Compositio Mathematica

Giuseppe Valla

On determinantal ideals which are set-theoretic complete intersections

Compositio Mathematica, tome 42, $\mathrm{n}^{\circ} 1$ (1980), p. 3-11
http://www.numdam.org/item?id=CM_1980__42_1_3_0
© Foundation Compositio Mathematica, 1980, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON DETERMINANTAL IDEALS WHICH ARE SET-THEORETIC COMPLETE INTERSECTIONS*

Giuseppe Valla

Let A be an $r \times s(r \leq s)$ matrix with entries in a commutative noetherian ring R with identity. We shall denote by (A) the ideal generated by its subdeterminants of order r. If (A) is a proper ideal of R, then the height of (A), abbreviated as $h(A)$, is at most $s-r+1$ (see [1], Theorem 3). In this paper we prove that there exist elements $f_{1}, \ldots, f_{s-r+1} \in(A)$ such that $\operatorname{rad}(A)=\operatorname{rad}\left(f_{1}, \ldots, f_{s-r+1}\right)$ (where $\operatorname{rad}(I)$ means the radical of the ideal I) in each of the following situations:
(1) $A=\left\|a_{i j}\right\|$ is an $r \times s$ matrix such that $a_{i j}=a_{k l}$ if $i+j=k+l$.
(2) A is an $r \times(r+1)$ partly symmetric matrix, where partly symmetric means that the $r \times r$ matrix obtained by omitting the last column is symmetric.
(3) $A=\left\|\begin{array}{lll}a^{p_{1}} & b^{q_{1}} & c^{r_{1}} \\ b^{q_{2}} & c^{r_{2}} & a^{p_{2}}\end{array}\right\|$ where (a, b, c) is an ideal of height 3 and p_{i}, q_{i}, r_{i} are positive integers not necessarily distinct.
It follows that if $h(A)$ is as large as possible, $s-r+1$, then the above determinantal ideals are set-theoretic complete intersections.

It is interesting to compare these results with the following theorem due to M. Hochster (never published).

Theorem: Let $t<r<s$ be integer, and let k be a field of characteristic 0 . Let $A=k\left[X_{i j}\right]$ be the ring of polynomials in rs variables, and let $I_{t}(X)$ be the ideal generated by the $t \times t$ minors of the $r \times s$ matrix $\left(X_{i j}\right)$. Then $I_{t}(X)$ is not set theoretically a complete intersection.

Let $A=\left\|a_{i j}\right\|$ be an $r \times s$ given matrix, where $a_{i j} \in R$ and $r \leq s$. In

[^0]this section we assume that $a_{i j}=a_{k l}$ if $i+j=k+l$, hence we may write
\[

A=\left\|$$
\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{s} \\
a_{2} & a_{3} & \cdots & a_{s+1} \\
\cdot & \cdot & \cdots & \cdot \\
a_{r} & a_{r+1} & \cdots & a_{r+s+1}
\end{array}
$$\right\|
\]

We shall denote by (A) the ideal generated by the r-rowed minors of A and if $\sigma=\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ is a set of r integers such that $1 \leq \sigma_{1}<$ $\sigma_{2}<\cdots<\sigma_{r} \leq s$, we put

$$
A_{\sigma}=\left\|\begin{array}{llll}
a_{\sigma_{1}} & a_{\sigma_{2}} & \cdots & a_{\sigma_{r}} \\
a_{\sigma_{1}+1} & a_{\sigma_{2}+1} & \cdots & a_{\sigma_{r}+1} \\
\cdot & a_{\sigma_{1}+r-1} & a_{\sigma_{2}+r-1} & \cdots \\
a_{\sigma_{r}+r-1}
\end{array}\right\|
$$

and $d_{\sigma}=\operatorname{det} A_{\sigma}$.
If $i=r, \ldots, s$ let \mathfrak{A}_{i} be the ideal generated by the d_{σ} with $\sigma_{r} \leq i$; then $\mathfrak{U}_{s}=(A)$ and, with a self explanatory notation, $\mathfrak{U}_{i}=\left(\mathfrak{A}_{i-1}, d_{\sigma}\right)_{\sigma_{r}=i}$ (where $\mathfrak{Q}_{r-1}=(0)$).
Next for all $i=r, \ldots, s$, let f_{i} be the determinant of the $i \times i$ matrix

$$
M_{i}=\left\|\begin{array}{llllll}
a_{1} & \cdots & a_{r} & \cdot & \cdots & a_{i} \\
\cdot & \cdots & \cdot & \cdot & \cdots & \cdot \\
a_{r} & \cdots & a_{2 r-1} & \cdot & \cdots & a_{i+r-1} \\
\cdot & \cdots & \cdot & \cdot & \cdots & 0 \\
\cdot & \cdots & \cdot & \cdot & \cdots & \cdot \\
a_{i} & \cdots & a_{i+r-1} & 0 & \cdots & 0
\end{array}\right\|
$$

It is clear that $\mathfrak{A}_{r}=\left(f_{r}\right)$ and $f_{i} \in \mathfrak{A}_{i}$ for all $i=r, \ldots, s$.
Theorem 1.1: With the above notations, we have:

$$
\operatorname{rad}\left(\mathscr{A}_{i}\right)=\operatorname{rad}\left(\mathfrak{A}_{i-1}, f_{i}\right)
$$

for all $i=r, \ldots, s$.
Proof: Since $\left(\mathfrak{A}_{i-1}, f_{i} \subseteq \mathfrak{H}_{i}\right.$ we need only to prove that $\mathfrak{H}_{i} \subseteq$ $\operatorname{rad}\left(\mathscr{A}_{i-1}, f_{i}\right)$. This is true if $i=r$, hence we may assume $i>r$. Now $\mathfrak{A}_{i}=\left(\mathfrak{A}_{i-1}, d_{\sigma}\right)_{\sigma_{r}=i}$, so it is enough to show that $d_{\sigma} \in \operatorname{rad}\left(\mathfrak{A}_{i-1}, f_{i}\right)$ for all σ such that $\sigma_{r}=i$. Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{r}=i\right)$; then

$$
A_{\sigma}=\left\|\begin{array}{llll}
a_{\sigma_{1}} & a_{\sigma_{2}} & \cdots & a_{i} \\
a_{\sigma_{1}+1} & a_{\sigma_{2}+1} & \cdots & a_{i+1} \\
\cdot & \cdot & \cdots & \cdot \\
a_{\sigma_{1}+r-1} & a_{\sigma_{2}+r-1} & \cdots & a_{i+r-1}
\end{array}\right\|
$$

Hence, by expanding the determinant along the last column, we get $d_{\sigma}=\sum_{k=0}^{r-1} a_{i+k} c_{k}$ where c_{k} is the cofactor of a_{i+k} in A_{σ}. Denote by λ_{m} ($m=1, \ldots, i$) the m-th row of M_{i} and let $1 \leq \tau_{1}<\tau_{2}<\cdots<\tau_{i-r} \leq$ $i-1$, where $\left\{\tau_{1}, \ldots, \tau_{i-r}\right\}$ is the complement of $\left\{\sigma_{1}, \ldots, \sigma_{r}=i\right\}$ in $\{1,2, \ldots, i\}$.

Then if $j=1, \ldots, i-r$ we have $j \leq \tau_{j} \leq \tau_{i-r}-(i-r-j) \leq$ $i-1-i+r+j=r+j-1$.

Denote by N_{i} the matrix obtained from M_{i} by replacing, for all $j=1, \ldots, i-r$, the row $\lambda_{\tau_{j}}$ by $\sum_{k=0}^{r-1} \lambda_{j+k} c_{k}$; since, as we have seen, $j \leq \tau_{j} \leq r+j-1$, in this linear combination $\lambda_{\tau_{j}}$ has coefficient $c_{\tau_{-}-j}$. It follows that

$$
\operatorname{det} N_{i}=\left\{\prod_{j=1}^{i-r} c_{\tau_{j}-j}\right) f_{i} .
$$

Denote by $m_{p q}$ the entries of the matrix M_{i} and by $n_{p q}$ those of N_{i}; then $m_{j+k, l}=a_{j+k+l-1}$ (where $a_{t}=0$ if $t>i+r-1$), hence $n_{\tau_{j}}=$ $\sum_{k=0}^{r-1} a_{j+k+l-1} c_{k}$ for all $j=1, \ldots, i-r$ and $l=1, \ldots, i-j+1$. It follows that for all $j=1, \ldots, i-r$ if $1 \leq l \leq i-j+1, n_{\tau_{j} l}$ is the determinant of the matrix obtained by replacing the last column of A_{σ} by the ($j+l-1$)-th column of A. Therefore we get:
(1) $n_{\tau_{j} l}=0$ if $j+l-1 \in\left\{\sigma_{1}, \ldots, \sigma_{r-1}\right\}$.
(2) $n_{\tau_{j} l}=d_{\sigma}$ if $j+l-1=i$, or, which is the same, $l=i-j+1$.
(3) $n_{\tau_{j} l} \in \mathfrak{A}_{i-1}$ if $j+l-1 \in\left\{\tau_{1}, \ldots, \tau_{i-r}\right\}$ and this because $\tau_{i-r} \leq i-1$ and $\sigma_{r-1} \leq i-1$.
So we get for all $j=1, \ldots, i-r: n_{\tau_{i} l} \in \mathfrak{A}_{i-1}$ if $l=1, \ldots, i-j$ and $n_{\tau_{j} i-j+1}=d_{\sigma}$. Then we can write

$$
\operatorname{det} N_{i}=\operatorname{det}\left\|\begin{array}{lllllllll}
\cdot & \cdot & \cdots & \cdot & & \cdots & & \cdot & \cdot \\
n_{\tau_{1} 1} & n_{\tau_{1} 2} & \cdots & n_{\tau_{1} r} & \cdot & \cdots & \cdot & n_{\tau_{1} i-1} & n_{\tau_{1} i} \\
\cdot & \cdot & \cdots & \cdot & & \cdots & \cdot & \cdot & \\
n_{\tau_{2} 1} & n_{\tau_{2} 2} & \cdots & n_{\tau_{2} r} & \cdot & \cdots & n_{\tau_{2} i-2} & n_{\tau_{2} i-1} & \cdot \\
\cdot & \cdot & \cdots & \cdot & \cdots & \cdot & \cdot & & \\
n_{\tau_{i-r} 1} & n_{\tau_{i}-r^{2}} & \cdots & n_{\tau_{i-r} r} & n_{\tau_{i-r} r^{r+1}} & \cdots & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdots & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{i} & a_{i+1} & \cdots & a_{i+r-1} & \cdot & \cdots & \cdot & \cdot & \cdot
\end{array}\right\|
$$

$$
=\operatorname{det}\left\|\begin{array}{llllllll}
0 & 0 & \cdots & 0 & \cdots & . & 0 & d_{\sigma} \\
. & \cdot & \cdots & . & \cdots & . & . & . \\
0 & 0 & \cdots & 0 & \cdots & d_{\sigma} & 0 & \cdot \\
. & . & \cdots & . & \cdots & . & . & . \\
0 & 0 & \cdots & 0 & d_{\sigma} & . & . & . \\
\cdot & \cdot & \cdots & . & \cdots & . & . & . \\
a_{i} & a_{i+1} & \cdots & a_{i+r-1} & \cdots & . & . & .
\end{array}\right\| \bmod \mathfrak{A}_{i-1} .
$$

By expanding the determinant along the first r columns we get

$$
\begin{aligned}
& \operatorname{det} N_{i}= \pm \operatorname{det}\left\|\begin{array}{llll}
a_{\sigma_{1}} & a_{\sigma_{1}+1} & \cdots & a_{\sigma_{1}+r-1} \\
a_{\sigma_{2}} & a_{\sigma_{2}+1} & \cdots & a_{\sigma_{2}+r-1} \\
. & . & \cdots & . \\
a_{i} & a_{i+1} & \cdots & a_{i+r-1}
\end{array}\right\| \operatorname{det}\left\|\begin{array}{lllll}
0 & 0 & \cdots & . & d_{\sigma} \\
0 & 0 & \cdots & d_{\sigma} & \cdot \\
. & . & \cdots & . & . \\
d_{\sigma} & \cdot & \cdots & . & .
\end{array}\right\| \\
& \bmod \mathfrak{A}_{i-1} ;
\end{aligned}
$$

but clearly A_{σ} is a symmetric matrix, hence det $N_{i}= \pm d_{\sigma}^{i-r+1} \bmod \mathfrak{A}_{i-1}$. It follows that $d_{\sigma} \in \operatorname{rad}\left(\mathfrak{A}_{i-1}, f_{i}\right)$, since, as we have seen, $\operatorname{det} N_{i} \in\left(f_{i}\right)$; this completes the proof.

Corollary 1.2: With A and f_{r}, \ldots, f_{s} as before, we have:

$$
\operatorname{rad}(A)=\operatorname{rad}\left(f_{r}, \ldots, f_{s}\right)
$$

Proof: By Theorem 1.1,

$$
\begin{aligned}
\operatorname{rad}(A) & =\operatorname{rad}\left(\mathfrak{A}_{s}\right)=\operatorname{rad}\left(\mathfrak{H}_{s-1}, f_{s}\right)=\operatorname{rad}\left(\operatorname{rad}\left(\mathfrak{H}_{s-1}\right)+\operatorname{rad}\left(f_{s}\right)\right) \\
& =\operatorname{rad}\left(\operatorname{rad}\left(\mathfrak{A}_{s-2}, f_{s-1}\right)+\operatorname{rad}\left(f_{s}\right)\right)=\operatorname{rad}\left(\mathfrak{H}_{s-2}, f_{s-1}, f_{s}\right) \\
& =\cdots=\operatorname{rad}\left(\mathfrak{A}_{r}, f_{r+1}, \ldots, f_{s}\right)=\operatorname{rad}\left(f_{r}, \ldots, f_{s}\right) .
\end{aligned}
$$

REmARK 1.3: If the elements of the matrix A are indeterminates over an algebraically closed field k, the ideal (A) is the defining ideal of the locus V of chordal $[r-2]$'s of the normal rational curve of \mathbb{P}^{s+r-2}, where if $p \geq 2$ a chordal $[p-1]$ of a manifold is one which meets it in p independent points (see [4] pag. 91 and 229). V is a projective variety in \mathbb{P}^{s+r-2} of dimension $2 r-3$ and order $\binom{s}{r-1}$; hence the codimension of V is $s+r-2-2 r+3=s-r+1$ and the above result proves that V is set-theoretic complete intersection. The case $r=2$ is the main result in [5].

In this section A is a partly symmetric $r \times(r+1)$ matrix whose elements belong to R. Therefore we may write

$$
A=\left\|\begin{array}{lllll}
a_{11} & a_{12} & \cdots & a_{1 r} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 r} & b_{2} \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
a_{r 1} & a_{r 2} & \cdots & a_{r r} & b_{r}
\end{array}\right\|
$$

where the matrix $S=\left\|a_{i j}\right\|$ is $r \times r$ symmetric.
Let $B=\left\|\frac{A}{b_{1} \ldots b_{r} 0}\right\|, f_{1}=\operatorname{det} S$ and $f_{2}=\operatorname{det} B ;$ next, for all $i=$ $1, \ldots, r+1$, denote by A_{i} the matrix which results when the i-th column of A is deleted, and put $d_{i}=\operatorname{det} A_{i}$. Then $f_{1}=d_{r+1},(A)=$ $\left(d_{1}, \ldots, d_{r+1}\right)$ and $f_{2} \in(A)$.

Theorem 2.1: With the above notations we have:

$$
\operatorname{rad}(A)=\operatorname{rad}\left(f_{1}, f_{2}\right)
$$

Proof: Since $\left(f_{1}, f_{2}\right) \subseteq(A)$ and $d_{r+1}=f_{1}$, it is enough to prove that $\left(d_{1}, \ldots, d_{r}\right) \subseteq \operatorname{rad}\left(f_{1}, f_{2}\right)$. Let i be any integer, $1 \leq i \leq r$; by expanding the determinant of A_{i} along the last column, we get $d_{i}=\sum_{k=1}^{r} b_{k} c_{k i}$ where $c_{k i}$ is the cofactor of b_{k} in A_{i}. Denote by B^{\prime} the matrix obtained by replacing the i-th row of B by the linear combination of the first r rows of B with coefficients $c_{1 i}, c_{2 i}, \ldots, c_{r i}$. Then it is clear that det $B^{\prime}=$ $c_{i i} \operatorname{det} B$ and the i-th row of B^{\prime} is:

$$
\left(\sum_{k=1}^{r} a_{k 1} c_{k i}, \ldots, \sum_{k=1}^{r} a_{k r} c_{k i}, \sum_{k=1}^{r} b_{k} c_{k i}\right)
$$

But $\Sigma_{k=1}^{r} a_{k j} c_{k i}$ is the determinant of the matrix obtained by replacing the last column of A_{i}, by the j-th column of A. Hence $\sum_{k=1}^{r} a_{k j} c_{k i}=0$ if $j \neq i$, while $\sum_{k=1}^{r} a_{k i} c_{k i}= \pm f_{1}$. Therefore we get:

$$
c_{i i} f_{2}=\operatorname{det} B^{\prime}=\operatorname{det}\left\|\begin{array}{llll}
a_{11} & \cdots & a_{1 r} & b_{1} \\
\cdot & \cdots & \cdot & \cdot \\
a_{i-1,1} & \cdots & a_{i-1, r} & b_{i-1} \\
0 & \cdots & 0 & d_{i} \\
a_{i+1,1} & \cdots & a_{i+1, r} & b_{i+1} \\
\cdot & \cdots & \cdot & \cdot \\
a_{r 1} & \cdots & a_{r r} & b_{r} \\
b_{1} & \cdots & b_{r} & 0
\end{array}\right\| \bmod f_{1} \text {. }
$$

By expanding this determinant along the first r columns we get:

$$
c_{i i} f_{2}= \pm d_{i} \operatorname{det}\left\|\begin{array}{lll}
a_{1 r} & \cdots & a_{1 r} \\
\cdot & \cdots & \cdot \\
a_{i-1,1} & \cdots & a_{i-1, r} \\
a_{i+1,1} & \cdots & a_{i+1, r} \\
\cdot & \cdots & \cdot \\
a_{r 1} & \cdots & a_{r r} \\
b_{1} & \cdots & b_{r}
\end{array}\right\| \bmod f_{1}
$$

But S is symmetric, hence $c_{i i} f_{2}= \pm d_{i} \operatorname{det} A_{i}^{t}= \pm d_{i} \operatorname{det} A_{i}= \pm d_{i}^{2} \bmod$ f_{1}, and the theorem is proved.

Example 2.2: Let V be the rational cubic scroll in \mathbb{P}^{4}; then it is well known that V is the locus where $r k\left\|\begin{array}{lll}X_{0} & X_{1} & X_{3} \\ X_{1} & X_{2} & X_{4}\end{array}\right\|=1$. Hence the above theorem shows that V is set-theoretic complete intersection.

In this last section we will be interested in a particular 2×3 matrix. Suppose a, b and c are elements of the ring R, such that the ideal they generate is of height 3 ; next let $p_{i}, q_{i}, r_{i}(i=1,2)$ positive integers not necessarily distinct. Let us consider the 2×3 matrix

$$
A=\left\|\begin{array}{lll}
a^{p_{1}} & b^{q_{1}} & c^{r_{1}} \\
b^{q_{2}} & c^{r_{2}} & a^{p_{2}}
\end{array}\right\|
$$

and put $p=p_{1}+p_{2}, q=q_{1}+q_{2}, r=r_{1}+r_{2}$ and $f_{1}=b^{q_{1}} a^{p_{2}}-c^{r}, f_{2}=$ $a^{p}-b^{q_{2}} c^{r_{1}}, f_{3}=a^{p_{1}} c^{r_{2}}-b^{q}$.

We want to show that if $(A)=\left(f_{1}, f_{2}, f_{3}\right)$ then $\operatorname{rad}(A)$ is equal to the radical of an ideal generated by 2 elements; but first we shall give some remarks which are useful in the following.

Let k be any integer, $0 \leq k \leq q$; then we can write

$$
\begin{equation*}
k q_{1}=t q+s \quad \text { where } 0 \leq s \leq q-1 . \tag{1}
\end{equation*}
$$

Hence we have $k q=k q_{1}+k q_{2}=t q+s+k q_{2}$; it follows that

$$
\begin{equation*}
q_{2}(q-k)=\left(q_{2}-k+t\right) q+s \quad \text { for all } k=0, \ldots, q \tag{2}
\end{equation*}
$$

Now, since $q_{2}(q-k) \geq 0$, we have $\left(q_{2}-k+t\right) q+s \geq 0$; but $s<q$ by (1), hence

$$
\begin{equation*}
q_{2}-k+t \geq 0 \quad \text { for all } k=0, \ldots, q \tag{3}
\end{equation*}
$$

Then we have also
(4) $0 \leq(q-k) r_{1}+r_{2}\left(q_{2}-k+t\right)=(q-k) r+t r_{2}-q_{1} r_{2}$ for all $k=$ $0, \ldots, q$.

This allows us to consider the element

$$
g=\sum_{k=0}^{q}(-1)^{q-k}\binom{q}{k} a^{k p_{2}+t p_{1}} b^{s} c^{(q-k) r+t r_{2}-q_{1} r_{2}} .
$$

Theorem 3.1: With the above notations we have:

$$
\operatorname{rad}(A)=\operatorname{rad}\left(g, f_{3}\right)
$$

Proof: We have

$$
f_{1}^{q}=\left(b^{q_{1}} a^{p_{2}}-c^{r}\right)^{q}=\sum_{k=0}^{q}(-1)^{q-k}\binom{q}{k} a^{k p_{2}} b^{k q_{1}} c^{r(q-k)} ;
$$

since by (1) $k q_{1}=t q+s$ for all $k=0, \ldots, q$ we get

$$
f_{1}^{q}=\sum_{k=0}^{q}(-1)^{q-k}\binom{q}{k} a^{k p_{2}+t p_{1}} b^{s} c^{r(q-k)+t r_{2}} \bmod f_{3}
$$

or $f_{1}^{q}=c^{q_{1} r_{2}} g \bmod f_{3}$. On the other hand

$$
f_{2}^{q}=\left(a^{p}-b^{q_{2}} c^{r_{1}}\right)^{q}=\sum_{k=0}^{q}(-1)^{q-k}\binom{q}{k} a^{k p} b^{q_{2}(q-k)} c^{r_{1}(q-k)},
$$

hence, using (2) and (3) we get

$$
f_{2}^{q}=\sum_{k=0}^{q}(-1)^{q-k}\binom{q}{k} a^{k p+p_{1}\left(q_{2}-k+t\right)} b^{s} c^{r_{1}(q-k)+r_{2}\left(q_{2}-k+t\right)} \bmod f_{3} .
$$

But $k p+p_{1}\left(q_{2}-k+t\right)=k p_{2}+p_{1} q_{2}+t p_{1}$, hence, using (4), we get $f_{2}^{q}=$ $a^{p_{1} q_{2}} g \bmod f_{3}$. This proves that $(A) \subseteq \operatorname{rad}\left(g, f_{3}\right)$.

Next we have seen that $f_{1}^{q}=c^{q_{1} r_{2}} g \bmod f_{3}$; hence $c^{q_{1} r_{2}} g \in(A)$. Let \mathfrak{B}
be a minimal prime ideal of (A), then $h(\mathfrak{P}) \leq 2$ by [1, Theorem 3], so $c \notin \mathfrak{P}$, because if $c \in \mathfrak{P}$ then $(a, b, c) \subseteq \mathfrak{B}$ which is a contradiction since we have assumed $h(a, b, c)=3$. It follows that $g \in \operatorname{rad}(A)$; this completes the proof.

Example 3.2: Let k be an arbitrary field, t transcendental over k. Let n_{1}, n_{2}, n_{3} natural numbers with grestest common divisor 1 , and let C be the affine space curve with the parametric equations $X=t^{n_{1}}$, $Y=t^{n_{2}}, Z=t^{n_{3}}$. Let c_{i} be the smallest positive integer such that there exist integers $r_{i j} \geq 0$ with $c_{1} n_{1}=r_{12} n_{2}+r_{13} n_{3}, c_{2} n_{2}=r_{21} n_{1}+r_{23} n_{3}, c_{3} n_{3}=$ $r_{31} n_{1}+r_{32} n_{2}$. In [2] it is proved that if C is not a complete intersection then $r_{i j}>0$ for all i, j and $c_{1}=r_{21}+r_{31}, c_{2}=r_{12}+r_{32}, c_{3}=r_{13}+r_{23}$.

Furthermore if $f_{1}=X^{r_{31}} Y^{r_{32}}-Z^{c_{3}}, f_{2}=X^{c_{1}}-Y^{r_{12}} Z^{r_{13}}$ and $f_{3}=$ $X^{r_{21}} Z^{r_{23}}-Y^{c_{2}}$, then the vanishing ideal $I(C) \subseteq k[X, Y, Z]$ of C is $I(C)=\left(f_{1}, f_{2}, f_{3}\right)$. Then it is easy to see that $I(C)$ is the ideal generated by the 2×2 minors of the matrix

$$
\left\|\begin{array}{lll}
X^{r_{21}} & Y^{r_{32}} & Z^{r_{13}}
\end{array} Y^{r_{12}} \quad Z^{r_{23}} \quad X^{3_{31}}\right\|
$$

It follows, by Theorem 3.1, that C is set-theoretic complete intersection. This result has been proved in [3] by completely different methods; see also [6].

Finally we remark that if $C=\left\{\left(t^{5}, t^{7}, t^{8}\right) \in \mathbb{A}^{3}(k)\right\}$ then the matrix is $\left\|\begin{array}{lll}X & Y^{2} & Z \\ Y & Z^{2} & X^{2}\end{array}\right\|$, which is not partly symmetric; so the conclusion that C is set-theoretic complete intersection cannot be drawn from Theorem 2.1.

Example 3.3: Let n, p be non-negative integers; we have seen (see Example 3.2) that if

$$
C=\left\{\left(t^{2 n+1}, t^{2 n+1+p}, t^{2 n+1+2 p}\right) \in \mathbb{A}^{3}(k)\right\}
$$

the vanishing ideal $I(C)$ in $k\left[X_{1}, X_{2}, X_{3}\right]$ is generated by $X_{1}^{n+p} X_{2}-$ $X_{3}^{n+1}, X_{1}^{n+p-1}-X_{2} X_{3}^{n}$ and $X_{1} X_{3}-X_{2}^{2}$. Let \bar{C} be the projective closure of C in P^{3}. Since C has only one point at the infinity, it is well known that the homogeneous ideal of \bar{C} in $k\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ is generated by the polynomials $X_{1}^{n+p} X_{2}-X_{0}^{p} X_{3}^{n+1}, X_{1}^{n+p+1}-X_{0}^{p} X_{2} X_{3}^{n}$ and $X_{1} X_{3}-X_{2}^{2}$. It is immediately seen that this ideal is generated by the 2×2 minors of the matrix
$\left\|\begin{array}{ccc}X_{1} & X_{2} & X_{0}^{p} X_{3}^{n} \\ X_{2} & X_{3} & X_{1}^{n+p}\end{array}\right\|$.
Thus, by Theorem 2.1, \bar{C} is set-theoretic complete intersection of the two hypersurfaces $X_{1} X_{3}-X_{2}^{2}$ and $X_{0}^{2 p} X_{3}^{2 n+1}+X_{1}^{2 n+2 p+1}-$ $2 X_{0}^{p} X_{1}^{n+p} X_{2} X_{3}^{n}$.

Example 3.4: If $C=\left\{\left(t^{3}, t^{7}, t^{8}\right) \in \mathbb{A}^{3}(k)\right\}$, the vanishing ideal $I(\bar{C}) \subseteq k\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ of the projective closure \bar{C} of C in \mathbb{P}^{3}, needs five generators and our methods do not apply in order to see if \bar{C} is set-theoretic complete intersection.

REFERENCES

[1] J.A. Eagon and D.G.Northcott: Ideals defined by matrices and a certain complex associated with them. Proc. Roy. Soc. A269 (1962) 188-204.
[2] J. Herzog: Generators and relations of abelian semigroups and semigroup rings. Manuscripta Math. 3 (1970) 175-193.
[3] J. Herzog: Note on complete intersections, (unpublished).
[4] T.G. Room: The geometry of determinantal loci (Cambridge, 1938).
[5] L. Verdi: Le curve razionali normali come intersezioni complete insiemistiche. Boll. Un. Mat. It., (to appear).
[6] H. Bresinsky: Monomial Space Curves as set-theoretic complete intersection. Proc. Amer. Math. Soc., (to appear).
(Oblatum 28-VI-1979)
Universitá di Genova Genova Italia

[^0]: * This work was supported by the C.N.R. (Consiglio Nazionale delle Ricerche).

