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ON DETERMINANTAL IDEALS WHICH ARE
SET-THEORETIC COMPLETE INTERSECTIONS*

Giuseppe Valla

Let A be an rXxXs (r<s) matrix with entries in a commutative
noetherian ring R with identity. We shall denote by (A) the ideal
generated by its subdeterminants of order r. If (A) is a proper ideal of
R, then the height of (A), abbreviated as h(A), is at most s —r + 1 (see
[1], Theorem 3). In this paper we prove that there exist elements
fis- o fs—rs1 € (A) such that rad(A) =rad(fy,..., f;—r+1) (Where rad(])
means the radical of the ideal I) in each of the following situations:

(1) A =|a; is an r x s matrix such that a; =ay if i+j=k+1

(2) A is an rXx(r+ 1) partly symmetric matrix, where partly sym-

metric means that the r X r matrix obtained by omitting the last
column is symmetric.
1 41 q n

() A= ;1,42 lz-rz sz

Di» Qi» I; are positive integers not necessarily distinct.
It follows that if h(A) is as large as possible, s — r + 1, then the above
determinantal ideals are set-theoretic complete intersections.

where (a, b, ¢) is an ideal of height 3 and

It is interesting to compare these results with the following theorem
due to M. Hochster (never published).

THEOREM: Let t <r < s be integer, and let k be a field of charac-
teristic 0. Let A = k[X] be the ring of polynomials in rs variables,
and let I,(X) be the ideal generated by the t Xt minors of the rxs
matrix (X;). Then 1,(X) is not set theoretically a complete intersection.

1

Let A =|a;]| be an r x s given matrix, where a; ER and r<s. In
* This work was supported by the C.N.R. (Consiglio Nazionale delle Ricerche).
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4 G. Valla 21

this section we assume that a; = a, if i+j=k+1[, hence we may
write

a, a, ag
A= a, as g4y
a, ariy T Aris+1

We shall denote by (A) the ideal generated by the r-rowed minors
of A and if o =(0y,...,0,) is a set of r integers such that 1 <o, <
o<---<g,=s,we put

a;, a,, cee g,
AU - a17|+l a02+l toe aa,+]
Agpir-1 Qoyir—1 *° " Qgreg

and d, = det A,.

Ifi=r,...,s let A; be the ideal generated by the d, with o, <1i;
then U, = (A) and, with a self explanatory notation, %; = (%, d,), -;
(where U,_, = (0)).

Next for all i=r,.. ., s, let f; be the determinant of the i X i matrix

al Y a’ . R ai

M _ a' . o . a2’_1 . DY a‘,+r‘1
0
a; SR P 0O --- 0

It is clear that U, =(f,) and f; €N, foralli=r,...,s.
THEOREM 1.1: With the above notations, we have:
rad(¥,) = rad(¥;_, f;)
foralli=r,... s.
ProoF: Since (A._,f;)CUA; we need only to prove that U; C
rad(,_,, f;). This is true if i =r, hence we may assume i>r. Now

A; = Uiy, d,),,-i» S0 it is enough to show that d, €rad(¥,_,, f;) for all &
such that o, =i. Let o = (gy,..., 0, =i); then
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aol aa~2 . e a;
A, = Agy+1 L N
Aoi4r-1 Qopir-1° " Qippi

Hence, by expanding the determinant along the last column, we get
d, =3} ai,.c where ¢, is the cofactor of a;,, in A,. Denote by A,
(m=1,...,i) the m-th row of M; and let l=7<n<---<7_=<
i—1, where {r,...,7_,} is the complement of {oy,...,0,=i} in
{1,2,...,i}.

Then if j=1,...,i—r we have j=r=r,—(i—-r—j=
i—-1—i+r+j=r+j—1.

Denote by N; the matrix obtained from M; by replacing, for all
j=1,...,i—r, the row A, by ZiZy Ajci; since, as we have seen,
j=7=r+j—1, in this linear combination A, has coefficient c,_; It
follows that

det N, = {f] c,,._,-) f.
j=1

Denote by m,, the entries of the matrix M; and by n,, those of N;;
then mj.; = Gjigs-1 (Where a,=0 if t>i+r—1), hence n, =
St Gjrgsimic for all j=1,...,i—rand [=1,...,i—j+ 1. It follows
that forall j=1,...,i—-rif l=sl=si—j+1, n. is the determinant of
the matrix obtained by replacing the last column of A, by the
(j + 1 —1)-th column of A. Therefore we get:

M) ny=0if j+1-1€{o,..., 001}

2) nTi,=d,, if j+1—1=i, or, which is the same, [ =i—j+ 1.

(3 ny€e A,_if j+1-1€{r,...,7_,} and this because 7,_, <i—1

and o,_;=<i— 1.

So we get for all j=1,...,i-rin, €W, if I=1,...,i—j and
n.i-j+1 = d,. Then we can write

nnl nle S n'r|' . .o . nn',_l n-rli
n 1 n ... n . o« . n..:_ n..._
det M = det (o) 2 ™ Tyi—2 Tpi—1

L B (A T A (e

a; Aiv1 " Qigp
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0 0 0 0 d,
0 0 . 0 o d, 0 -
=det || - . ‘e . e . . . mod %Ii—h
0 0 . 0 d, . R
a;  Qiyy T Aitry

By expanding the determinant along the first » columns we get

aal aU|+l e a(r|+r-—l 0 0o -- . dn
aaz ao'2+l e ao'2+r~l 0 0o --- dcr
det N; = =det det
a; Q4 Qi d,
mod U;_;;

but clearly A, is a symmetric matrix, hence det N; = +d5 " 'mod ¥,;_,.
It follows that d, € rad(¥,_,, f;), since, as we have seen, det N; € (f));
this completes the proof.

CoOROLLARY 1.2: With A and f,, .. ., f, as before, we have:
rad(A) =rad(f, .. ., f;).
Proor: By Theorem 1.1,

rad(A) = rad(¥,) = rad(¥U,_,, f,) = rad(rad(N,_,) + rad(f,))
= rad(rad(%sAZ, fsfl) + rad(fs)) = rad(?’[.kb fs—b fs)
= ‘=rad(91f’fr+]""9fs)=rad(.fr,""fs)'

ReEMARK 1.3: If the elements of the matrix A are indeterminates
over an algebraically closed field k, the ideal (A) is the defining ideal
of the locus V of chordal [r—2]’s of the normal rational curve of
Ps*2 where if p =2 a chordal [p — 1] of a manifold is one which
meets it in p independent points (see [4] pag. 91 and 229). V is a

projective variety in P**""2 of dimension 2r—3 and order (ri 1);

hence the codimension of Vis s+r—2—-2r+3=s5s—r+1 and the
above result proves that V is set-theoretic complete intersection. The
case r =2 is the main result in [5].
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In this section A is a partly symmetric r X (r+ 1) matrix whose
elements belong to R. Therefore we may write

ay ap - ay, b

ay ap - ay b
A=l e

a,; ap e Ay br

where the matrix S = ||a;|| is r X r symmetric.

_ A

Let B—"bl...b,o > fi

I,...,r+1, denote by A; the matrix which results when the i-th

column of A is deleted, and put d; =det A;. Then f,=d,.;, (A)=
(dy,...,d,.) and f, € (A).

=detS and f,=det B; next, for all =

THEOREM 2.1: With the above notations we have:
rad(A) =rad(f,, f,).

Proor: Since (f, f») C (A) and d,,, = f;, it is enough to prove that
(d,,...,d)Crad(f,, f,). Let i be any integer, 1 <i <r; by expanding
the determinant of A; along the last column, we get d; =2;_; bicy
where c¢y; is the cofactor of b, in A;. Denote by B’ the matrix obtained
by replacing the i-th row of B by the linear combination of the first r
rows of B with coefficients cy;, ¢,;, . . ., ¢ Then it is clear that det B' =
c; det B and the i-th row of B’ is:

(21 A1 Cis -+ - Z} A Cris g bkcki>.

But 3}_; ajci; is the determinant of the matrix obtained by replacing
the last column of A;, by the j-th column of A. Hence X}, aic = 0 if
j# i, while 2;_; aiuci = =f,. Therefore we get:

an o Ay b,
Ai-1p " Qi b,
. d;
cif» =det B' =det 0 0 mod f,.
iy c 0 Gy bin
a, I / br
b, b, 0



8 G. Valla [6]

By expanding this determinant along the first r columns we get:

a g o dyy

Ai1p 7 Qi-yy
cif»==xd;det || @iy - @i, || modfy;

a, S oa,

b, .o+ b,

But S is symmetric, hence c;f, = +d; det A! = +d; det A; = +d? mod
f1, and the theorem is proved.

ExXAMPLE 2.2: Let V be the rational cubic scroll in P*; then it is
X0 Xi X
X X, X,
above theorem shows that V is set-theoretic complete intersection.

well known that V is the locus where rk = 1. Hence the

3

In this last section we will be interested in a particular 2 X 3 matrix.
Suppose a, b and c¢ are elements of the ring R, such that the ideal
they generate is of height 3; next let p,, g, r; (i = 1, 2) positive integers
not necessarily distinct. Let us consider the 2 X 3 matrix

aPl bql crl

A= b= c? ar

and put p=p,+py, q=q1+q, r=r+r, and f;=b%a”2-c’, f,=
a’ —b%ch, fy=aP'c?— b4,

We want to show that if (A) = (f;, f», f3) then rad(A) is equal to the
radical of an ideal generated by 2 elements; but first we shall give
some remarks which are useful in the following.

Let k be any integer, 0 <k < q; then we can write

a kqgi=tqg+s where 0=s=<gq-1.
Hence we have kq = kq,+ kq, = tq + s + kq,; it follows that

) q4(q—k)=(q,—k+t)g+s forall k=0,...q.
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Now, since g-(q —k) =0, we have (qg,—k+1t)g+s=0; but s <q by
(1), hence

3) q@—k+t=0 forall k=0,...,q.
Then we have also

@) 0=s(@q—-kn+nrg—k+t)y=(q—-k)r+tr,—q,r, for all k=
0,....q

This allows us to consider the element
iﬁ( l)q k q kpy+tp b (q—k)r+try—q,r-
g= _ ! (k) a’P? 1 fc - 27q1"2

THEOREM 3.1: With the above notations we have:

rad(A) =rad(g, f).
Proor: We have
Iq = (b"'a"z— cr)q = i (_])a—k <Z> akpzbkqlcr(q—k);
=0
since by (1) kq,=tq + s for all k =0, ..., q we get
q
q — -1 q-k <q> alcp2+tp,bscr(q—k)+rr2 mod ,
f] g{) ( ) k f3
or f¢ = c?"g mod f;. On the other hand
g = (aP — qucfn)q = 20 (_ 1)(1—’( (Z) akpqu(q-k)crl(q—k),
hence, using (2) and (3) we get

q
fg _ Z (_ l)q—k (Z) akp+p,(q2—k+t)bscr,(q—k)+r2(q2—k+t) mod f3-
=0

But kp + pi(q,— k +t) = kp,+ p,q> + tp), hence, using (4), we get f§ =
aP%g mod f;. This proves that (A) C rad(g, f5).
Next we have seen that f¢ = c%"2g mod f3; hence c?"2g € (A). Let



10 G. Valla [8]

be a minimal prime ideal of (A), then h(*B) =2 by [1, Theorem 3], so
cZ B, because if ¢ €L then (a, b, c) C L which is a contradiction
since we have assumed h(a, b, ¢) = 3. It follows that g Erad(A); this
completes the proof.

ExAMPLE 3.2: Let k be an arbitrary field, ¢ transcendental over k.
Let n,, n,, n; natural numbers with grestest common divisor 1, and let
C be the affine space curve with the parametric equations X =™,
Y =t™, Z =t"™. Let ¢; be the smallest positive integer such that there
exist integers r; =0 with ¢ n; = ripny + rin;, €y = ryny + rpns, cn; =
ryn,+ rpn,. In (2] it is proved that if C is not a complete intersection
then r; >0 forall i, jand ¢, =ry+ry, c;=rp+ry, c3=r3+rm.

Furthermore if fi=X™Y™"-2Z%, f,=X9—-Y™mZ™ and f;=
X™Z™—Y<%, then the vanishing ideal I(C)Ck[X,Y,Z] of C is
I(C) = (f\, f», f5). Then it is easy to see that I(C) is the ideal generated
by the 2 X 2 minors of the matrix

X Y 73
"Y'lz 7™ X"sl"'

It follows, by Theorem 3.1, that C is set-theoretic complete inter-
section. This result has been proved in [3] by completely different
methods; see also [6].

Finally we remark that if C ={(¢’, t’, t¥) € A3(k)} then the matrix is
X Y Z
'Y z? X?
C is set-theoretic complete intersection cannot be drawn from
Theorem 2.1.

, which is not partly symmetric; so the conclusion that

ExaMPLE 3.3: Let n, p be non-negative integers; we have seen (see
Example 3.2) that if

C — {(t2n+1’ t2n+]+p, t2n+l+2p) e A3(k)},

the vanishing ideal I(C) in k[X,, X,, X;] is generated by XX, —
X3 xwe-l - X, X7 and X, X;— X3. Let C be the projective closure
of C in P, Since C has only one point at the infinity, it is well known
that the homogeneous ideal of C in k[X,, X}, X3, X;] is generated by
the polynomials X7 X, — X5X 5!, X+ — X2 X, X7 and X, X;— X3.-
It is immediately seen that this ideal is generated by the 2 X 2 minors
of the matrix
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,X, X, XgX;,
X, X5 X

Thus, by Theorem 2.1, C is set-theoretic complete intersection of the
two hypersurfaces X, X;— X3 and  X¥PX¥H+ X2l
2X8X 1P X, X5

ExaMpLE 3.4: If C={(# 1"t} € A’(k)}, the vanishing ideal
I(C) C k[X,, X1, X», X3] of the projective closure C of C in P*, needs
five generators and our methods do not apply in order to see if C is
set-theoretic complete intersection.
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