COMPOSITIO MATHEMATICA

GIUSEPPE VALLA

On determinantal ideals which are set-theoretic complete intersections

Compositio Mathematica, tome 42, nº 1 (1980), p. 3-11 <http://www.numdam.org/item?id=CM_1980_42_1_3_0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 42, Fasc. 1, 1981, pag. 3–11 © 1980 Sijthoff & Noordhoff International Publishers – Alphen aan den Rijn Printed in the Netherlands

ON DETERMINANTAL IDEALS WHICH ARE SET-THEORETIC COMPLETE INTERSECTIONS*

Giuseppe Valla

Let A be an $r \times s$ ($r \le s$) matrix with entries in a commutative noetherian ring R with identity. We shall denote by (A) the ideal generated by its subdeterminants of order r. If (A) is a proper ideal of R, then the height of (A), abbreviated as h(A), is at most s - r + 1 (see [1], Theorem 3). In this paper we prove that there exist elements $f_1, \ldots, f_{s-r+1} \in (A)$ such that $rad(A) = rad(f_1, \ldots, f_{s-r+1})$ (where rad(I)means the radical of the ideal I) in each of the following situations:

- (1) $A = ||a_{ij}||$ is an $r \times s$ matrix such that $a_{ij} = a_{kl}$ if i + j = k + l.
- (2) A is an $r \times (r+1)$ partly symmetric matrix, where partly symmetric means that the $r \times r$ matrix obtained by omitting the last column is symmetric.
- (3) $A = \begin{vmatrix} a^{p_1} & b^{q_1} & c^{r_1} \\ b^{q_2} & c^{r_2} & a^{p_2} \end{vmatrix}$ where (a, b, c) is an ideal of height 3 and p_i, q_i, r_i are positive integers not necessarily distinct.

It follows that if h(A) is as large as possible, s - r + 1, then the above determinantal ideals are set-theoretic complete intersections.

It is interesting to compare these results with the following theorem due to M. Hochster (never published).

THEOREM: Let t < r < s be integer, and let k be a field of characteristic 0. Let $A = k[X_{ij}]$ be the ring of polynomials in rs variables, and let $I_t(X)$ be the ideal generated by the $t \times t$ minors of the $r \times s$ matrix (X_{ij}) . Then $I_t(X)$ is not set theoretically a complete intersection.

1

Let $A = ||a_{ij}||$ be an $r \times s$ given matrix, where $a_{ij} \in R$ and $r \leq s$. In * This work was supported by the C.N.R. (Consiglio Nazionale delle Ricerche).

0010-437X/81/01003-09\$00.20/0

this section we assume that $a_{ij} = a_{kl}$ if i + j = k + l, hence we may write

A =	a_1	a_2	•••	a_s	į.
	a_2	a_3	•••	a_{s+1}	ĺ
	 •	•	• • •	•	
	a _r	a_{r+1}	•••	a_{r+s+1}	

We shall denote by (A) the ideal generated by the r-rowed minors of A and if $\sigma = (\sigma_1, ..., \sigma_r)$ is a set of r integers such that $1 \le \sigma_1 \le \sigma_2 \le \cdots \le \sigma_r \le s$, we put

	a_{σ_1}	a_{σ_2}	•••	a_{σ_r}
<i>A</i> =	a_{σ_1+1}	a_{σ_2+1}	• • •	a_{σ_r+1}
$\Gamma \bullet \sigma$	•	•	• • •	•
	a_{σ_1+r-1}	a_{σ_2+r-1}	• • •	a_{σ_r+r-1}

and $d_{\sigma} = \det A_{\sigma}$.

If i = r, ..., s let \mathfrak{A}_i be the ideal generated by the d_{σ} with $\sigma_r \leq i$; then $\mathfrak{A}_s = (A)$ and, with a self explanatory notation, $\mathfrak{A}_i = (\mathfrak{A}_{i-1}, d_{\sigma})_{\sigma_r=i}$ (where $\mathfrak{A}_{r-1} = (0)$).

Next for all i = r, ..., s, let f_i be the determinant of the $i \times i$ matrix

$M_i =$	a_1	•••	a _r	•	• • •	a _i
	•	•••	•	·	•••	•
	a,	•••	a_{2r-1}	•	• • •	a_{i+r-1}
		• • •	•	•	• • •	0
	•	• • •	•	•	•••	•
	a_i	• • •	a_{i+r-1}	0	• • •	0

It is clear that $\mathfrak{A}_r = (f_r)$ and $f_i \in \mathfrak{A}_i$ for all $i = r, \ldots, s$.

THEOREM 1.1: With the above notations, we have:

$$\operatorname{rad}(\mathfrak{A}_i) = \operatorname{rad}(\mathfrak{A}_{i-1}, f_i)$$

for all i = r, ..., s.

PROOF: Since $(\mathfrak{A}_{i-1}, f_i) \subseteq \mathfrak{A}_i$ we need only to prove that $\mathfrak{A}_i \subseteq \operatorname{rad}(\mathfrak{A}_{i-1}, f_i)$. This is true if i = r, hence we may assume i > r. Now $\mathfrak{A}_i = (\mathfrak{A}_{i-1}, d_{\sigma})_{\sigma_r=i}$, so it is enough to show that $d_{\sigma} \in \operatorname{rad}(\mathfrak{A}_{i-1}, f_i)$ for all σ such that $\sigma_r = i$. Let $\sigma = (\sigma_1, \ldots, \sigma_r = i)$; then

$$A_{\sigma} = \begin{vmatrix} a_{\sigma_{1}} & a_{\sigma_{2}} & \cdots & a_{i} \\ a_{\sigma_{1}+1} & a_{\sigma_{2}+1} & \cdots & a_{i+1} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{\sigma_{1}+r-1} & a_{\sigma_{2}+r-1} & \cdots & a_{i+r-1} \end{vmatrix}$$

Hence, by expanding the determinant along the last column, we get $d_{\sigma} = \sum_{k=0}^{r-1} a_{i+k}c_k$ where c_k is the cofactor of a_{i+k} in A_{σ} . Denote by λ_m (m = 1, ..., i) the *m*-th row of M_i and let $1 \le \tau_1 < \tau_2 < \cdots < \tau_{i-r} \le i-1$, where $\{\tau_1, \ldots, \tau_{i-r}\}$ is the complement of $\{\sigma_1, \ldots, \sigma_r = i\}$ in $\{1, 2, \ldots, i\}$.

Then if j = 1, ..., i - r we have $j \le \tau_j \le \tau_{i-r} - (i - r - j) \le i - 1 - i + r + j = r + j - 1$.

Denote by N_i the matrix obtained from M_i by replacing, for all j = 1, ..., i - r, the row λ_{τ_j} by $\sum_{k=0}^{r-1} \lambda_{j+k} c_k$; since, as we have seen, $j \le \tau_j \le r+j-1$, in this linear combination λ_{τ_j} has coefficient c_{τ_j-j} . It follows that

$$\det N_i = \left\{ \prod_{j=1}^{i-r} c_{\tau_j - j} \right\} f_i.$$

Denote by m_{pq} the entries of the matrix M_i and by n_{pq} those of N_i ; then $m_{j+k,l} = a_{j+k+l-1}$ (where $a_t = 0$ if t > i+r-1), hence $n_{\tau j} = \sum_{k=0}^{r-1} a_{j+k+l-1}c_k$ for all j = 1, ..., i-r and l = 1, ..., i-j+1. It follows that for all j = 1, ..., i-r if $1 \le l \le i-j+1$, $n_{\tau j}$ is the determinant of the matrix obtained by replacing the last column of A_{σ} by the (j+l-1)-th column of A. Therefore we get:

(1) $n_{\tau,l} = 0$ if $j + l - 1 \in \{\sigma_1, \ldots, \sigma_{r-1}\}$.

- (2) $n_{\tau l} = d_{\sigma}$ if j + l 1 = i, or, which is the same, l = i j + 1.
- (3) $n_{\tau_i} \in \mathfrak{A}_{i-1}$ if $j+l-1 \in \{\tau_1, \ldots, \tau_{i-r}\}$ and this because $\tau_{i-r} \leq i-1$ and $\sigma_{r-1} \leq i-1$.

So we get for all j = 1, ..., i - r: $n_{\tau_i l} \in \mathfrak{A}_{i-1}$ if l = 1, ..., i - j and $n_{\tau_i, i-j+1} = d_{\sigma}$. Then we can write

$$\det N_{i} = \det \begin{vmatrix} \cdot & \cdot \\ n_{\tau_{1}1} & n_{\tau_{1}2} & \cdots & n_{\tau_{1}r} & \cdot & \cdots & \cdot & n_{\tau_{1}i-1} & n_{\tau_{1}i} \\ \cdot & \cdot \\ n_{\tau_{2}1} & n_{\tau_{2}2} & \cdots & n_{\tau_{2}r} & \cdot & \cdots & n_{\tau_{2}i-2} & n_{\tau_{2}i-1} & \cdot \\ \cdot & \cdot \\ n_{\tau_{i-r}1} & n_{\tau_{i-r}2} & \cdots & n_{\tau_{i-r}r} & n_{\tau_{i-r}r+1} & \cdots & \cdot & \cdot \\ a_{i} & a_{i+1} & \cdots & a_{i+r-1} & \cdot & \cdots & \cdot & \cdot \\ \end{vmatrix}$$

G. Valla

$$= \det \begin{vmatrix} 0 & 0 & \cdots & 0 & \cdots & 0 & d_{\sigma} \\ \cdot & \cdot & \cdots & \cdot & \cdots & \cdot & \cdot \\ 0 & 0 & \cdots & 0 & \cdots & d_{\sigma} & 0 & \cdot \\ \cdot & \cdot & \cdots & \cdot & \cdots & \cdot & \cdot & \cdot \\ 0 & 0 & \cdots & 0 & d_{\sigma} & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdots & \cdot & \cdots & \cdot & \cdot & \cdot \\ a_{i} & a_{i+1} & \cdots & a_{i+r-1} & \cdots & \cdot & \cdot & \cdot \end{vmatrix} \mod \mathfrak{M}_{i-1}.$$

By expanding the determinant along the first r columns we get

 $\det N_{i} = \pm \det \begin{vmatrix} a_{\sigma_{1}} & a_{\sigma_{1}+1} & \cdots & a_{\sigma_{1}+r-1} \\ a_{\sigma_{2}} & a_{\sigma_{2}+1} & \cdots & a_{\sigma_{2}+r-1} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i} & a_{i+1} & \cdots & a_{i+r-1} \end{vmatrix} \det \begin{vmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & d_{\sigma} \\ \vdots & \vdots \\ d_{\sigma} & \vdots & \cdots & \vdots \\ d_{\sigma} & \vdots & \cdots & \vdots \end{vmatrix}$

mod \mathfrak{A}_{i-1} ;

but clearly A_{σ} is a symmetric matrix, hence det $N_i = \pm d_{\sigma}^{i-r+1} \mod \mathfrak{A}_{i-1}$. It follows that $d_{\sigma} \in \operatorname{rad}(\mathfrak{A}_{i-1}, f_i)$, since, as we have seen, det $N_i \in (f_i)$; this completes the proof.

COROLLARY 1.2: With A and f_r, \ldots, f_s as before, we have:

$$\operatorname{rad}(A) = \operatorname{rad}(f_r, \ldots, f_s).$$

PROOF: By Theorem 1.1,

$$\operatorname{rad}(A) = \operatorname{rad}(\mathfrak{A}_s) = \operatorname{rad}(\mathfrak{A}_{s-1}, f_s) = \operatorname{rad}(\operatorname{rad}(\mathfrak{A}_{s-1}) + \operatorname{rad}(f_s))$$
$$= \operatorname{rad}(\operatorname{rad}(\mathfrak{A}_{s-2}, f_{s-1}) + \operatorname{rad}(f_s)) = \operatorname{rad}(\mathfrak{A}_{s-2}, f_{s-1}, f_s)$$
$$= \cdots = \operatorname{rad}(\mathfrak{A}_r, f_{r+1}, \dots, f_s) = \operatorname{rad}(f_r, \dots, f_s).$$

REMARK 1.3: If the elements of the matrix A are indeterminates over an algebraically closed field k, the ideal (A) is the defining ideal of the locus V of chordal [r-2]'s of the normal rational curve of \mathbb{P}^{s+r-2} , where if $p \ge 2$ a chordal [p-1] of a manifold is one which meets it in p independent points (see [4] pag. 91 and 229). V is a projective variety in \mathbb{P}^{s+r-2} of dimension 2r-3 and order $\binom{s}{r-1}$; hence the codimension of V is s+r-2-2r+3=s-r+1 and the above result proves that V is set-theoretic complete intersection. The case r = 2 is the main result in [5]. 2

In this section A is a partly symmetric $r \times (r+1)$ matrix whose elements belong to R. Therefore we may write

	a_{11}	a_{12}	•••	a_{1r}	\boldsymbol{b}_1
	a_{21}	a_{22}	• • •	a_{2r}	b_2
4 =	•	•	•••	•	•
	•	•	• • •	•	•
	a_{r1}	a_{r2}	• • •	a_{rr}	b,

where the matrix $S = ||a_{ij}||$ is $r \times r$ symmetric.

Let $B = \left\| \frac{A}{b_1 \dots b_r 0} \right\|$, $f_1 = \det S$ and $f_2 = \det B$; next, for all $i = 1, \dots, r+1$, denote by A_i the matrix which results when the *i*-th column of A is deleted, and put $d_i = \det A_i$. Then $f_1 = d_{r+1}$, $(A) = (d_1, \dots, d_{r+1})$ and $f_2 \in (A)$.

THEOREM 2.1: With the above notations we have:

$$\operatorname{rad}(A) = \operatorname{rad}(f_1, f_2).$$

PROOF: Since $(f_1, f_2) \subseteq (A)$ and $d_{r+1} = f_1$, it is enough to prove that $(d_1, \ldots, d_r) \subseteq \operatorname{rad}(f_1, f_2)$. Let *i* be any integer, $1 \le i \le r$; by expanding the determinant of A_i along the last column, we get $d_i = \sum_{k=1}^r b_k c_{ki}$ where c_{ki} is the cofactor of b_k in A_i . Denote by B' the matrix obtained by replacing the *i*-th row of B by the linear combination of the first r rows of B with coefficients $c_{1i}, c_{2i}, \ldots, c_{ri}$. Then it is clear that det $B' = c_{ii}$ det B and the *i*-th row of B' is:

$$\left(\sum_{k=1}^{r} a_{k1}c_{ki}, \ldots, \sum_{k=1}^{r} a_{kr}c_{ki}, \sum_{k=1}^{r} b_{k}c_{ki}\right).$$

But $\sum_{k=1}^{r} a_{kj}c_{ki}$ is the determinant of the matrix obtained by replacing the last column of A_i , by the *j*-th column of A. Hence $\sum_{k=1}^{r} a_{kj}c_{ki} = 0$ if $j \neq i$, while $\sum_{k=1}^{r} a_{ki}c_{ki} = \pm f_1$. Therefore we get:

$$c_{ii}f_2 = \det B' = \det \left| \begin{array}{ccccc} a_{11} & \cdots & a_{1r} & b_1 \\ \cdot & \cdots & \cdot & \cdot \\ a_{i-1,1} & \cdots & a_{i-1,r} & b_{i-1} \\ 0 & \cdots & 0 & d_i \\ a_{i+1,1} & \cdots & a_{i+1,r} & b_{i+1} \\ \cdot & \cdots & \cdot & \cdot \\ a_{r1} & \cdots & a_{rr} & b_r \\ b_1 & \cdots & b_r & 0 \end{array} \right| \mod f_1.$$

By expanding this determinant along the first r columns we get:

$$c_{ii}f_{2} = \pm d_{i} \det \begin{vmatrix} a_{11} & \cdots & a_{1r} \\ \cdot & \cdots & \cdot \\ a_{i-1,1} & \cdots & a_{i-1,r} \\ a_{i+1,1} & \cdots & a_{i+1,r} \\ \cdot & \cdots & \cdot \\ a_{r1} & \cdots & a_{rr} \\ b_{1} & \cdots & b_{r} \end{vmatrix} \mod f_{1};$$

But S is symmetric, hence $c_{ii}f_2 = \pm d_i \det A_i^t = \pm d_i \det A_i = \pm d_i^2 \mod f_1$, and the theorem is proved.

EXAMPLE 2.2: Let V be the rational cubic scroll in P⁴; then it is well known that V is the locus where $rk \begin{vmatrix} X_0 & X_1 & X_3 \\ X_1 & X_2 & X_4 \end{vmatrix} = 1$. Hence the above theorem shows that V is set-theoretic complete intersection.

3

In this last section we will be interested in a particular 2×3 matrix. Suppose *a*, *b* and *c* are elements of the ring *R*, such that the ideal they generate is of height 3; next let p_i , q_i , r_i (i = 1, 2) positive integers not necessarily distinct. Let us consider the 2×3 matrix

$$A = \begin{vmatrix} a^{p_1} & b^{q_1} & c^{r_1} \\ b^{q_2} & c^{r_2} & a^{p_2} \end{vmatrix}$$

and put $p = p_1 + p_2$, $q = q_1 + q_2$, $r = r_1 + r_2$ and $f_1 = b^{q_1} a^{p_2} - c^r$, $f_2 = a^p - b^{q_2} c^{r_1}$, $f_3 = a^{p_1} c^{r_2} - b^q$.

We want to show that if $(A) = (f_1, f_2, f_3)$ then rad(A) is equal to the radical of an ideal generated by 2 elements; but first we shall give some remarks which are useful in the following.

Let k be any integer, $0 \le k \le q$; then we can write

(1)
$$kq_1 = tq + s$$
 where $0 \le s \le q - 1$.

Hence we have $kq = kq_1 + kq_2 = tq + s + kq_2$; it follows that

(2)
$$q_2(q-k) = (q_2 - k + t)q + s$$
 for all $k = 0, ..., q$.

8

Now, since $q_2(q-k) \ge 0$, we have $(q_2 - k + t)q + s \ge 0$; but s < q by (1), hence

(3)
$$q_2 - k + t \ge 0$$
 for all $k = 0, ..., q$.

Then we have also

(4)
$$0 \le (q-k)r_1 + r_2(q_2 - k + t) = (q-k)r + tr_2 - q_1r_2$$
 for all $k = 0, \ldots, q$.

This allows us to consider the element

$$g = \sum_{k=0}^{q} (-1)^{q-k} \binom{q}{k} a^{kp_2 + tp_1} b^s c^{(q-k)r + tr_2 - q_1r_2}.$$

THEOREM 3.1: With the above notations we have:

$$\operatorname{rad}(A) = \operatorname{rad}(g, f_3).$$

PROOF: We have

$$f_1^q = (b^{q_1}a^{p_2} - c^r)^q = \sum_{k=0}^q (-1)^{q-k} \binom{q}{k} a^{kp_2} b^{kq_1} c^{r(q-k)};$$

since by (1) $kq_1 = tq + s$ for all k = 0, ..., q we get

$$f_1^q = \sum_{k=0}^q (-1)^{q-k} \binom{q}{k} a^{kp_2 + tp_1} b^s c^{r(q-k) + tr_2} \mod f_3,$$

or $f_1^q = c^{q_1 r_2} g \mod f_3$. On the other hand

$$f_2^q = (a^p - b^{q_2} c^{r_1})^q = \sum_{k=0}^q (-1)^{q-k} \binom{q}{k} a^{kp} b^{q_2(q-k)} c^{r_1(q-k)},$$

hence, using (2) and (3) we get

$$f_2^q = \sum_{k=0}^q (-1)^{q-k} \binom{q}{k} a^{kp+p_1(q_2-k+t)} b^s c^{r_1(q-k)+r_2(q_2-k+t)} \mod f_3.$$

But $kp + p_1(q_2 - k + t) = kp_2 + p_1q_2 + tp_1$, hence, using (4), we get $f_2^q = a^{p_1q_2}g \mod f_3$. This proves that $(A) \subseteq rad(g, f_3)$.

Next we have seen that $f_1^q = c^{q_1 r_2} g \mod f_3$; hence $c^{q_1 r_2} g \in (A)$. Let \mathfrak{P}

[7]

G. Valla

be a minimal prime ideal of (A), then $h(\mathfrak{P}) \leq 2$ by [1, Theorem 3], so $c \notin \mathfrak{P}$, because if $c \in \mathfrak{P}$ then $(a, b, c) \subseteq \mathfrak{P}$ which is a contradiction since we have assumed h(a, b, c) = 3. It follows that $g \in rad(A)$; this completes the proof.

EXAMPLE 3.2: Let k be an arbitrary field, t transcendental over k. Let n_1, n_2, n_3 natural numbers with grestest common divisor 1, and let C be the affine space curve with the parametric equations $X = t^{n_1}$, $Y = t^{n_2}$, $Z = t^{n_3}$. Let c_i be the smallest positive integer such that there exist integers $r_{ij} \ge 0$ with $c_1n_1 = r_{12}n_2 + r_{13}n_3$, $c_2n_2 = r_{21}n_1 + r_{23}n_3$, $c_3n_3 = r_{31}n_1 + r_{32}n_2$. In [2] it is proved that if C is not a complete intersection then $r_{ij} > 0$ for all i, j and $c_1 = r_{21} + r_{31}$, $c_2 = r_{12} + r_{32}$, $c_3 = r_{13} + r_{23}$.

Furthermore if $f_1 = X^{r_{31}}Y^{r_{32}} - Z^{c_3}$, $f_2 = X^{c_1} - Y^{r_{12}}Z^{r_{13}}$ and $f_3 = X^{r_{21}}Z^{r_{23}} - Y^{c_2}$, then the vanishing ideal $I(C) \subseteq k[X, Y, Z]$ of C is $I(C) = (f_1, f_2, f_3)$. Then it is easy to see that I(C) is the ideal generated by the 2×2 minors of the matrix

$$\begin{vmatrix} X^{r_{21}} & Y^{r_{32}} & Z^{r_{13}} \\ Y^{r_{12}} & Z^{r_{23}} & X^{r_{31}} \end{vmatrix}.$$

It follows, by Theorem 3.1, that C is set-theoretic complete intersection. This result has been proved in [3] by completely different methods; see also [6].

Finally we remark that if $C = \{(t^5, t^7, t^8) \in \mathbb{A}^3(k)\}$ then the matrix is $\| \begin{array}{c} X & Y^2 & Z \\ Y & Z^2 & X^2 \end{array} \|$, which is not partly symmetric; so the conclusion that C is set-theoretic complete intersection cannot be drawn from Theorem 2.1.

EXAMPLE 3.3: Let n, p be non-negative integers; we have seen (see Example 3.2) that if

$$C = \{(t^{2n+1}, t^{2n+1+p}, t^{2n+1+2p}) \in \mathbb{A}^3(k)\},\$$

the vanishing ideal I(C) in $k[X_1, X_2, X_3]$ is generated by $X_1^{n+p}X_2 - X_3^{n+1}$, $X_1^{n+p-1} - X_2X_3^n$ and $X_1X_3 - X_2^2$. Let \overline{C} be the projective closure of C in \mathbb{P}^3 . Since C has only one point at the infinity, it is well known that the homogeneous ideal of \overline{C} in $k[X_0, X_1, X_2, X_3]$ is generated by the polynomials $X_1^{n+p}X_2 - X_0^{\ell}X_3^{n+1}$, $X_1^{n+p+1} - X_0^{\ell}X_2X_3^n$ and $X_1X_3 - X_2^2$. It is immediately seen that this ideal is generated by the 2×2 minors of the matrix

Determinantal ideals

$$\begin{vmatrix} X_1 & X_2 & X_0^p X_3^n \\ X_2 & X_3 & X_1^{n+p} \end{vmatrix}.$$

Thus, by Theorem 2.1, \overline{C} is set-theoretic complete intersection of the two hypersurfaces $X_1X_3 - X_2^2$ and $X_0^{2p}X_3^{2n+1} + X_1^{2n+2p+1} - 2X_0^pX_1^{n+p}X_2X_3^n$.

EXAMPLE 3.4: If $C = \{(t^3, t^7, t^8) \in \mathbb{A}^3(k)\}$, the vanishing ideal $I(\overline{C}) \subseteq k[X_0, X_1, X_2, X_3]$ of the projective closure \overline{C} of C in \mathbb{P}^3 , needs five generators and our methods do not apply in order to see if \overline{C} is set-theoretic complete intersection.

REFERENCES

- [1] J.A. EAGON and D.G.NORTHCOTT: Ideals defined by matrices and a certain complex associated with them. *Proc. Roy. Soc. A269* (1962) 188-204.
- J. HERZOG: Generators and relations of abelian semigroups and semigroup rings. Manuscripta Math. 3 (1970) 175-193.
- [3] J. HERZOG: Note on complete intersections, (unpublished).
- [4] T.G. ROOM: The geometry of determinantal loci (Cambridge, 1938).
- [5] L. VERDI: Le curve razionali normali come intersezioni complete insiemistiche. Boll. Un. Mat. It., (to appear).
- [6] H. BRESINSKY: Monomial Space Curves as set-theoretic complete intersection. Proc. Amer. Math. Soc., (to appear).

(Oblatum 28-VI-1979)

Universitá di Genova Genova Italia

11