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Introduction

A K3 surf ace is by definition a compact connected non-singular
complex-analytic surface which is regular and has vanishing first

Chern class. Examples of K3 surfaces are furnished by twofold
coverings of p2 branched along a nonsingular curve of degree 6"
nonsingular surfaces of degree 4 in P2, nonsingular complete inter-
sections of bidegree (2, 3) in P4 and nonsingular complete intersections
of three quadrics in P5. Another interesting class of K3 surfaces can
be constructed out of two-dimensional tori: the canonical involution
of a two-dimensional complex torus T has 16 distinct fixed points (the
points of order two) and each of them determines an ordinary double
point on the orbit space T/(-id). A quadratic transformation at each
of these points desingularizes the orbit space and the resulting non-
singular surface can proved to be a K3 surface. The K3 surfaces thus
obtained are usually called Kummer surf aces.
The second integral cohomology group of a K3 surface is a free

Z-module of rank 22. Endowed with the bilinear symmetric form
 , &#x3E; coming from the cup product, it becomes a unimodular lattice
of signature (3, 19).

It is not difficult to show that a K3 surface X has trivial canonical
class. So up to a scalar multiple, there is a unique holomorphic 2-form
wx on X. The cohomology class [wx] of X spans the subspace
H2,0(X,C) of H2(X, C) and satisfies the well-known relations

~[03C9x], [03C9x]~=0 and ([03C9x], [X]~ &#x3E; 0. We can now formulate the

WEAK TORELLI THEOREM FOR KÂHLERIAN’ K3 SURFACES. TWO

’By a Kâhler surface we mean a surface which carries a Kâhler metric; a kdhlerian
surface is a surface which can be endowed with such a metric.
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kâhlerian K3 surfaces X, X’ are isomorphic if and only if there exists
an isometry from H2(X, Z) to H2(X’, Z) which sends H2,0(X, C) to
H2.o(X’, C).

This is an analogue of the classical Torelli theorem which asserts
that two nonsingular compact curves are isomorphic if and only if
their jacobians are. The weak Torelli theorem is actually derived from
the strong Torelli theorem, whose formulation requires some more
preparation.

Let X be a kâhlerian K3 surface and put H1,1(X, R) : = {c E
H2(X, R):~c, 03C9X~ = 0} (we identify H2(X, R) with the real part of

H2(X, C)). The form (,) is of signature (1,19) on H1,1(X, R) and so the
set f c E H1,1(X, R) : (c, c) &#x3E; 01 has two connected components. Exactly
one of these components contains Kâhler classes (for two such
classes have positive inner product) and is called the positive cone.
The strong form of the l’orelli theorem, due to Rapoport and

Burns [4], then reads as follows.

STRONG TORELLI THEOREM FOR KÀHLERIAN K3 SURFACES. Let X

and X’ be kâhlerian K3 surfaces and suppose we are given an
isometry ~*: H2(X’, Z) ~ H2(X, Z) which

(i) sends H2,0(X’, C) to H2,0(X, C)
(ii) sends the positive cone of X’ to the positive cone of X
(iii) sends the cohomology class of any positive divisor on X’ to

the class of a positive divisor on X.

Then ~* is induced by a unique isomorphism ~ : X ~ X’.

When X and X’ are both algebraic K3 surfaces, then the con-
ditions (ii) and (iii) are equivalent to the condition that ~* maps the
class of some ample divisor on X’ to the class of an ample divisor on
X. In this form, the Torelli theorem was proved earlier by Piatetski-
Shapiro and Shaf arevic [20] and is for Burns-Rapoport the point of
departure.
The main goal of the present paper is to give a complete account of

the proof of these two Torelli theorems. In order to relate it to the

work cited earlier, we briefly outline how the strong Torelli theorem is
proved.

Certainly a key rôle is played by the period mapping, which we
shall now define. Let fix (once and for all) an abstract lattice L which
is isometric to the second cohomology lattice of a K3 surface and
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introduce the period space

which is an open piece of a nonsingular projective quadric of dimen-
sion 20. A marking of a K3 surface X is by definition an isometry
03B1 : H2(X, Z) ~ L. Then 03B1 (03C9x) determines an element of il, called the

period point of (X, a). More generally, a marking of a family p : X ~ S
of K3 surfaces is a trivialization a : R2p*(Z) ~ L of local systems and
determines a period mapping r : S ~ il, which assigns to s E S the
period point of (X, 03B1(s)).

Small deformations of the complex-analytic structure of a K3

surface X can be effectively parametrized by a family of K3 surfaces
p : ài - S whose base space S is a neighbourhood of the origin in C20
(with X ~ Xo). If S is simply connected, we can choose a marking
03B1 : R2p*(Z) ~ L and then according to Tyurin and Kodaira the asso-
ciated period mapping T : S ~ 03A9 is a local isomorphism at s E S. It is
this rather unusual situation which explains why the Torelli problem
for K3 surfaces has received so much attention. Besides the period
mapping, the proof has four main ingredients.

First Piatetski-Shapiro and Shafarevic consider the case when one of
the surfaces, say X, is a special Kummer surface. This means that X is a
Kummer surface originating from a reducible abelian surface. Such
surfaces have a rich geometric structure, which is reflected by a
correspondingly rich arithmetic structure in their cohomology lattice.
This enables them to give a direct proof of the strong Torelli theorem in
this special case.
The next step is to show that the period points of marked special

Kummer surfaces lie dense in f2.

The proof then proceeds as follows. Given X and X’ as in the

theorem, embed both in marked universal families (p : X ~ S, a) resp.
(p’ : X’ ~ S’, 03B1’) such that 0 corresponds with 03B1(0)-1 · 03B1 (0). By
Kodaira’s result T : S ~ 03A9 and T’ : S’ ~ 03A9 are local isomorphisms at the
origin and condition (i) implies that T(0) = T’(0). So for suitable S and
S’, the map 03C8: =03C4-1 03BF 03C4’ S’ ~ S is an isomorphism. The third step
consists in verifying that the hypotheses of the theorem are also
satisfied by the triples

for s’ sufficiently close to 0 ~ S’. The two previous steps then

imply that we can find a sequence {s’i ~ S’} converging to 0 E S’
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such that each X’si is a special Kummer surface and a sequence of
isomorphisms {~i : X03C8(s’i)~X’s’i} inducing ~*(s’i).
The final step is the "main lemma" of Burns-Rapoport which

roughly asserts that under these circumstances the sequence {~i}
converges (pointwise) to an isomorphism ~:X0~X0’, inducing
~*(0) =~*.
Unfortunately, the paper of Piatetski-Shapiro and Shafarevic con-

tains several gaps and errors, some of which seem to be quite essential.
Perhaps the most striking one is a claimed Torelli theorem for abelian
surfaces (needed for a proof of the corresponding result for special
Kummer surfaces) which in the way it is stated is certainly false. This
was first observed by Shioda, who gave a correct treatment of the
theorem in question in [23]. One of our aims is to fill these gaps and to
give a detailed exposition of the resulting proof. This includes a few
simplifications. For instance, we give a ’direct’ proof of the Torelli
theorem for projective Kummer surfaces which enables us to omit the
intricate analysis in [20] of the Picard group of a special Kummer
surface. Another example is our proof of the "main lemma", which
avoids the tedious case-by-case checking of the original proof.

Finally, we mention that a complete proof of the Torelli theorem
for algebraic K3 surfaces was also given by T. Shioda in a seminar
held in Bonn in 1977-78. We have been told that M. Rapoport also has
a proof (apparently unpublished).

Acknowledgements. We wish to thank H. Knôrrer and Y. Namikawa
for careful reading of our manuscript. We are indepted to T. Shioda
and P. Deligne for pointing out serious mistakes in an earlier version.

§1. Cohomology and Picard group of a K3-surface

By a surface we shall always mean a nonsingular compact con-
nected complex-analytic surface, unless the contrary is explicitly
stated.

(1.1.) A surface is called a K3-surf ace if it is regular and has
vanishing first Chern class. In this section we prove some ’well-

known’ properties of such surfaces. Consider on a K3-surface X the
exact sequence

Since X is regular, the differential 5: H1(X, O*X)~ H2(X, Z) in the
associated cohomology sequence is a monomorphism. The term



149

H|(X, (1) represents the set of isomorphism classes of analytic line
bundles over X and 5 is given by the (first) Chern class. So the
injectivity of 5 means that an analytic line bundle over X is, up to
isomorphism, completely determined by its Chern class. In particular,
the canonical bundle of X is trivial. If a line bundle comes from a

divisor D on X, then its Chern class [D] is geometrically given by
intersecting 2-cycles on X with D. It follows that two divisors on X
are linearly equivalent if and only if they are cohomologous.
The following proposition describes the integral cohomology of a

K3-surface.

(1.2.) PROPOSITION: Let X be a K3-surface. Then H1(X, Z) and
H3(X, Z) are trivial, while H2(X, Z) is a free Z-module of rank 22.
Endowed with the quadratic form ~,~ induced by the cup product,
H2(X, Z) is isometric to the lattice - E8 (D - E8 E9 H (D H (D H, where
E8 denotes the Cartan matrix of the corresponding root system and H

stands for the matrix 0 10); in particular, the signature o f this f orm isstands for the matrix (01 10) : in particular, the signature of this form is
of type (3, 19).

PROOF: Since X is regular, its first betti number b1(X) vanishes.
Now, Serre duality implies that h2(Ox) = h l(f22 x = 1 and hence the
arithmetic genus X(X) equals 2. By the Noether formula, we then
have c1(X)2 + C2(X) = 24. Since cl = 0, this gives C2 = 24. As b3(X )=
b1(X) = 0 by Poincaré duality, it follows that b2(X) = 22.

Since bl(X) = 0, H1(X, Z) is of finite order k say, and this deter-
mines an unramified covering  ~X of degree k. Clearly, X is also a
K3-surface, so by what we have already proved, c2(X) = 24. On the
other hand, C2(), being the Euler characteristic of X, must be equal
to 24k. So k = 1 and H1(X, Z) = 0. The universal coefficient formula
and Poincaré duality then imply that H2(X, Z) and H2(X, Z) are

torsion free and that H3(X, Z) = 0.
The index of X is given by 1(cl(X)2 - 2c2(X)) = -16 and so the

signature of (,) is indeed of type (3,19). By the Wu formula [17] we
have for any x E H2(X, Z), (x, x~ == (x, cl(X» = - 0 (mod 2). Since (,) is
also unimodular (by Poincaré duality), the theory of quadratic forms
then asserts that (,) is of the claimed type [21].

(1.3.) Next we make a general observation about the Hodge
decomposition of the cohomology of surfaces. For any surface

X, H1,1(X, R) is, by definition, the set of real classes orthogonal to
H2.0(X, C). Let HI.1(X, R)~ denote the orthogonal complement of



150

H1,1(X, R) in H2(X, R). Then (more or less by the definitions), the
inner product defines a perfect pairing between H1,1(X, R)~ and the
underlying real vector space of H2.o(X, C). If the latter is endowed

with its natural hermitian form, then this is actually a pairing of inner
product spaces. It follows that H1,1(X, R)~ possesses a natural com-
plex structure, which turns it into a hermitian vector space. Since

(03C9)&#x3E;0 for all nonzero (ù E H2,0(X, C), H’,’(X, R)~ is positive,
definite.
For a K3-surface and a complex torus, we have hO(ni) = 1, so then

H1,1(X, R)~ is a positive definite space of real dimension 2. In this case
a complex structure on H’,’(X, R)~ making the inner product her-
mitian amounts to nothing more than an orientation of H1,1(X, R)~. It
also f ollows that in the case of a K3-surface the signature of (,) on
H’,’(X, R) is of type (1, 19).

(1.4.) The Riemann-Roch theorem for an analytic line bundle over a
surface X asserts that

When X is a K3 surface, we have h2(X, L) = h’(X, L-1 ~ Kx) =
h°(X, .;£-1) by Serre duality, and so using prop. (1.1) we find

It follows that if C1(L)2 ~ -2, then 0 or :£-1 admits a section, in other
words, 0 or 5£-1 comes from an effective divisor.

If C is an irreducible curve on a K3 surface X, then it follows from
the adjunction formula that its arithmetic genus pa(C) equals
12~[C], [C]~ + 1.

It follows that C is a smooth rational curve if and only if

([C], [C]) = -2. Such a curve will be called nodal, since it can be

blown down to yield an ordinary double point (a node in the more
classical terminology). We use the same adjective for the cohomology
class [C] of a nodal curve C.

(1.5.) Given a surface X, then the image of the composite map
H1(X,O*x) H2(X,Z) ~H2(X,R) is called the algebraic lattice in

H2(X, R) and denoted by Sx. Elements of Sx are called algebraic
classes. It can be shown (with the help of Thm. 3 of [12] which
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ensures the degeneration of the spectral sequence HP(X, 03A9qX) ~
Hp+q (X) for p + q = 2) that Sx is just the set of integral points in
H1,1(X, R). Following Kodaira [12], X is projective if and only if there
exists a d ~ SX with (d, d~ &#x3E; 0.

Among the algebraic classes we distinguish those coming from
divisors, resp. effective divisors, resp. irreducible divisors, which will
be called divisorial, resp. effective, resp. irreducible. We say that an
effective class is indecomposable if it is not the sum of two nonzero
effective classes.
Note that on a surface X which is regular or kâhlerian, the

cohomology class [D] of an effective nonzero divisor D is never zero:
in case X is regular, this is immediate from the fact that

03B4: H1(X, O*x) ~ H2(X,Z) is injective; if X is kâhlerian, let K E

H1,1(X, R) be the cohomology class of a Kâhler f orm (we call such a K

a Kâhler class). Then (K, [D]~ = 1 vol(D) &#x3E; 0 and hence [D] ~ 0.

So on such a surface an indecomposable class is always irreducible.
The converse need not hold, but if C is an irreducible curve with

~[C], [C]~  0, then [ C] is indecomposable. For if [C] = [D], where D
is an effective divisor, then ~[C], [D]~ = ([C], [C])  0 and C is a

component of D. Hence D - C is effective. Since [D - C] = 0, it

follows the preceding discussion that D = C.
This applies in particular to nodal classes on K3 surfaces: and

algebraic class c with (c, c) = -2 is nodal if and only if it is in-

decomposable.
If X is a kâhlerian surface and K E H1,1(X, R) a Kâhler class, then

we have just seen that (K, [D]) &#x3E; 0 for any nonzero effective divisor
D. Also, K has positive inner product with any other Kâhler class.
Since the cup product on Hl-’(X, R) is of hyperbolic type, the set
{x E H1,1(X, R) : (x, x) &#x3E; 01 consists of two disjoint cones. Only one of
them contains Kâhler classes; we call this component the positive
cone, and denote it by C+X.

(1.6.) LEMMA: The semi-group of effective classes of a kâhlerian K3
surface X is generated by the nodal classes and C1 fl H2(X, Z).

PROOF: by the discussion in (1.4), an irreducible class c E H2(H, Z)
is either nodal or satisfies (c, c) * 0. In the latter case, c must lie on
CX, since c has positive inner product with any Kâhler class. Con-
versely, if c is a nonzero integral point of C1, then c is algebraic and
by the Riemann-Roch inequality (1.4)1, c or -c is effective. Since c
has positive inner product with any Kâhler class, only c is effective.
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(1.7.) In the remainder of this section, X dénotes a kählerian K3
surface. We define the Kiihler cone of X as the set of éléments in the

positive cône which have positive inner product with any nonzero
effective class. Clearly, any Kahler class must lie in the Kahler cone.
Observe that any element K of the Kähler cône enables us to recover

the semi-group of effective classes (and hence the Kähler cône itself).
Indeed, using (1.6.) it is enough to observe that an algebraic class c
with (c, c~ ~ -2 is effective if and only if (c, K) &#x3E; 0. If K happens to be
integral, then K is algebraic, and hence, by the Nakai criterion, K is

the class of an ample divisor. Conversely, the class of an ample
divisor has positive inner product with nonzero effective class and
must therefore belong to the Kahter cône. For future référence we
sum up:

(1.8.) Let X and X’ be projective K3 surfaces and let

~* : H2(X’, Z) ~ H2(X, Z) be an isometry which respects the Hodge
décomposition (such an isometry will be briefly called a Hodge
isometry). The following statements are equivalent

(i) ~* préserves eff ective classes
(ii) (~* préserves ample classes
(iii) ~* maps the Kahler cône of X’ onto the Kahler cône of X
(iv) ~* maps an element of the Kahler cône of X’ to the Kähler

cône of X.

A Hodge isometry which possesses one of the equivalent properties
of (1.8) is called effective..

Any class 5 E H2(X, Z) with (5, 5) = -2 détermines an automor-
phism S03B4 of (H2(X, Z), (,)) by S03B4(c) = c + (c, 5)5. Note that S03B4(03B4) = -03B4
and that s03B4 is just the reflection orthogonal to 5. We are mainly
interested in the case when s03B4 préserves the Hodge decomposition.
This is so if and only if 03B4 is an algebraic class. We then refer to s03B4 as a
Picard-Lefschetz reflection.

(1.9.) PROPOSITION: The Picard-Lefschetz reflections of a kählerian
K3 surface X leave the positive cone C1 invariant and the group Wx
generated b y them acts on C+X in a properly discontinuous fashion.
The closure of the Kähler cone in C1 is a fundamental domain f or
WX in the sense that an y WX-orbit in C1 meets it in precisely one
point.
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PROOF: Let H03B4 C H1,1(X, R) denote the fixed point hyperplane of a
Picard-Lef schetz reflection ss acting on H1,I(X, R) and since (8, 03B4~ = - 2,
it follows that (,) has signature (1, 18) on H8. So Hs meets C+X. Since ss
preserves (,), this implies that s03B4 leaves C1 invariant.
The group of automorphisms of (H1,1(X, R), ~,~) which preserve Ci-

realize the set of half lines in Ci as a Lobatchevski space and hence
this group acts properly on CX. Since Wx is a discrete subgroup of
this automorphism group, the action of Wx on Ci- is properly
discontinuous. The last assertion is a general fact about reflection
groups operating on spaces of constant curvature [27].

§2. Unimodular lattices

Thç purpose of this section is to collect a few (more or less

well-known) results about lattices, which will be used in the sequel. It
is independent of the rest of the paper.
A lattice is a free finitely generated Z-module endowed with an

integral symmetric bilinear form (which we usually denote by ~,~). A
homomorphism L ~ M between two lattices is called a lattice-

homomorphism if it preserves the bilinear forms. Thus the lattices

form the objects of a category. A lattice-isomorphism in this category
is also called an isometry ; the lattices in question are then said to be
isometric.

The quadratic function associated to a lattice L is the function

x E L H (x, x~. If it takes only even values the lattice is called even,
otherwise it is called odd. If the quadratic function is strictly positive
(resp. negative) on L - {0} then we say that the lattice is positive
(resp. negative) definite. In either case, we call the lattice definite; a
lattice which is not definite, is said to be indefinite. If p (resp. n)
stands for the rank of a positive (resp. negative) sublattice of L of
maximal rank, then the pair (p, n ) is called the signature of L.

If (ei, ..., en ) is an ordered basis of the lattice L, then the deter-
minant of the matrix ((e;, ej~) is independent of the choice of this
basis. Slightly deviating from general practice we call the absolute
value of this déterminant the discriminant of Land denote it by 8(l).
If 03B4 (L) ~ 0 (resp. = 1), L is called nondegenerate (resp. unimodular).
Two important examples of even unimodular lattices are

(i) The hyperbolic plane H. As a Z-module, H is equal to Z ~ Z. If
e,f is the canonical basis of H, then (e, e~ = ~f, f ~ = 0, while
(e, f ) = 1. The signature of H is (1, 1).
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(ii) The root lattice E8. As a Z-module E8 = Z’ and on the canonical
basis (,) is the Cartan matrix of the root system Eg. This lattice
is positive definite.

Indefinite unimodular lattices admit a nice and simple classification:

(2.1.) THEOREM: (Serre [21].) An indefinite unimodular lattice is up
to isometry determined by its signature and parity.

(2.2.) EXAMPLE: An even unimodular lattice of signature (3,19) is
isometric to (EB3 H) 61 (~2 - E8). (Here 61 denotes orthogonal direct
sum. If L is any lattice, then AL has the same underlying Z-module,
but the bilinear form has been multiplied with A).

A sublattice M of a lattice L is called primitive if L/M is torsion
free. An equivalent condition is that any basis of M can be sup-
plemented to a basis of L. If M is generated by one element m, then
we call m primitive if M is. This means that relative some (or any)
basis of L, the gcd of the coefficients of m equals one. It is also

equivalent to the condition that there exists linear form on L taking
the value one on m.

If L is a nondegenerate lattice, then we define its dual module as the
set L* : = {x ~ LQ : ~x, y~ ~ Z for all y ~ L}. It contains L as a sub-

group of finite index. The square of this index is equal to s(L).

(2.3.) LEMMA: Let L be a unimodular lattice and let M C L be a
primitive sublattice. Let M~ C L denote the orthogonal complement
of M in L. Then 8(M) = 8(Ml.). If moreover, M is unimodular, then
L=M61Ml..

PROOF: If M is degenerate, we clearly have 03B4(M) = 03B4(M~). We
therefore assume that M is nondegenerate. We define a natural

group-isomorphism M*/M~ M~*/M~ as follows. Let x* E M*. Since
L is unimodular, we can find a z E L such that (x*, x) = (z, x) for all
x E M. By definition, there is a unique y* E MI* such that (y*, y) =

~z, y~ for all y E Ml.. The assignment ~*~ y* induces a homomor-
phism M*/M ~&#x3E; M~*/M~ of which it is easy to see that it is in-

dependent of the choices involved. Clearly M~ is also primitive. If we
interchange the rôles of M and M~, we find a two-sided inverse of
this homomorphism. In particular, M*/M and M~*/M~ have the same
order and so S(M) = &#x26;(MI). Hence the index of M 61 M~ is equal to
03B4(M)2. It f ollows that if M is unimodular, L = M (D M~.



155

(2.4.) THEOREM: Let L be an even unimodular lattice which con-
tains a sublattice isometric to a k-fold direct sum of hyperbolic
planes. If T is an even lattice and

(i) rk(0393)~ k, then there exists a primitive embedding i : F - L (i.e. i

is a lattice-monomorphism and i(0393) is primitive in L).
(ii) rk(F):5 k - 1, then for any two primitive embeddings i, j : F -

L there exists an isometry 0 of L such that j = ~ · i.

The proof of (i) is fairly simple: Let el, f1, ..., ek, fk E L be such that
(eK, e03BB~ = ~f03BA, f03BB~ = 0 and (eK, f03BB~ = 03B403BA03BB. If ci, ...,C1 (1 ~ k) is a basis of T,
then we put

It is easily checked that i preserves the quadratic forms. Since the
matrix (~i(c03BA),f03BB~) is the identity, i must be a primitive monomor-
phism. For the proof of (ii), we need a lemma.

(2.5.) LEMMA: Let E be a lattice with basis el, fi, e2, f2 such that
(eK, ex (f., fx) = 0 and (eK, f03BB~ = 03B403BA03BB (so E ~ H E9 H). Then for any
vector z in E, there is an isometry of E mapping z to an element of the
form ae, + 13ft (we will briefly say that z is isometric to ael + 03B2f1) with
03B1|03B2.

PROOF: We map E isomorphically onto End2(Z) by

Then twice the determinant function pulls back to the quadratic
function of E. So we may replace E by End2(Z) endowed with the
unique symmetric bilinear form whose quadratic function is twice the
determinant. Clearly the right-left action of SL2(Z)  SL2(Z) on

End2(Z) preserves this bilinear form. By the theorem on elementary
divisors, each element of the orbit set SL2(Z)/End2(Z)SL2(Z) is

(uniquely) represented by a matrix a 0 with ali6. Whence the

result.

If L is an even lattice and e, f E Lare such that ~e, e) = (e, f~ = 0,
then there is a unique isometry t/1e.f of L which on the orthogonal
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complement of e is equal to the ’unipotent translation’ x -

x + (x, f)e. It is given by

We refer to f/le,/ as the elementary transformation associated to the
pair (e, f).
We are now ready for the proof of (2.4)-ii.

STEP 1: Proof of (2.4)-ii in case k = 2.
Let z E L be a primitive vector. If E C L denotes the lattice

spanned by eh fi, e2, f2, then it follows from (2.3) that we can write
z = ZI + z2 with z, E E and z2 E E~. Our first aim is to make z,

primitive. Lemma (2.5) implies that there is a f isometric to z (via an
isometry acting trivially on E~) with (z, el)I(z, Il) (interchange el and
f,); we therefore assume that this is already satisfied by z. Since z is
primitive there exists a v E L with (v, z) = 1. Put  : = v - (v, e1~f1.
Then ~, e1~ = 0 and hence 03C8e1, is defined. If z’:=03C8e1,(z), then

(z’, el) = (z, el) and

So if we replace z by z’, then we may (and do) assume that z, is

primitive. If we apply lemma (2.3.) as before, then it follows that z is
isometric to a vector of the form el + 03B2f1 +03BE with ’E E~. Now t/1ft.,
maps the latter to a vector of the form el + yfl. The square length of
el + yf, must equal (z, z), so y = i(z, z) indeed.

STEP 2: Proof of (2.4)-ii in general.
We abbreviate xK : = i(c03BA), YK : =j(c03BA) and proceed by induction on k.

Therefore we may assume that rk(0393) = k - 1 (-2) and that YK = xK for
03BA ~ k - 2. We must find an isometry of L which leaves Xl, Xk-2
fixed and maps yk-, to ~k-1.
We begin as in step 1: Let E C L denote the lattice generated by

ek-h fk-l, ek, fk. Then L = E EB E~, by lemma (2.3.). Applying an

automorphism of L (acting trivially on E1), we may assume that
~yk-1, ek-,)I(yk-1, fk-n. Since the lattice spanned by YI,..., yk-, is primi-
tive and L is unimodular, there exists a v E L orthogonal to
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y, ..., Yk-2 and with (v, yk-1~ = 1. If we put u = v - (v, ek-1~fk-1, then
the automorphism t/1ek-t,i5 leaves y,, ..., Yk-2 pointwise fixed and it

follows as in step 1 that Yk-1 is mapped to an element whose

orthogonal projection to E is primitive. We therefore suppose that
this holds for Yk-1 itself.

Let M C L denote the lattice spanned by e1, f1,..., ek-2, fk-2. Then
L = M ~ M~ (by lemma (2.3.)) and if we write Yk-1 = Yk-1 + y’k-1
accordingly, the fact that E C M~, implies that y"k-1 is primitive.
Applying step 1 to y’k-h yields an isometry of L (acting trivially on
M.l, hence on y,, ..., yk-2) which maps Yk-1 to a vector of the form
y : = n + ek-1 + I3fk-1 with Q E Z and q E M.

Since {x1, ..., Xk-2, fh ..., fk-21 is a basis for the unimodular lattice
M, there exists a w E M such that (w, ~03BA~ = 0 (K = 1, ..., k - 2) and
~w,f03BA~ =~y, f03BA~ (03BA =1,..., k-2). As ~fk-1, w~ = 0, the elementary
transformation t/1fk-t,W is defined. It leaves x1, ..., Xk-2 pointwise fixed
and if we set  : = 03C8fk-1,w(y), then

These equalities are also satisfied by xk-,, so Xk-1 and ÿ must have the
same component in M. Since Xk-1 and  have the same length and
both their M~ component of the form ek-1 + 03B1fk-1, we actually have
Xk-1-

§3. The Picard group of a Kummer surface

This section introduces the notion of a Kummer surface. The main

goal is to prove a (relatively weak) theorem of Torelli type for such
surfaces. This will be derived from a corresponding result for a

complex-analytic tori.
For the following lemma, we observe that if F is a free Z-module of

rank 4 which has been oriented by means of an isomorphism
det :40393~Z, then A 2 r is canonically endowed with a symmetric
bilinear form (,) defined by (u, v) = det( u A v).

(3.1.) LEMMA: Let rand F’ oriented free Z-modules of rank 4 and
let ~ :20393 ~20393’ be an isometry (with respect to the canonical
bilinear forms defined above) for which there exists an isomorphism
t/12: F/20393 ~ r’ /2r’ such that .p2 1B 1/2 equals the reduction of ~ modulo
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two. Then there exists an isomorphism 03C8:0393~0393’ such that ~ =
± 03C8  03C8.

PROOF: Let k be any field and put rk = r EBz k, ~k = ~ EB idk etc.
An isotropic line in A 2 rk is always of the form a A b, where a and b
are independent elements of r. This sets up a bijective cor-

respondence between the isotropic lines in A 2 rk and the planes in rk.
Two isotropic lines in A 2 rk span an isotropic subspace if and only if
the corresponding planes in rk have at least a line in common. So ~k
can be understood as a mapping from the set of 2-planes in rk, to the
set of 2-planes in rk which preserves the incidence relation. In

particular, ~k sends a pencil of planes to a pencil of planes. The
pencils of planes in a 4-dimensional vector space come in two types:
those containing a fixed line and those lying in a fixed hyperplane. We
claim that 0 preserves the type of a pencil. For it suffices to verify
that its reduction modulo two does so and this follows immediately
from our hypothesis that OF2 is induced by a linear isomorphism
rF2 ~ rF2.

In particular ~Q maps a pencil through a line to a pencil through a
line and thus determines a map between the projective spaces asso-
ciated to rQ and rQ. This map preserves the incidence relation (i.e.
respects projective lines) and is by the fundamental theorem of

projective geometry then projective. Hence there exists an isomor-
phism 03C8: 0393Q ~0393’Q such that 03BB~ = 03C803C8 for some AEQ. After

multiplying by a scalar we may (and do) assume that 03C8(0393) C r’ and
that lf(n contains a primitive vector of r’.

Choose e, E r such that 03C8(e1) is primitive. Then el is also primitive
and hence can be supplemented to a basis e,, e2, e3, e4 of r. Then

t/J( el) A 03C8(e1) = 03BB~(e1 A ei) for i = 2, 3, 4. As 0 is an isometry, ~(e1 A e;)
is primitive and hence A E Z. By adding a suitable integral multiple of
el to ei, we may suppose that 03C8(ei) ekF’. Then 03BB~(e2  e3) = t/J( e2) 1B
03C8(e3) ~03BB20393. Since 0(e2 A e3) is primitive, it follows that A = ±1.

(3.2.) COROLLARY: Let A and A’ be two-dimensional complex-
analytic tori and let ~*: H2(A’, Z) ~ H2(A, Z) be an isometry which
preserves the Hodge decomposition. Suppose there exists an isomor-
phism 03C8*2: H’(A’, F2) 6 H’(A, F2) such that 03C8*2 A 03C8*2 equals the reduc-
tion of ( modulo two. Then ±~* is induced by an isomorphism
~:A~A’.

PROOF: We put 0393 : = H1(A, Z) and 0393’ : = HI(A’, Z) and identify
H2(A, Z) with A 2Hom(r, Z) and similarly H2(A’, Z) with
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A 2Hom(r’, Z). By the previous lemma there exists an isomorphism
03C8 : 0393 ~ 0393’ such that ±~* = (03C8 A 03C8)*. Now, choose a nonzero 03C9’ ~

H2,o(A’,C). Since 03C9’A 03C9’ = 0, there exist 03C9’1,03C9’2 ~ Hom(0393’,C) such
that w’ = úJ A 03C9’2. Let 03A9’ denote the map 0393’ ~ C2 whose co-ordinates
are w and £Ù2, and put f2 03C8 : 0393~ C2. Then A’ may be identified
with C2/03A9’(0393’) and as 03C8*(03C9’1)  03C8*(03C9’2) = ±~*(03C9’) E H2’°(A, C) we also
have an identification of A with C2/03A9(0393). Clearly, 03C8 induces an

isomorphism from C2/03A9(0393) onto C2/03A9’(0393’) and hence also one from A
to A’. This isomorphism induces Ji on H,(-, Z) and ±~* on H2(-, Z).

(3.3.) Let A be a complex-analytic torus of dimension two and let
1:A-A be an involution which induces minus the identity on

H1(A, Z). We show that i has 16 fixed points and that i is "minus the

identity" with respect to any of its fixed points. Since we have a
canonical isomorphism Hp(A, Z) ~ PH1(A, Z), i induces (-id)P on

Hp (A, Z) and so the Lefschetz number of i equals 1’=o dim Hp(A) =
16. In particular, i has a fixed point a E A. Let ia : A ~ A denote
"minus the identity" with respect to a. We claim that i = ia. As the

composite iai acts trivially on H1(A, Z) and leaves a fixed, iQi acts

trivially on the Albanese of (A, a). Since the Albanese of (A, a) is

canonically isomorphic to (A, a), iQi must be the identity.
It is now clear that the fixed point set V of i consists of 16 distinct

points and is in a natural way an affine space over F2 of dimension 4.
The translation group of V is canonically isomorphic to H1(A, F2).

Let p : Â ~ A be the map which blows up each point of V. Clearly,
the involution i lifts to an involution 1 of A. We denote by X : = Â/1
the orbit space of 1 and let p :  ~ X be the canonical map. As i acts

as - id on the tangent space at each of its fixed points, the fixed point
locus of i is just the exceptional divisor p-’( V) of p. This implies that
X is a non-singular surface, for p-1(V) is everywhere of codimension
one in A. The surfaces thus obtained are called Kummer surfaces.
Each v E V determines a nodal curve p(p-’(v» on X ; we denote its

class in H2(X, Z) by ev and put ev: = {ev : v e VI. These nodal classes
are mutually perpendicular, so the lattice they generate in H2(X, Z)
may be identified with Zv (or Z v).

(3.4.) PROPOSITION: The Kummer surface X is a K3 surface. There
is a natural monomorphism a : H2(A, Z)~ H2(X, Z) which maps onto
a submodule of finite index of the orthogonal complement of Z’ and
multiplies the intersection form with two. Moreover, ac maps

H2,0(A, C) isomorphically onto H2,o(X, C).
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PROOF: Since V is of real codimension 4 in A, the inclusion

A - V C A induces an isomorphism on H;(-, Z) for j = 1, 2. Consider
for j = 1, 2 the composite

(with integral coefficients). As p-1( V) is of real codimension 2 in , 03B31
is an epimorphism. In particular, the i-invariant part of HI(A, Q)
(which is trivial, of course) maps surjectively to the i-invariant part of
HI(Â, Q) (which is therefore also trivial). As PI maps the latter

isomorphically onto HI(X, Q), it follows that HI(X, Q) = 0, in parti-
cular that X is regular.
Next we verify that X has trivial canonical class. Let w be a

nowhere vanishing homomorphic 2-form on A. Then the divisor of
p*(03C9) coincides with the reduced exceptional divisor p-’( V) of p.
Since W is invariant under i, p*(03C9) is invariant under 1 and hence

drops to a nowhere vanishing holomorphic 2-form Wx on X. So X is a
K3 surface.
We define a : H2(A, Z) - H2(X, Z) as the Poincaré dual of 03B22. Since

p is of degree 2, 03B22 (and hence a ) multiplies the intersection form
with 2. In particular, a is a monomorphism and its image is a

nondegenerate sublattice of H2(X, Z). It is geometrically clear that the
dual of 03B22, 03B2*: H2(X) ~ H2(A) maps r to zero. Therefore, a maps
into the orthogonal complement of Z.

Since rkZ + rkH2(A, Z) = 16 + 6 = rkH2(X, Z), it follows that

H2(X, Q) decomposes isometrically into a direct sum Im(aQ) E9 Q’Y. So
Im(a ) is of finite index in the orthogonal complement of Z. Because
’V is contained in the algebraic lattice, it also follows that H2,o(X, C) C
Im(ac). From the definition of wx it is clear that 03B2*2,c maps the class of
wx to the class of w and hence H2,0(X, C) to H2,0(A, C). It follows that
03B1c maps H 2 (A, C) isomorphically onto H2,o(X, C).

We shall investigate the position of r in H2(X, Z) in more detail.
An important result will be that the pair (H2(X, Z), r) enables us to
recover H’(A, F2).

(3.5.) PROPOSITION: With the above notations, the orthogonal
complement of Z is precisely the image of a.

At the same time we will prove

(3.6.) PROPOSITION: If E denotes the (unique) primitive sublattice of
H2(X, Z) which contains Z’ as a submodule of finite index, then
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E ~ E* ~12Z and the image of E resp. E* in 17,YI7,Y-F"-Fv
consists of the space of polynomial functions V ~ F2 of degree :51

resp. - 2.

For their proof we need two lemmas.

(3.7.) LEMMA: Let T : V ~ V be an affine transformation. Then there
exists an isometry 03C3: H2(X, Z) ~ H2(X, Z) such that u(ev) =
e03C4(03BD) ( v ~ V ).

PROOF: There is real affine-linear transformation t of A which is

orientation preserving and whose restriction to V is just T. Then t

commutes with the involution i. By perturbing t in a small neigh-
bourhood of V (with a possible loss of its affine-linear character) we
can arrange that t is an i-equivariant homeomorphism which is

complex-analytic near V. Then t lif ts to an i -equivariant homeomor-
phism of Â which maps p-1(v) in an orientation-preserving manner to
p-’(T(v)). This homeomorphism drops to a selfhomeomorphism of X
whose action on H2(X, Z) is as required.

(3.8.) LEMMA: Let V be an affine space of finite dimension ~2 over
F2 and let 6 be a linear subspace of the space Fv of F2-valued
functions on V. Suppose that W is invariant under the group of affine
transformations of V. Then either W consists of the constant functions
(the polynomial functions of degree 0) or W consists of the affine-
linear functions (the polynomial functions of degree ~1) or else L
contains for any affine subspace W ~ V of codimension two its

characteristic function Xw (these generate the polynomial functions of
degree ~2).

PROOF: If î contains a non-constant affine-linear function then Z

contains all of them, as they form an orbit for the affine group. As the
constant function 1 is the sum of two non-constant affine-linear ones,
it follows that then Z contains all affine-linear functions.
Now suppose that W contains a function 0 which is not affine-

linear. We prove by induction on n : = dim V ~ 2 that W then contains
the characteristic functions of all codimension two subspaces. As the
case n = 2 is trivial, we assume that n a 3. Choose an affine hyper-
plane V’ ~ V such that ~|V’ is not affine-linear, and apply the

induction hypothesis to Z’ {f|V’: f ~L}. It follows that there exists
a ~’ ~ L such that ~’|V’ is the characteristic function of a (n - 3)-
dimensional subspace W of V’. Choose a E W and b E V’ - V. Since
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V - V’ is an affine hyperplane of V (we are working over F2 !), there
exists a (unique) affine transformation T of V which leaves V - V’
pointwise fixed and maps a to b. Then T induces a translation over
b - a in V’ which carries W to an (n - 3)-dimensional subspace T( W)
of V’ which is disjoint with W. So t/1 : = ~’ 03BF T - f’ G 6 is the charac-
teristic function of W U T( W). As W ~ 03C4(W) is the (n - 2)-dimen-
sional subspace of V generated by W and b, 6 contains at least the
characteristic function of one codimension two subspace of V. The

affine group acts transitively on these functions, so the lemma fol-
lows.

REMARK: Using elementary representation theory, one can prove
that any Aut( V)-invariant subspace of F2 is the space Lk of poly-
nomial functions of degree k for some k E fO, 1, ..., dim V}. The
quotient Lk/Lk-1 is naturally isomorphic to  k(L1/L0).

We are now ready for the proofs of (3.5.) and (3.6.). For notational
convenience, we put 0393:= H2(X, Z) and denote by E1 the orthogonal
complement of E or equivalently Z’ in H2(X, Z). By (3.4.), E1
contains the image of a as a submodule of finite index.

STEP 1: We have inclusions E C E* C !Z’ 2 and S(E) - 26 (see §2 for
the definition of * and 03B4).

PROOF: The inclusions are immediate from the fact that Z’ C E and
hence E C E* C (Zr)* = !Z’ 2 . As a multiplies the intersection form
with 2, we have 26 = 03B4(Im(03B1)) ~ s(E1) = 5(E) by(2.3.).

STEP 2: The image 6 of E in 12Z//Z ~ Fv2 consists of the affitne-
linear functions and S(E) = 26. Furthermore, Im(a) = E1.

PROOF: It is clear that the power of 6 is just the index of E in Zr.
So |L|2 = 03B4(Z)03B4(E)-1 ~ 216.2-6 = 210 by step 1. By lemma (3.7.) Z is

invariant under the affine group. If 6 contains a function which is not

affine-linear, then according to (3.8.),03B4 contains the characteristic
functions of all codimension two subspaces of V. Choose two of

those subspaces W, W’ such that |W~W’| =1. So 03A3v~W 12ev and
03A3v~w’ ev both belong to E. But their inner product equals 1,É 2 Z, which
is a contradiction. So by (3.8.) again, either 6 consists of the affine
linear functions or Z consists of the two constant functions. The

latter is excluded since |03B5| ~ 2s.
The space of affine-linear functions on V is of dimension 5, so
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|03B5| = 25. Hence 03B4(E)=03B4(Z)·|03B5|-2=216·2-10=20. From this, it fol-

lows that IEl./lm(a)1 = 03B4(E~)/03B4(Im(03B1)) = 8(E) 2-6 = 1, i.e. E~= Im(a).

STEP 3: The image 03B5* of E in Fv2 consists of the space of

polynomial functions of degree ~2.

PROOF: We have by the previous step,

In particular 03B5*~03B5 and so 03B5* contains by lemma (3.8.) the space of
polynomial functions of degree ~2. As the latter has cardinality 2", it
follows that we actually have a quality.

(3.9.) COROLLARY (to (3.5.) and (3.6.)): Let L be a lattice and V C L
a subset such that there exists a Kummer surface X and an isometry
of L onto H2(X, Z) which maps  onto the set of 16 distinguished
nodal classes arising from the construction of X as a Kummer

surface. Let E C L denote the smallest primitive sublattice which
contains . Then E C !Z’ 2 and  admits in a unique way the structure

of an affine space over F2 such that the image 03B5 of E in 12Zv/Zv ~ Fv is
the set of affine-linear functions relative this affine structure.

Moreover, if T denotes the vector space of translations of V, then we
have a canonical isomorphism between 2(Hom(T, F2) arid E~/2E~.

PROOF: As the first clause is immediate from (3.6.), let us prove the
last one. It follows from (3.5.) that (E1)* =12E~. Hence E~/2E~~
!E1./ El. = (E~)*/E~ ~ E*/E. Now by (3.6.), E* is contained in !Z’ 2 and the
image of E* in F’ consists of the space 03B5* of polynomial functions
of degree ~2 on V. So E*/E ~ 03B5*/03B5. It is not hard to see that natural

isomorphism f rom 03B5*/03B5 to A 2Hom( T, F2) is given by assigning to
f E 03B5* the symplectic form s, t E T ~ f (v + s + t) + f (v) - f (v + s) -
f(v + t) where v E V is arbitrary.

After ail these preparations we are now able to prove an (albeit
weak) result of Torelli type for Kummer surfaces.

(3.10.) PROPOSITION: Let A (resp. A’) be a two-dimensional com-
plex torus with involution i (resp. i’) acting as -id on the first
homology group. Let X (resp. X’) denote the corresponding Kummer
surface and let V C H2(X, Z) (resp. ’JI"’ C H2(X’, Z)) be the associated
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set of 16 distinguished nodal classes. Suppose that A’ has a nonzero
algebraic class.

Then any isometry 03A6*:H2(X’, Z)~H2(X,Z) which respects the

Hodge decomposition, maps V’ to V’ and positive classes to positive
classes, is induced by an isomorphism 0: X ~ X’.

PROOF: Let a : H2(A, Z) ~ H2(X, Z) and a’ : H2(A’, Z) ~ H2(X’, Z)
be the canonical monomorphism introduced in (3.4.). By (3.5.) a
(resp. a’) multiplies the intersection with two and its image is just the
orthogonal complement of r (resp. V’). Hence 03A6* determines an

isometry ~* : H2(A’, Z) ~ H2(A, Z).. The last clause of (3.4.) implies
that ~* respects the Hodge decomposition.

Following,(3.9.) V (resp. V’) is in a canonical way an affine space
over F2 and if we denote by T (resp. T’) its vector space of

translations we have natural isomorphisms

H2(A, F2) ~ Im(03B1)/2Im(03B1) ~ 2Hom(T, F2)

(resp. H2(A’, F2) ~ A 2 Hom(T’, F2)).

Hence 0* restricts to an affine-linear isomorphism V’~V. This
isomorphism induces an isomorphism ~: T’ ~ T and the functorial
character of the above isomorphisms guarantees that ~* 
~*:2Hom(T,F2)~2Hom(T’,F2) is just the reduction of (~*)-1
modulo two. If we identify T with H,(A, F2) and T’ with H1(A’, F2),
then it follows from (3.2.) (with 03C82 = (X *)-’ that ~* or - ~ * is induced
by an isomorphism ~:A~&#x3E;A’. Since 03A6* takes positive classes to

positive classes, so does ~*. As A’ possesses nonzero algebraic
classes, it follows that ~* is induced by 0. By composing ( with a
translation we may suppose that ( o 1 = i’ 03BF ~ and that for at least one
v’ E ev’ we have 03A6*(ev’) = e~-1(v). Then ~ determines an isomorphism
03A6 : X ~ X’ whose induced map 0** on H2(·, Z) coincides with 03A6* on

Im(a’) and ev. Clearly, 03A6** restricts to an affine-linear isomorphism
. The induced map 2Hom( T, F2)~2Hom(T,F2) coincides
with the one induced by 03A6*, so 03A6* and 03A6** differ on V’ by a
translation at most. As 03A6*(ee,) = 03A6**(ev’), it then follows that 0* and
03A6** coincide on V’ and hence on all of H2(X’, Z).

§4. The Torelli theorem for Kummer surfaces

The weakness of (3.10.) lies in the fact that one of its assumptions,
namely that the set 16 distinguished nodal classes be preserved, is far
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too strong. In this section we shall show how to remove this hypo-
thesis for projective Kummer surfaces. In contrast to [20] we need
not work with special Kummer surfaces.

(4.1.) LEMMA: Let X be a K3 surface which contains 16 disjoint
nodal curves Ci, ..., C16 such that 03A316i=1C is 2-divisible in Pic(X).
Then X has the structure of a Kummer surface with CI, ..., C16 as its
set of distinguished nodal curves.

PROOF: Since 03A316i=1 Ci is 2-divisible in Pic(X), there exists a double
covering p :  ~ X whose branch locus is the union of the C;’s. If we
put Ci p -’(Ci), then Ûi is an exceptional curve of the first kind and
03A316i=1 Ûi is a canonical divisor of X. So if we contract each of the i’s,
we get a smooth surface A with trivial canonical bundle. Clearly, the
involution i of X, which interchanges the sheets of X drops to an
involution i of A. The euler number c2(A) equals C2() -16 =
2(C2(X) - 16) - 16 = 0. Then A is a complex torus by [12, §6]. Since
the i-invariant part of H1(A,Q) is canonically isomorphic to

H’(X, Q) = {0}, i acts as -id on H1(A, Q) and so the lemma follows.

(4.2.) TORELLI THEOREM FOR PROJECTIVE KUMMER SURFACES: Let
X be any K3 surface and let X’ be a projective Kummer surface.
Suppose we are given a Hodge-isometry Z) ~ H2(X, Z),
which preserves the effective classes. Then ~* is induced by an
isomorphism ~ : X ~&#x3E; X’.

PROOF: Let {c’1, ..., c’16} be the set of distinguished nodal classes on
X’. Since 0* preserves effective classes, it also preserves indecom-

posable classes. Hence, by the discussion in (1.4.), ~ preserves the
nodal classes. Put ci = ~*(c’i) and let Ci dénote the unique nodal
curve representing ci. Since 03A316i=1 Ci is two-divisible (for 03A316i=1 C’i is),
lemma (4.1.) applies and we may conclude that X is a Kummer

surface having {C1, ..., C16} as its set of distinguished nodal curves.
Since X’ is projective, it contains a nonzero effective class orthogonal
to {C’1, ..., C’16}. Such a class corresponds to a nonzero effective class
of the torus from which X’ has been obtained and hence all the

hypotheses of (3.10.) are satisfied. The theorem follows.

(4.3.) COROLLARY (weak form of the Torelli theorem for projective
Kummer surfaces): Let X be a K3 surface and let X’ be a projective
Kummer surface. Suppose that there exists a Hodge-isometry from
H2(X’, Z) onto H2(X, Z). Then X and X’ are isomorphic.
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PROOF: It follows from the assumptions that Sx, contains elements
with positive length, so X’ must be projective by Kodaira’s result
[12, Thm. 8]. By (1.9.) we may compose the Hodge isometry with an
element in f±idj. Wx such that the resulting Hodge isometry ~* maps
the Kâhler cone of X’ onto the Kàhler cone of X. Following (1.8.) this
means that 0* preserves effective classes. So X and X’ are isomorphic,
by (4.2.).

§5. The local Torelli theorem for K3-surfaces

(5.1.) In order to prove the local Torelli theorem for K3-surfaces, it
is necessary to recall some of the general theory of deformations.
A deformation of a compact connected analytic manifold Xo con-

sists of a cartesian diagram of (germs of) analytic spaces

where (some representative of) p is a proper and flat morphism.
When no confusion can arise, we identify Xo with its image under i

and then speak of p : (X, X0) ~ (S, so) as a deformation of Xo.
The deformation is called smooth when (S, so) (and hence (X, X0))

is. The deformations of a fixed Xo actually form the objects of a
category whose morphisms are pairs of analytic map-germs (9f, 03C8)
such that the diagram below commutes

and the square is cartesian. A deformation p of Xo is called complete
if for any other deformation p’ of Xo there exists a morphism from p’
to p. Notice that we do not insist that this morphism be unique. If this
happens to be the case, then we call the deformation universal. A
universal deformation is a final object of our category and hence two
such are canonically isomorphic.



167

Kuranishi [ 15] has shown that complete déformations exist. In

order to state his result in a more precise manner we need another
notion.

If p : (X, xo) ~ (S, so) is déformation of Xo, then over Xo we have an
exact sequence of tangent sheaves

where the last term should be understood as the sheaf of local

sections in the (trivial) pull-back of the Zariski-tangent space Ts,so
under p |X0: Xo - f sol. In the associated cohomology sequence we find
a differential

which in a sense measures up to first order how the complex structure
on the underlying L~-manifold is deformed. This homomorphism is
called the Kodaira-Spencer map. Note that the Kodaira-Spencer map
is compatible with base-change, i.e. if (1Jt, gi) is a morphism from p’ to
p, then pp = pp 0 dty(s0. According to Kuranishi [15], complete defor-
mations exist (and if H2(X0, 0398X0) = 0, then there even exists a smooth
deformation) for which the Kodaira-Spencer map is an isomorphism
(such a deformation is necessarily complete). Note that this last

criterion is met by K3-surfaces, for Serre duality implies h2(X°, 0398X0) =
h0(X0, 03A91x0) = 0.

(5.2.) Before we are going to discuss the Torelli theorem for

K3-surfaces, it is convenient to introduce the notion of a marked

déformation. Fix once and for all a lattice L which is isometric the

second cohomology lattice of a K3-surface. If p : X~ S is a family of
K3-surfaces, then a marking of p is an isomorphism of R2p*(Z) onto
the constant local system L over S which induces over each base

point an isometry. Clearly, the family p : X ~ S admits a marking if
and only if the local system R2p *(Z) is trivial. This is for instance the
case when S is simply connected. Likewise, one defines the notion of
a marked deformation of a K3-surface. Such a marking is entirely
determined by a marking of the surface Xo which is subject to

deformation.

(5.3.) If X° is a K3-surface and w E H2,0(X0, C) a generator, then by
elementary Hodge-de Rham theory, we have (w, M) = 0 and ~03C9~, ~ &#x3E; 0.
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This leads us to introduce the period space

Notice, that f2 is an open subset of a nonsingular quadric in P(Lc). In
particular, fl is an analytic manifold of dimension 20. Observe also,
that ,f2 is an orbit in P(Lc) of the Lie group Aut(LR). As a homo-
geneous manifold n is then isomorphic to O(3,19)/(SO(2) x O(1,19)),
so this action is not proper.

If (o E 03A9 is represented by the complex line e C Le, then the tangent
space of fi at w is naturally isomorphic to Hom(~, ~/~), where
el. C Le denotes the orthogonal (non-hermitian) complement of ~.

(5.4.) To any marked family (p : X ~ S, a : R2p *(Z) ~ L) of K3-sur-
faces we associate a period mapping T : S - fi which assigns to s E S
the complex line a (H2.O(Xs, C)) C Le. Since p *Kx/S is locally free of rank
1 it is locally generated by a nowhere zero section. Here we let KX/S
be the sheaf of relative holomorphic 2-forms on over S. This section
gives a holomorphically varying nonzero holomorphic 2-form ws on Xs.
Following Kodaira-Spencer [13] the period map T is holomorphic.

In the case of a marked deformation p : (X, X0) ~ (S, so) of a K3-
surface we of course get an analytic germ T : (S, so) f2. The differen-
tial of T at so can be viewed as a homomorphism dT(so) : Ts0 ~

Hom(H0(X0, 03A3i , H’(Xo, f2 Indeed for any tangent vector a E
TJS) the image T(so)* a is an element of Hom(H2,0(Xo),

H2,0(X0)~/H2,0(X0)) under the identification of L with H2(X0, C) via
the marking, and there is a natural identification of H2,0(X0)~/H2,0(X0)
with H1(X0, n 1X0).

(5.5.) LEMMA: The differential dT(So) is the composite of the Kodaira-
Spencer map and the homomorphism

obtained by the cup product

PROOF: 03C4(S0)*·(~~t) associates to any holomorphic 2-f orm 03C9 (s) on X.
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depending differentiably on s the derivative w’(so) = ddt 03C9(s0) in the
t-direction modulo (2, 0)-forms. Now choose o) (s) to be holomorphic-
ally varying (cf. (5.4.) above). Let (ZI, z2) be local coordinates on Xso
and (WI(Z, t), w2(z, t)) local coordinates on Xt depending holomor-
phically on t with boundary conditions (WI(Z, 0), W2(Z, 0)) = (z1, z2).
If the local expression for w(s) equals f (z, s) dw, A dW2 with

f (z, s) holomorphic in s we find; w’(so) ~ f (z, s0)(w’i(z,0)) A dz2 +
a( W2(Z, 0)) A dz,] modulo (2, 0) forms. But [(w’(z, 0)) +

(w’i(z, 0)) n a is a Dolbeault-representative for the Kodaira-Spencer

class pp a and the right hand side is a Dolbeault representative

for the cup product cup pP a ~ 03C9 (s0): it is obtained by contracting
representatives for both classes.

(5.6.) LEMMA: The map ’cup’ (and hence V) is an isomorphism.

PROOF: Choose a generator cv E HO(XO, 03A92x0. Then to is a nowhere
vanishing 2-form and the contraction homomorphism 0398x0~03A91x0
obtained by contracting with to is an isomorphism. Since u E

H1(X, Ox ) H cup(03C3 ~03C9) E H’(X, f2’ ) is induced by this coefficient-
isomorphism, the lemma follows.

(5.7.) COROLLARY. Any K3-surface Xo admits a smooth universal
deformation. A marked deformation is universal if and only if the
associated period map-germ is a local isomorphism.

PROOF: As observed in (5.2.), Kuranishi’s criterion implies the

existence of a smooth complete deformation p : (X, X0)~ (S, so) such
that the Kodaira-Spencer map is an isomorphism. Choose a marking
for X. This determines a marking for p. Then the differential of the
associated period map-germ dT(so) : Ts0~ T03C4(s0)03A9, being the composite
of the Kodaira-Spencer map and V, is an isomorphism. So T : (S, s0)~
fl is a local isomorphism.
We prove that p is universal. Let p’:(X, X0)~(S’, so) is any

déformation of Xo and let 03C4’:(S, s0)~03A9 denote the period map-germ,
determined by the marking of Xo. Since p is complete, there is a

morphism (03C8, Ji) of déformations from p’ to p. Then T 0 t/1 = T’. Since
T is a local isomorphism it follows that tp is unique.
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So any morphism from p’ to p is of the form (1/1", 03C8). In that case,
there is a (unique) automorphism 0 : (X’, X0)~(~, Xo) which com-
mutes with p’ and satisCes 03A6|X0=idx0 and 03C8’ = 03A603BF03C8. Suppose
03A8’ ~03A8. Then 03A6 ~ id, so there is a largest k E N with the property
that the homomorphism 03A6*id : OX~OX maps into Ox(-kX0). Then
the composite

is nontrivial. As the kernel of this map contains Ox-(-X0) as well as
the constants, it factorizes over a (nontrivial) homomorphism

If we identify the right hand side with Cré Q9 cmks,s’0/mk+1s’ we may also
view this homomorphism as a section of Oxo 0 cm  kt ’, But this
contradicts the fact that Xo does not possess nontrivial vector fields.
So 03A8 = 03A8’, indeed. If T’ were also a local isomorphism, then ty (and
hence 1/1’) would be an isomorphism, thus implying that p’ is universal.

§6. The density theorem

If X is a surface and Sx ~ H2(X, R) its algebraic lattice, then the
set of integral points in H2(X, R) orthogonal to Sx is a lattice which

we denote by Tx and refer to as the transcendental lattice. The

subspace spanned by Tx in H2(X, C) can be characterized as the
smallest rationally defined subspace of H2(X, C) which’ contains

H2,o(X, C). We call X exceptional if rank Sx = dim H1,1(X, R), or

equivalently if H2,0(X) ~ 2,0(X) is defined over Q. By (1.3.), Tx Q9 R
is then naturally endowed with a complex structure, in particular, Tx
is naturally oriented.

If X is a Kummer surface arising from a complex torus A, then
following (3.4.) there is a canonical isomorphism (defined over Q)
from H2,0(A) onto H2,0(X) and so X is exceptional if and only if A is.
We shall prove that the period points of exceptional Kummer sur-
faces form a dense subset of 03A9.

(6.1.) PROPOSITION: Let T be a primitive oriented sublattice of L of
rank two such that (x, x) E 4 Z for all x E T. Then there exists a

marked exceptional Kummer surface (X, a : H2(X, Z) ~ L) such that a
maps Tx isomorphically and orientation preserving onto T.
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PROOF: We prove this proposition in three steps. Let T’ denote the
oriented Z-module T endowed with the even integral form ~,~’: = 12~,~

STEP 1. There exists a two-dimensional complex torus A whose
transcendental lattice is isometric to T’.

PROOF: As at the beginning of §3, let F be an oriented free

Z-module of rank 4 and endow 20393 with the symmetric bilinear form
(,) coming from the orientation. Since 20393 is isometric to

H ~H E9 H, there exists by (2.4.) an isometric primitive embedding
j : T’ ~ 20393. Let : 20393~C be a linear form which vanishes on the
orthogonal complement of j(T’) and maps j (T’) isometrically into C
such that Cù 0 j is orientation preserving. Choose an orthonormal basis
{e1, e2j of j(T’)R.
Then (00, (0) = 03C9(e1)2+ w(e2 )2 = Cù( el)2 + (i03C9(e1))2 = 0 and ~03C9, ~ =

’Cù(el)12 + lioo(el)12 = 2|03C9(e1)|2 &#x3E; 0 and so 03C9  03C9 = 0 and 03C9  is a posi-
tive multiple of det (both are viewed as elements of Hom(A 4r, C)).
Hence we can write 03C9 = 03C91  03C92 with 03C9i E Hom(r, C). Define f2 =

(03C91, 03C92) : 0393 ~ C2. Then 03A9 (0393) is a lattice in C2, since 03C91  03C92  1 

2 ~ 0. Let A denote the torus C2/03A9(0393). Then we have a natural
orientation preserving isomorphism r ééà HI(A, Z). The corresponding
isometry between Hom(20393, Z) and H2(A, Z) maps the line C ·03C9 onto
H2,0(A, C) and maps therefore Ker(w) onto SA and j (T’) onto TA.

STEP 2.: There exists an exceptional Kummer surface X whose
transcendental lattice is isometric to T.

PROOF: Let X be the Kummer surface obtained from a canonical

involution of A. The injection 03B1: H2(A, Z)~ H2(X, Z), defined in

(3.4.), multiplies the intersection form with two and maps H2,0(A, C)
isomorphically onto H2,0(X, C) and so Tx = a (TA) and Tx = T.

STEP 3

PROOF OF THE PROPOSITION: Choose an isometry 0’: H2(X, Z) - L.
Following (2.4.) there exists an automorphism of (L, (,)) which maps
1’(Tx) orientation preserving onto T. Composing 1’ with this

automorphism yields an isometry (p : H2(X, Z) - L with 0 (Tx) = L.

Next we show that there are enough sublattices of L satisfying the
conditions of prop. (6.1.).

(6.2.) PROPOSITION: The set of rationally defined 2-planes P C LR
satisfying (x, x) E 4 Z for all x E P fl L is dense in the Grassmannian
G2(LR).
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We prove this with the help of the following:

(6.3) LEMMA: Let m, n E N and let M be a lattice containing a

primitive vector eo with (eo, eo) = m(mod n). Then the set of lines

1 C MR spanned by a primitive vector e with (e, e) ~ m (mod n) is dense
in the projective space P(MR).

PROOF: Let U be an open nonvoid subset of P(MR). Then U
contains a rationally defined element 1, spanned by a primitive vector
e E M. If e ~ ±e0, then e and eo are linearly independent. Choose
f E (Re + Reo) fl M such that f e, f 1 is a basis of (Re + Reo) ~ M and
write eo = ae + bf with a, b E Z. Since eo is primitive, gcd (a, b ) = 1.
Then for any N E Z, eN : = eo + Nbe = (a + Nb)e + be is also primitive
since gcd (a + Nb, b ) = gcd (a, b ) = 1. Taking N E n Z, we have

(eN, eN) ~ ~e0, eo) ~ m (mod n). For N sufficiently large we also have

that ReN = R(e +1Nbe0) ~ U. So U contains an element with the
required properties.

PROOF OF THE PROPOSITION: Let U be a nonvoid open subset of

G2(LR). Since the hyperbolic plane contains a primitive vector of
square length 4, so does L. It follows from the lemma that there exists
a PEE U which contains a primitive vector el with (e,, e1~ ~ 4(mod 8).
Let M denote the orthogonal complement of el in L. By (2.4.), M
contains a hyperbolic plane as a direct summand and so M contains a
primitive vector of square length 64. Our lemma implies that M

contains a primitive vector e2 with (e2, e2) ~ 0(mod 64), such that

P : = Rel + Re2 E U.
We claim that any f E P fl L satisfies ~f,f~ ~4 Z. Since (e1, e1~ f -

(el,/)el is an element of P ~ L orthogonal to el, it is an integral
multiple ae2 of e2. Taking the square length of both sides of (el, e1~f =

(el, f )el + ae2 yields

Letting v2 denote the 2-adic valuation on Z, then V2«el, f~2~e1, e1~) =
2v2(~e1, f~) + 2 and v2(a2~e2, e2~) ~6. So V2(~e1, e1~2~f1, fi» is even or ~ 6.
This implies that v2(~f,f~) ~ 2, i.e. that ~f,f~ E 4 Z.

(6.4.) COROLLARY: The period points of marked projective Kummer
surfaces lie dense in f2.
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PROOF: By (6.2.) the set of w EE n with the property that

(Re(w), Im(03C9)} spans a rationally defined 2-plane P C LR such that
~x,x~ ~ 4 Z for all x E P n L is dense in 03A9. Following (6.1.) any such
w is the image under T of a marked exceptional Kummer surface X.
Since Sx contains elements with positive length, X is projective.

(6.5.) REMARK: The proof of (6.1.) depends in an essential way on
the f act that L contains H ~ H ~ H as a direct summand. If we
were only considering K3 surfaces with a fixed polarization (as is

done in [20]), then the arguments used in (6.1) would no longer be
valid. For this reason the proof given in [20, §6] is incomplete.

§7. The main lemma of Burns-Rapoport

By a family of analytic manifolds we mean a proper and flat

morphism p:~~ S between analytic spaces such that each closed
fibre is smooth. The f amily is called smooth if S is smooth and p is

everywhere of maximal rank. The main result of this section is the
following proposition, which is essentially due to Burns-Rapoport [4].

(7.1.) PROPOSITION: Let S be an analytic manifold which serves as a
common base for two smooth families p : ~~ S and p’ : ~ ~ S of
Kâhlerian K3-surfaces1 and let 03A6* : R2p’*(Z)~R2p*(Z) be an

isomorphism of local systems which induces over each base point an
isometry. Let further be given a sequence {si E S}~i=1 converging to
socs and a sequence of isomorphisms {~i : Xsi ~ Xsi}~i=1 such that
~*i = 03A6*(si). Then X,’,,, and Xso are isomorphic. If moreover 03A6*(s0)
sends effective classes to effective classes, then there is a subsequence
of {~i}~i=1 1 which converges uniformly to an isomorphism ~0: XS0~ Xs0
such that ~*0=03A6*(s0).

We divide the proof over three separate lemmas.
Let Ti C X,, x X’. C X x X denote the graph of ~i. We view Fi as a

positive integral analytic current of dimension 4 on X x X.

(7.2.) LEMMA: A subsequence of {0393i} converges (in the space of
functionals on the space of continuous 4-forms) to a positive integral
analytic current To with support in Xso x X’s0.

’The hypothesis that we are dealing with K3-surfaces is only used in a modest way.
Indeed it may be replaced by the condition that the surfaces are minimal non-ruled.
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PROOF: By a result of Bishop [2], it suffices to show that the

4-volumes of cycles Fi (in terms of any hermitian metric on Y x X’)
are bounded. Since the cocycles associated to Fi are cohomologous
for i sufficiently large, it is convenient to choose such a hermitian

metric in a particular way.
We choose an open neighbourhood V of so in S and Kâhler

metrics q, on XS and q§ on X s depending continuously on s E S and
we compute volumes with respect to the product metric BS on Xs x Xs.
We let [0393n] ~ H4(Xs  X’s, R) = H4(X’,R) be the clas s of 0s and
finally [03A6*] the class of 03A6* in H4(ae x X’, R). We find:

which is the value af sn of the continuous function f (s) = 12[03A6*] U Ks,
hence bounded on any compact neighbourhood of 0 in S.

(7.3.) LEMMA: The limit current ro is of the form 0394 + 03A3Ni=1 Ci x C;
where à is the graph of an isomorphism and fcil resp. lcîl are
effective divisors on Xso resp. Xs0.

PROOF: The cohomology class [0393i]~H4(Xsjx X’s,Z) defines

homomorphism from Hj(XSi’ Z) to Hj (X’sj, Z) (which we also denote by
[Fi]) as follows: if z is any j-cycle on XS;, choose a j-cycle 1 on Xs;
homologous to z, such that z x Xs; is in general position with respect
to ri and assign to z the j-cycle on X’ obtained by projecting
(î x X’si) n r onto Xs;. This assignment induces a map on homology
which is, of course, nothing but the one induced by Oi. Hence the dual
[fi]* of [Fi] equals ~*(si) in dimension 2 and is the obvious isomor-
phism in the other dimensions. Since X x X’ ~ S is locally trivial in
the ~ -sence, this also holds ’in the limit’, that is, [To]*, defined in a
similar way as [Fi]*, equals 0*(so) in dimension 2 and is the obvious
isomorphism in the other dimensions.
Now if d’ denotes the degree of the projection of Fo onto Xso, the

map induced by [Fo] on 4-dimensional homology is multiplication with
d’. So d’ = 1, in other words, we can write 03930=0394+0393’0 where à

projects birationally onto Xso and rÓ projects onto a lower dimen-
sional subvariety on X’. The same argument applied to 0-dimensional
homology shows that either à projects birationally onto Xso or that
the projection 0393’0 ~Xs0 is of degree one. We claim that the former
holds. If not, thenà projects onto a subvariety of lower dimension in

Xso and hence the image of ~*(s0)= [0393]* [a]*+ [T0]* : H2(Xso, Z)
H2(Xso’ Z) would consist of algebraic classes only. Then 0*(so) would
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map into a proper sublattice of H2(Xso, Z), which contradicts the
assumption that 0 *(so) is an isomorphism. Hence A is the graph of a
birational map ~’0: Xs0 ~ X’s0 and TÓ projects onto a lower dimensional
subvariety in both Xso and Xso. Since Xso is absolutely minimal §1 must
be an isomorphism. Finally, fo being a purely 2-dimensional non-
negative integral current is necessarily a finite sum of products of
effective divisors on Xso and Xso.

The previous lemma already implies the first clause of (7.1.). We
therefore assume from now on that the last condition, ~*(s0) maps
effective classes to effective classes, is also fulfilled. We further

identify Xso with X’s0 by means of the isomorphism §1 and we write Xo
instead of Xso. So 0*(so) is an automorphism of the lattice H2(Xo, Z)
which respects the set of positive classes. According to the previous
lemma, 0 *(so) is of the form 03A6 (s0)(x) = x + 03A3Ni=1 (ci, x~ ci where ci and
ci are classes of effective divisors. By leaving out the terms for which
ci = 0, we may (and do) suppose that each ci is effective. The

following lemma then completes the proof of our proposition.

(7.4.) LEMMA: For all i, ci = 0, in particular 03A6*(s0) is the identity.

PROOF: Let t/1 denote the restriction of 03A6*(s0) to H1,1(X0, R). Then
t/J leaves the Kâhler cone V in H1,1(X0, R) invariant. The Brouwer
fixed point theorem, applied to the set of half-lines in the closure V of
V, implies that qi stabilizes a half-line in V, i.e. V contains an eigen
vector e with positive eigen value À. So ~03BE,03BE~~ 0 and (e, c~ ~ 0 for any
class c of an effective divisor. Let H C H’,’(Xo, R) denote the ortho-
gonal complement of e in H1,1(X0, R). Since ~03BE,03BE~~ 0, the restriction
of (,) to H is negative, with nullity at most one. The remainder of the
proof is split up into four steps.

STEP 1 : ty acts with finite order on the subspace H’ of H spanned
by irreducible classes in H.

PROOF: First of all (,) is negative semi-definite on H’ and
preserves a lattice inside of H’. So, if the nullspace is {0}, 03C8 has finite
order. In case there is a 1-dimensional nullspace, (spanned by e) we
observe that tp has finite order mod 03BE, i.e. for some k E N we have

t/1k(X) = x + 03B1(~)03BE, for all x E H’.

Let Di (i = 1, ..., r) be irreducible curves on Xo, whose classes di
belong to H. Assume that ~ri=1 Di is connected. Then (di, dj~ ~ 0
(i ~ j), the matrix (-(di, dj~) is negative semi-definite and there is not a
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proper subset I of {1, ...,r} such that i E Î and j ~ {1,...,n}-Ï
imply that ~di,dj~=0. Hence the matrix (-~di, dj~) satisfies the

assumptions of ([3], §3 Lemma 4) and hence the null space of ~,~|H0 is
{0} or 1-dimensional with basis 03A3ri=0 aidi = 03BE (ai ~ N)-here Ho =
spanid{d1, ..., dr}. Now put 03C80:= t/Jk IHo and choose a Kâhler class K.

Since ipo preserves effective classes 03B1(di) ~ E ~ {0}. Since tpo preser-
ves Kâhler classes we have 03C8-10(di), 03BA &#x3E; = (di, 03C8(03BA)&#x3E; &#x3E; 0 and one checks
that this would contradict 03B1(di) &#x3E; 0. Hence 03B1(di) = 0 and 03C80 = id.
Similarly t/Jk IH’ = id.

STEP 2: Any effective class in. H is a linear combination of

irreducible classes in H. Moreover 03C8(03BE) = e.

PROOF: Let c E H be positive and write c = Yi nidi where each dj is
irreducible and n; EN. Then 0 = (c, 03BE&#x3E; = Ej nj(db 03BE&#x3E;. Since (dj, 03BE) ~ 0 it
follows that (dj, e) = 0, that is dj E H for all j.
Taking the inner product of the equality 03C8(03BE) = 03BB03BE = 03BE + li (cl, e)ci

with e yields 0 = Ei (ci, e)(ci, ç). In each term of the right hand side
the factors are -0, so for any i we have (ci, e) = 0 or (ci, e) = 0. Hence
(À - I)e = 03A3ci~H (ci, e)ci. By step 1 and the already proven clause of
step 2, the right hand side of the last equality is invariant under some
power of 03C8. So if k 0 1, then it must be a root of unity. But this leads
to a contradiction, as a positive root of unity necessarily equals 1.

STEP 3: 03C8 is of finite order.

PROOF: Choose any K E V and consider the equality

Since ci, 03BA&#x3E; 0 (for ci is positive) and c’i, 03BE&#x3E; ~ 0 for all i, it follows

that c’i, 03BE&#x3E; = 0. This proves that the subspace P generated by
Ic’i, c’N} is contained in H. It follows from the two previous steps
that Ji acts with finite order on P. Let Q denote the orthogonal
complement of P in H. Since (,) is negative on H, P and Q span all of
H. Clearly qi acts as the identity on Q. Hence Vi acts with finite order
on H. Now step 3 follows from the (readily verified) fact that any
orientation preserving automorphism of a vector space leaving a
nondegenerate quadratic form invariant and a hyperplane pointwise
fixed must be the identity.

STEP 4: For all i, ci = 0.
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PROOF: Choose any element K’ in the Kâhler cone V and put
K : = K’ + 03C8(03BA’) + ··· + t/lk-l( K ’), where k denotes the order of 03C8. Since
V is a t/1-invariant convex cone we have that K E V. Moreover
ty(K) = K. So

Since c’i, 03BA&#x3E; ~ 0 and (Ci, K ) &#x3E; 0 it follows that (ci, 03BA&#x3E; = 0 for all i. This

implies that c’i = 0 for all i.

The following proposition shows that in the conclusion of (7.1.) we
may delete ’a subsequence of’.

(7.5.) PROPOSITION: Any automorphism of a kâhlerian K3-surface
which acts trivially on its second cohomology group is the identity.

PROOF: Let X be a kâhlerian K3-surface and denote by G the

group of its automorphisms which act trivially on H2(X, Z).

STEP 1: G is finite.

PROOF: Let g E G and apply (7.1.) to the trivial family with Oi = g’.
It follows that a subsequence of {gi}~i=1 1 converges to some go E G.
This proves that G is compact. Since a K3-surface does not possess
nontrivial holomorphic vector fields, G is of dimension zero. Hence G
is finite.

STEP 2: Let g E G be of prime order p (&#x3E; 1). Then the fixed point
set of g consists of 24 distinct points, at each of which the action of g
is given in local coordinates (u, v ) by (u, v) H (eu, 03BE-1 03BD) with e a pth
root of unity ~ 1.

PROOF: Since X is a K3-surface, it possesses a nowhere vanishing
holomorphic 2-form wx. As HO(X, 03A92X) is a direct summand of

H2(X, C), Wx is left invariant by g. So the jacobian of g at a fixed
point has determinant 1. Since, at a fixed point, g is in local coor-

dinates (u, v) given by (u, v) H (eu, eiv) for some j E Z/p, we must
have j = -1. In particular, the fixed points of g are all isolated. Since
g acts trivially on the homology of X, the Lef schetz number of g
equals the euler number of X, that is, equals 24. The Lef schetz fixed
point formula then implies that there are 24 fixed points.

STEP 3: G reduces to the identity.
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PROOF: Since G is finite it suffices to show that G does not contain

elements of prime order. Suppose not and let g E G be of prime order
p. Denote by X the g-orbit space of X. Following step 2, X has 24
singular points, each of which is locally isomorphic to the orbit space
of the Z/p -action described there. As is well known (see for instance
[6]) such a singularity admits a (minimal) resolution of which the
exceptional divisor consists of a string of p - 1 nodal curves. Let
r :  ~ X denote the resolution of X, thus obtained.
We claim that X is a regular surface with trivial canonical bundle

(and hence a K3-surface). The regularity follows from the fact that r
induces an isomorphism H1(, R) ~ H1(, R) and the identification

H1(, R) ~ H1(X, R)g = 101. The 2-form 03C9X on X is g-invariant and
thus determines a nowhere vanishing 2-form Cùx on the smooth part of
X. It is not difficult to check that r*Cùx extends to a holomorphic
nowhere vanishing 2-form on X.
Then X, being a K3-surface, has second betti number 22. This

yields a contradiction, for by choosing a nodal curve over each
singular point of X, we obtain 24 mutually orthogonal nodal classes.

(7.6.) REMARK: From (7.5.) together with the density theorem (6.4.)
it readily follows that in (7.5.) the assumption that X be kâhlerian is
superfluous.
Compare [4], Proposition 1.1.

§8. Openness of the Kâhler cone

In this section we prove the following:

(8.1.) PROPOSITION: Let p : X ~ S and p’ :X’ ~ S be two families of
kâhlerian K3 surf aces over a common base S and let ~* : R2p’*(Z) ~
R2p*(Z) be an isomorphism of sheaves which induces over each base
point s E S a Hodge isometry. Then the set of s E S with the property
that ~*(s) maps the Kâhler cone of X onto the Kâhler cone of XH is
open in S.

For this purpose we consider the space f2’ consisting of pairs
(w, K ) e fl x LR satisfying (K, 03BA&#x3E; &#x3E; 0 and (, K ) = 0 for some represen-
tative cd E Le - {0} of w. In this case, the vectors Re(), Im() and K
are mutually orthogonal and have all three positive length. So they
span a 3-dimensional positive definite subspace of LR, of which it is
easy to see that it only depends on the pair (03C9, K ) E fl’. Clearly, the
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Lie group Aut(LR) acts on 03A9 and the map just defined from 03A9’ to the

space of 3-dimensional positive definite subspaces is a Aut(LR)-
equivariant fibre bundle. Since Aut(LR) acts in a proper fashion on the
base space of this bundle (it is the symmetric space associated to

Aut(LR)), the action of Aut(LR) on f2’ is also proper.
Now recall that any 8 E L of length -2 determines a reflection ss,

given by x H x + (5, x&#x3E;03B4, which belongs to Aut(L). Since Aut(L) is a
discrete subgroup of Aut(LR), it follows that the union of the fixed

point loci of these reflections is closed in f2’. This is of course

equivalent to saying that the set {(03C9,03BA) ~ 03A9’:,03B4) = 0 and (K, 8) =
0, (3, 03B4&#x3E; = -2} is closed in f2’. This observation will be used to prove
the following result.

(8.2.) LEMMA: Let p : ài - S be a family of kâhlerian K3-surfaces.
Then the union of vector spaces {H1,1(Xs, R)I,es makes up a real

analytic subbundle of R2p *(R) in which the union of Kâhler cones is
open.

PROOF: Without loss of generality we may (and do) suppose that S
is simply connected. Then the family admits a marking 03B1:R2*(Z) ~
L. We denote the associated period mapping by T : S - f2. Since T is
holomorphic, the subspaces 03B1(H1,1(Xs, R) (= real part of the ortho-
gonal complement of T(s)) vary in a real-analytic way with s E S and
hence U {H1,1(Xs, R) : s ~ S} defines a real-analytic subbundle

R) of R 2p *(R), as asserted.
Now, let K E H1,1(Xs, R) be contained in the Kâhler cone of Xs,

Since the Kàhler cone of Xs is convex (in particular connected) and
contains a Kâhler class, there exists a compact connected neigh-
bourhood K of K in the Kâhler cone of Xs which contains a Kâhler
class in its interior. More or less by definition, there is no vector of

length -2 in L which is simultaneously orthogonal to 03C4(s) and an
element of K. It follows from the discussion preceding this pro-

position, that we can find a neighbourhood V of K in H1,1(X/S, R)
such that for any K’ ~ V ~ H2(Xs’, R), no vector of length -2 in

H2(Xs, Z) n H1,1(Xs, R) is orthogonal to K’. By shrinking V we can
arrange that 03BA’, 03BA’&#x3E; 0 for any K’ E V and that V ~ H2(Xs’, R) is

connected for any s’ E S. According to Kodaira-Spencer [14], the set
of Kâhler classes is open in H1,1(X/S, R). Since K contains a Kâhler
class, there exists a neighbourhood V of s in S such that V n

H1,1(Xs’, R) contains a Kâhler class for any s’ E V. But then any such
intersection must be contained in the Kâhler cone of Xs,. The lemma
follows.
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PROOF oF (8.1.): The conditions imposed on ~* imply that ~*
induces a bundle isomorphism H1,1(X’/,S, R) ~ H1,1(X/S, R). It is clear
from (1.7.) that if § * maps an element of the Kâhler cone of X’s into
the Kâhler cone of X,, then 0 * maps the whole Kâhler cone of X’s
onto the Kâhler cone of X,. The theorem now follows from the last

proposition.

§9. The Torelli theorem for K3-surfaces

We are now able to prove the Torelli theorem for kâhlerian K3-

surfaces as announced in the introduction.

(9.1.) THE TORELLI THEOREM FOR KÀHLERIAN K3-SURFACES: Let X
and X’ be kâhlerian K3-surfaces and suppose there exists a Hodge
isometry ~* : H2(X’, Z) ~ H2(X, Z) which respects the Kâhler cones
(or equivalently: sends the positive cone of X’ to the positive cone of
X and nodal classes to nodal classes). Then is induced by a unique
isomorphism ~ : X ~ X’.

PROOF: We embed the two surfaces in locally universal families:

having both a simply-connected base. Following Kodaira-Spencer
[14], we may assume that both are families of kiihlerian K3-surfaces.
Let 03B1 : R2p*(Z) ~ L be a marking of the first family, let

03A6*:R2p’*(Z) ~ R2p*(Z) be the unique isomorphism extending ~* and
put 03B1’ : = 03B1 03A6*. We denote the associated period mapping by T : S
f2 and T’ : S’ - f2.

By the local Torelli theorem (5.7.) T and T’are local isomorphisms.
Since ~*(s’0) is a Hodge isometry, T(so) =,r(s’). Hence, after
shrinking S and S’ if necessary, there is a unique isomorphism
03C8 : S ~ S’ such that 03C4 = 03C4’ · 03A8. The family which p’ induces over S
(via 1/1’) is, of course still locally universal and so we may as well
assume that S = S’, 1ft = id and (hence) T = T’. Now 0* induces over
each s E S a Hodge isometry and 03A6*(s0) = ~* respects the Kâhler
cones. Then following (8.1.), there is an open neighbourhood V of so
in S such that 0*(s) respects the Kâhler cones for any s E V.
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By the Density Theorem (6.4.), the period points of projective
Kummer surfaces lie dense in ,fl, and so we can find a sequence
{si E U}i~N converging to so such that T(sl) (= 03C4’(si)) is the period
point of a projective Kummer surface. Then the special Torelli
theorem (weak form) asserts that Xsi and X’si are both projective
Kummer surfaces. Since 45*(si) is a Hodge isometry which preserves
the Kâhler cones, it is by the strong form of the special Torelli
theorem induced by an isomorphism 03A6(si) : Xsi ~ X’si. It now follows
from proposition (7.1.) that ~* = 03A6*(s0) is induced by an isomorphism
~ : X ~ X’. The uniqueness of ~ is implied by (7.5.).

§ 10. Applications

Our first application concerns the diffeomorphism type of K3

surfaces.

(10.1) PROPOSITION: Any nonsingular quartic surface in pl is a

K3-surface. All K3-surfaces are mutually diffeomorphic and each
K3-surf ace is simply connected.

PROOF: A nonsingular quartic X in p3 has by adjunction formula
trivial canonical bundle. The Lef schetz theorem implies that such a
surface is simply connected, hence regular. By definition, X is then a
K3-surface.

It remains to show that all K3-surfaces are mutually diffeomorphic.
We first observe that all Kummer surfaces are diffeomorphic, since any
two such can be connected by a family of Kummer surfaces. Now, if Xo
is an arbitrary K3-surface, realize Xo as a fibre p-’(so) in a locally
universal family p : ài - S. Arguing as in (9.1) we see that the set of s E S
for which X, is a Kummer surface is dense in S. It follows that X0 ~ Xso is
diffeomorphic to a Kummer surface.

Next we discuss an alternative formulation of the global Torelli
theorem in terms of a moduli space for unpolarized Hodge structures,
introduced by Burns-Rapoport [4].

Consider the class of marked families (p : X ~ S, 03A6:R2p*(Z) ~ )
of kâhlerian K3-surfaces. A morphism (1/1, 03C8) from one such family
(p : X ~ S, 03A6) to another (p’ : X’ ~ S’, 03A6) defined in the obvious way: the
diagram
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should be cartesian and the composition of the map R2p’*(Z) ~
R 2p *(Z) induced by the pair (1/’, 03C8) with 0 should equal 4J’. We thus
obtain the category of marked kiihlerian K3 surfaces. Our aim is to
construct a final object (PM : XM ~ M,4JM) for this category. Usually,
one calls such an object a fine moduli space of marked kâhlerian
K3-surfaces.

(10.2) PROPOSITION: There exists a fine moduli space (pm XM ~ M,
Om) of marked kiihlerain K3-surfaces. The associated period mapping
TM : M ~ 03A9 exhibits M as an analytic space étale over il.

PROOF: Let (pM’ : XM’, 03A6M’) denote the disjoint union of the class of
locally universal f amilies of kâhlerian K3 surfaces. Let R1 resp. R2
denote the equivalence relation on Vm, resp. M’ generated by the
mappings 03A8 resp. ip coming from the morphisms (1/’, 03C8) in our category.
Clearly, el is an open equivalence relation. As morphisms in the full
subcategory of locally universal families are unique, it follows that e2 is
also open and that each R2-equivalence class meets any fibre of P’M in at
most one point. So the quotient spaces Tm XM’/R1 and M : M’le 2
are analytic manifolds and the quotient pm : XM ~ M of pM- is in a
natural way a family of kàhlerian K3-surfaces. Clearly, OM, induces a
marking (PM of p. It is not hard to see that this family is a final object of
our category.
The fact that TM is étale is immediate from (5.7).

(10.3) The following example, due to Atiyah [1], shows that the
space M doesn’t satisfy the Hausdorff axiom.

Consider the family of quartic surfaces IXtl in p3 which, in affine
coordinates is given by

Letting t run over the open unit disk D C C, we get a f amily p : X ~ D
smooth over D - {0}, while Xo has the origin xo as its unique singular
point (an ordinary double point). This is also the unique singular point
of the total space X. According to (10.1.) the nonsingular fibres of p
are K3 surfaces. The tangent cone of T at xo is given by x2 + y2 + z2 +
t2 = 0, so the blow up at x0, 03C0 : , desingularizes T and has a
nonsingular quadric surface E ~  as exceptional divisor. The proper
transform Yo of Xo is nonsingular and it is not hard to verify that it is
a K3-surface. The surface E, being a nonsingular quadric, is isomor-
phic to P’ x P’ and meets 0 with normal crossing along the curve
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E n Yo of bidegree (1, 1). Each of the two possible rulings of E
defines a contraction of E onto E f1 Yo. We thus obtain two smooth
families pi : Xi ~ D(i = 1, 2) of algebraic K3-surfaces which are

naturally isomorphic over D-{0}. We claim that this isomorphism
doesn’t extend over D. For otherwise we would have an automor-

phism of X acting trivially on ài - Xo but nontrivially on the tangent
cone of xo, which is clearly impossible.
Now choose a marking 03A61:Rp1*(Z) ~ L of pi (this possible since D

is simply connected). The isomorphism over D - 101 induces a mark-
ing 03A62 : Rp2*(Z) ~ L. These markings determine "classifying maps"
03C8i : D ~ M which coincide on D-101 but are nevertheless distinct.

This can only happen if M is non-Hausdorff.

Recall the definition of t2’: it consists of the pairs (03C9, K) e fl x LR
with (w, K) = 0 for some representative w E Le of à) and (K, K) &#x3E; 0. To

each 8 E L with 03B4, 8) = -2 there is associated a Picard-Lefschetz
reflection ss in L which also acts on 03A9’. Let 03A9" C f2’ denote the

complement of the set of fixed points of Picard-Lefschetz reflections.
Following the discussion in §8, fl" is open in f2’. We define an

equivalence relations- on 03A9’ by letting (03C9, 03BA) ~ (w’, K’) if and only if
03C9 = 03C9’ and K, K’ belong to the same connected component f2, n

({03C9} x LR). In other words, an equivalence class is an "abstract" Kâhler
cone. Let à : = f2 "/ - denote the quotient space. It is provided with a
canonical projection ir /Î - 03A9.

(10.4) LEMMA: The map Tr :  ~ 03A9 is a topological sheaf over il and
thus n receives the structure of an analytic space, étale over f2. For
any 03C9 ~ 03A9 the group {± id}  W03C9, where Ww denotes the group

generated by the Picard-Lefschetz reflections which fix Cù, acts in a

simple transitive manner on the fibre 03C0-1(03C9).

PROOF: Since fi" is open in f2’, there exists for any (Cù, K) E f2" an
open neighbourhood U of w in f2 and a continuous local section

03C3 : U ~ f2 " of the projection 03A9" ~ 03A9. The induced section à : U ~  of
w is clearly open, hence 03C3(U) is a neighbourhood of the equivalence
class of (W, K) in f2". The assertion concerning the group { ± id} x Ww
follows from the fact that this group acts in a simple transitive
manner on the connected components of fi" n ({03C9} x LR).

The period mapping TM : M ~ fl lifts in a natural way to a holomor-
phic mapping M : M ~  by assigning to m E M the equivalence class
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of (T(m), Kâhler cone of Xm). We then have the following reformulation
of the Torelli theorem.

(10.5) THE TORELLI THEOREM (alternative version): The diagram

is commutative and identifies TM with the restriction of Tr to an

dense-open subset of f2. In particular, TM maps M isomorphically onto
its image.

PROOF: The injectivity of îm is nothing but the Torelli theorem as
stated in (9.1.). The map fm is a local isomorphism, since TM and 03C0 are.

For any 03C9 ~ 03A9, TM defines a {±Id}  WW-equivariant injection from
03C4-1M(03C9). Since { ± id} x Ww acts transitively in the latter 03C4-1M(03C9) ~ TM (Cù) is
an isomorphism if 03C4-1M(03C9) ~ ~.

What is clearly lacking in the statement of (10.5.) is a description of
the image of TM. We know already that it is open and dense. A natural
question to ask is whether TM is surjective.

In order to discuss the recent developments concerning this prob-
lem, we need the notion of an almost-polarized K3 surface: if X is a
kâhlerian K3 surface, then a primitive algebraic class d E SX is called
an almost-polarization of X if d is in the closure of the Kâhler cone
and (d, d) &#x3E; 0. The existence of such a d implies, of course, that X is
projective. The pair (X, d) is called an almost-polarized K3 surface
and (d, d) is called its degree. An almost-polarization d of X is the
class of an almost-ample divisor D on X, i.e. a multiple of D defines a
birational morphism of X onto a projective surface whose singular
locus consists of rational double points. Kulikov claims in [14] to

prove a surjectivity property of TM for algebraic K3 surfaces: (w, d) E
03A9 x L is such that d is orthogonal to 03C9 and (d, d) &#x3E; 0, then there
exists a marked algebraic K3-surface (X, a) with T(X, a) = to. As
pointed out to us by D. Morrison this result can be sharpened as
follows: there exists moreover an almost polarisation dx with a(dx) =
d. Kulikov’s ingeneous proof contains some important ideas, but
unfortunately there is a gap. This gap has recently been filled in by U.
Persson and H. Pinkham. For almost-polarised K3-surfaces of degree
two and four, resp. two this result has been obtained earlier by J.
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Shah [22], resp. E. Horikawa [8]. Then A. Todorov [26] using the

sharpening due to D. Morrison of the Kulikow-Persson-Pinkham

result and S.T. Yau’s proof of the Calabi conjecture proved that TM is

surjective. Recently E. Looijenga obtained a proof that only uses the
refined density theorem as given §6 as well as S.T. Yau’s solution
of the Calabi conjecture.
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