mapping 03A8~03C403A8 is a

bi j ection and Tv = v’.
It follows now from this disjointness that the family of measures

ILep = 03BC(· - ~), ep E 1Jf is v-disjoint on ax, i.e. for any Ah A2 ~ 03A8 of
positive v-measures with 03BD(A1 n A2) = 0 the measures fAi 03BC~dv(~), i =
1, 2 are mutually singular. Indeed, since the family of measures 03BC"~ is
v-disjoint on 1Jf then there exists BI, B2 C (lRf)’ such that B1 fl B2 = ~
and Ai 03BC"~(Bi)dv(~) = 03BD(Ai). Let Bi dénote the inverse image of B; in
(ax)’. Then for any ~·~03A8 the set i + ~ is the inverse image of
Bi + Tep and therefore 03BC~(i)= 03BC"~(Bi). Consequently Ai 03BC~(i)dv(~)=
v(Ai), i = 1, 2 and since 1 fl B2 = ~ the measures fA; 03BC~dv(~), i = 1, 2
are mutually singular.

COROLLARY 1: The spectral measure of Wa and those of
Wa Q SnVm, n = 1, 2,... are mutually singular.

COROLLARY 2: The weakly closed operator algebra generated by the
operators of W contains all operators of multiplication by ei~·,da~.

That f ollows f rom lemmas 12 and 5.

LEMMA 13: Let X be a smooth manifold, dim ~~4, TI, T2 be two
Riemannian structures on X, WI, W2 be the representations of A.X

corresponding to these structures. If 03C41 ~ T2 then W1 and W2 are not
equivalent.

PROOF: Without a loss of generality we can assume X to be a
compact manifold. Indeed, in the opposite case one can take an
arbitrary neighbourhood Y C X with a compact closure on which
TI ~ T2, and consider instead of Wi their restrictions to a Y.
We note that ax = Rf @ ’ @ Rxr, Rk = IR (r = dim a). Theref ore it

is suûicient to prove that the restrictions Wi of Wi to Rx1 are not
équivalent. For this purpose we will find the spectral measures of Wi.
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We have .Wi = W’d 0 W’m and Wk is a tensor product of

representations of the groups Rxk. Let us denote by Wia and Wim the
restrictions of Wâ and W’ to Rx1. Then Wo = wi (D Wm.
By definition, the spectral measure of W" is the standard Gaussian

measure il; in the space of distributions F(X) generated by the
Riemannian structure 03C4i. The inequality 03C41 ~ 03C42 implies il, ~2 (for a
proof, see [3], p. 326). The spectral measures i;i of Wim are equivalent
to each other (1~2 ~) and are concentrated on the set 4J =

( i ÀiS".: Xi EX, Ài E Z, n E Z+ with ({0}) &#x3E; 0. Therefore by corol-
lary 2 of lemma 11 ill * ii and il2 * v2 are not equivalent. Those are the
spectral measures of W and consequently the representations W1
and W2 are not equivalent.

§6. Irreducibility and non-equivalence of représentations of Gx

THEOREM 1: If dim X - 4 then the representation U of GX is

irreducible.

A proof reduces to a check-up of the following two statements:
(1) the cyclic subspace generated by the vacuum vector 0 1 is

irreducible,
(2) the vacuum vector is cyclic in the space of U.

PROOF OF STATEMENT 1: Let a C g be an arbitrary Cartan subalge-
bra. We denote by H4 the space of functionals 0 E L203BC(F) such that
03A6(·+ F)=03A6(·) for any F~Fm (see §5). By definition W, Ha is

invariant under the action of W and the representations of ax in H4
and in its orthogonal complement are equivalent, correspondingly, to

W4 and (Wa ~ Sn Vm). It follows from corollary 1 of lemma 12 that
the representations of ax in H4 and in its orthogonal complement are
disjoint.

Let us verify now that if al, a2 are two Cartan subalgebra with
al fl a2 = 0 then H4t n Ha2 = {c03A9}, 03A9 being the vacuum vector. Indeed,
let m1, tn2 be the orthogonal complements in 8, correspondingly, of ai 
and a2. Since a1 ~ a2 = 0 we have tn 1 + m2 = g and therefore Fm1 +
F m2 =F. Hence if 03A6 ~ Ha1 fl Ha2 that is 03A6(· + FI) = 03A6(· + F2) = 03A6(·)
for any FI E Fm1 and F2 E g-2’ then 0(- + F)=03A6(·) for any F ~F
that is 03A6(·) = cf2.



237

Let A be an arbitrary operator in L203BC(F) which commutes with
operators of U. Then A commutes with operators of W. Since the

representations of ax in Ha and in its orthogonal complements are
disjoint, the operator A leaves every subspace Ha invariant and
therefore An = c03A9. Statement 1 follows.3

PROOF OF STATEMENT 2: Follows from corollary 2 of lemma 12.
Namely, the corollary implies that the weak closed operator algebra
generated by operators U(g), g E GX in L203BC(F) contains the operators
of multiplication by f unctionals of the form

Then one can prove that the set of vectors of the form 03A3nk=1 V (k)duk is
dense in f2 (X; g) which implies that the functionals (6) form a total set in
L203BC(F) and statement 2 follows (see [3] §5 lemmas 2, 3).

THEOREM 2: Let G be a compact semisimple Lie group, X be a
manifold, dim X ~ 4. If Ti, T2 are two different Riemannian structures
on X then the corresponding representations U of Gx are not

equivalent.

Indeed, by lemma 13 even the restrictions of these representations
to an abelian subgroup ax are not equivalent.

REMARK: It can be proved by quite other reasonings that theorem 2
stands for dim X = 1. In this case the spectral measure of W =
Wa ~ Wm is equivalent to that of Wn. At the same time the spectral
measures of the representations Wn corresponding to different Rie-
mannian structures on X are singular. Therefore the spectral
measures of the corresponding representations W are singular as
well. (The spectral measures of W and Wa are likely to be equivalent
for dim X = 2 as well, see the remark below.)
Another proof of nonequivalence of the representations of Gx for

3 As a matter of fact we repeated here the proof of lemma 1 of §5 in [3] with the
différence that the reference to corollary 2 of lemma 5 of §4 in [3] was changed by the
reference to corollary 2 of lemma 12 of this paper.
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G = S U (2) and X a manifold of an arbitrary dimension can be found
in [7].

In conclusion we give some remarks on the cases dim X - 3.

1. Let X be a compact Riemannian manifold, 03BC be standard
Gaussian measure in the space of distributions on X, v be a measure
on the set of delta-functions 8x equivalent to dx on this set.
Our proof of irreducibility is based on the statement that for

dim X ~ 4 the measures li and 1£ * -v’ (n = 1, 2, ... ) are mutually
singular. Let us show that this statement fails for dim X ~ 2 and

therefore the methods of this work can not be used for the dimen-

sions 1 and 2.

PROPOSITION: If dim X = 1 then 1£ and g * v" (n = 1, 2,...) are

equivalent.

PROOF: If dim X = 1 then 12(X) ~ C (see [11]). Therefore 5x E
(12(X))’ for any x E X and consequently the measure v" is concen-

trated on (12(X))’. It is known that the Gaussian measure IL is

quasi-invariant under the translations by vectors from (12(X))’.
Hence the convolution of every measure, concentrated on (12(X))’,
with 1£ is equivalent to IL. In particular u * -,n _ IL.
The case dim X = 2 is more subtle: since in this case 03B4x ~ (4"(X»’

for all x E X, any translation of j£ by a linear combination of 8-
functions is singular with IL. However it has been shown by Hoegh-
Krohn that for X being an Euclidean disk the measures 1£ * v and 03BC

are equivalent4 and . We give here a sketch of a proof.
Let {uk}~k=1 be the orthonormal basis in W’(X) of eigenfunctions of

Dirichlet problem for the Laplace operator which are ordered ac-
cordingly non-decrease of the eigenvalues, p,n, vn be the projections of
IL and v on the finite-dimensional space generated by u l, ..., Un-

We put p = 
d(03BC * v), n = d(IL; * n Vn) and calculate the density p. It

is known (see [6], the theorem about convergence of martingales) that
p does exist almost everywhere with respect to 1£ and p = lim pn.
Generally speaking f pd03BC ~ 1 and f pd03BC = 1 if and only if 03BC * v and

IL are equivalent.

4 A more simple example of the appearance is given in §3 where v is a Gaussian
measure.
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To prove the equivalence of IL and IL * v it is sufficient to prove
that pn converges in L’. Indeed if p, fi in L 2 then  = p and therefore

f pdg = f pd¡..t = limn f Pnd¡..t = 1 (since f PndIL = 1 for all n). Let us
calculate IIPn - Pm ilL IL 2.

Recall that if itn is the standard Gaussian measure in Rn and

03BCn(· + u ) is its translation by a vector u, then 

e. Therefore, since 8x ’- 03A3k Uk(X) we get

It implies

Integrating by y we get

In particular (pn, pm~= (pn, Pn~ for m ~ n. Hence

To prove that pn converges in L. i.e. ((pn - pm (( - 0 for m, n ~ ~, it
is sufficient to verify that limn f x f x exp(03A3n1 uk(x)uk(x’))dxdx’ does
exist. For that it is sufficient now to verify that

where G(x, x’) = limn 2f uk(x)uk(x’) is the Green function for the

Laplace operator. It is known that when X is an Euclidean disk the
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Green function has a logarithmic singularity on the diagonal:

p being a Euclidean metric on the plane (see for example [8]).
Consequently

and it is clear that the last integral does converge.
2. For dim X = 3 equivalence of M and g * v can not be proved by

the same means as for dim X = 2 since X X exp G(x, x’)dxdx’ diver-
ges. On the other hand nonequivalence of those can not be deduced
from lemma 6 since for dim X = 3 Ek ckuk(x) converges almost

everywhere for any lckl E 12.

REMARK: In [3] a projective representation of the group

Gx · 03A9(X;g) (Sugawara’s group) was constructed. This represen-
tation is irreducible for dim X ~ 4 since its restriction to Gx is irre-
ducible due to theorem 1. Yet this representation is irreducible for a
manifold X of an arbitrary dimension including the case dim X = 1.
This statement easily, follows from an analysis of the decomposition
of the representation with respect to the abelian normal subgroup
03A9(X;g) and the lemmas about the spectrum of the representation of
(lx C GX.

Appendix. The Lie algebra gx and its representation

Let as above X be a Riemannian manifold, g be a Lie algebra of a
compact semisimple Lie group G. We consider the space C~(X; g) of all
compactly supported C°°-mapping X ~ 9 provided with the usual

topology. Let us define in C~(X; g) the Lie algebra structure by
[ai, a2l(x) = [ai(x), a2(x)]. This Lie algebra is called the Lie algebra of
Gx and denoted by gX.
Using the exponential mapping 

we may assign to any unitary representation U of GX the represen-
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tation L of its Lie algebra in the same space, defined by

(The operators L(a) are defined on the set of such vectors in the
space of U that this limit does exist.)
Let U = EXPG V be the representation of G’ which is considered

in the paper. Let us give the formulas for the operators L of the
corresponding representation of g’.

Let U be realized in the Fock space

where H = 03A9(X;g), Hc is the complexification of H, S"Hc is the

symmetrized tensor product of n copies of Hc. The formulas for
operators of U in this realization is given in the Introduction. From
the formulas one can easily get an expression for operators of the
representation of gx.

Let us put

where an ordered set (il, ...,in) in the sum runs through the family of
all permutations of {1,..., n}. If Wi E He then Sn(WI ~ ··· 0 03C9n) E
SnHe.

PROPOSITION: The operators L(a) of the representation of gX in-
duced by U are defined on all vectors sn(03C91 0 ... 0 wn), toi E Hc and
are given by the formula
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In particular

REMARK: The formulas (7) give not only the representatidn of 8X but
also the representation (which is not Hermitian now) of its com-

plexification gck and therefore gx03C4 where 8r is an arbitrary semisimple Lie
algebra.

Added in proof

At the last time S. Albeverio, R. Hoegh-Krohn and D. Testard proved
irreducibility of U (g) in the case dim X 2:: 3 and reducibility in the case
dim X = 1 (preprint 1980, Bochum).
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