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Let A be an r x s (r  s) matrix with entries in a commutative

noetherian ring R with identity. We shall denote by (A) the ideal
generated by its subdeterminants of order r. If (A) is a proper ideal of
R, then the height of (A), abbreviated as h (A), is at most s - r + 1 (see
[1], Theorem 3). In this paper we prove that there exist elements

f1,..., fs-r+l E (A) such that rad(A) = rad(f1, ..., fs-r+l) (where rad(I)
means the radical of the ideal I) in each of the following situations:

(1) A = ~aij~ is an r x s matrix such that aij = akl if i + j = k + 1.
(2) A is an r x (r + 1) partly symmetric matrix, where partly sym-

metric means that the r x r matrix obtained by omitting the last
column is symmetric.

(3) A =~ bq2 Cr2 aP2 ~ where (a, b, c) is an ideal of height 3 andCr2 ap2 

pi, qi, ri are positive integers not necessarily distinct.
It follows that if h(A) is as large as possible, s - r + 1, then the above
determinantal ideals are set-theoretic complete intersections.

It is interesting to compare these results with the following theorem
due to M. Hochster (never published).

THEOREM: Let t  r  s be integer, and let k be a field of charac-
teristic 0. Let A = k[Xij] be the ring of polynomials in rs variables,
and let It(X) be the ideal generated by the t x t minors of the r x s
matrix (Xij). Then It(X) is not set theoretically a complete intersection.

1

Let A = liaijll be an r x s given matrix, where aij E R and r  s. In
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this section we assume that a;; = akl if i + j = k + 1, hence we may
write

We shall denote by (A) the ideal generated by the r-rowed minors
of A and if 0" = (03C31, ..., ur) is a set of r integers such that 1  0"1 

03C32 ··· O"r :5 s, we put

and d, = det A03C3.
If i = r,..., s let ui be the ideal generated by the d, with ur S i ;

then us = (A) and, with a self explanatory notation, 21j = (%i-,, du)ur=i
(where ’àr-1 = (0)).
Next for alI i = r,..., s, let fi be the determinant of the i xi matrix

It is clear that %r = (fr) and fi E ui for all i = r, ..., s.

THEOREM 1.1: With the above notations, we have:

rad(%i) = rad(ui-1, fi)

f or all i = r,..., s.

PROOF: Since (ui-1, fi) ç ui we need only to prove that %i Ç
rad(ui-1, f ;). This is true if i = r, hence we may assume i &#x3E; r. Now
91i = (ui-1, d03C3)03C3r=i, so it is enough to show that du E rad(ui-1, fi) for aIl 0"
such that ur = i. Let 0" = (03C31, ..., 03C3r = i); then
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Hence, by expanding the determinant along the last column, we get
d03C3 = 03A3r-1k=0 aa+kck where ck is the cofactor of ai+k in Au. Denote by 03BBm
(m = 1, ..., i) the m-th row of M and let 1 ~ Tl  03C42 ···  Ti-r :5

i - 1, where {03C41,..., 03C4i-r} is the complement of {03C31,..., ur = il in

{1,2,...i}.
Then if j = 1,...,i-r we have j ~ 03C4j ~03C4i-r -(i-r-j) ~

i-1-i+r+j=r+j-1.
Denote by Ni the matrix obtained from M by replacing, for all

j = 1,..., i - r, the row 03BB03C4j by 03A3r-1k=0 03BBj+kck; since, as we have seen,
j ~ ri ~ r + j -1, in this linear combination 03BB03C4j has coefficient c,,-i. It

follows that

Denote by mPq the entries of the matrix Mi and by npq those of Ni;
then mj+k,l = aj+k+l-1 (where at = 0 if t &#x3E; i + r - 1), hence n03C4jl 

=

k=o aj+k+l-l ck for all j = 1, ..., i - r and 1 = 1 , ... , i - j + 1. It follows
that for all i = 1,..., i - r if 1 ~ 1 ~ i - j + 1, nj, is the determinant of
the matrix obtained by replacing the last column of A03C3 by the
( j + l-1)-th column of A. Therefore we get:

(1) n03C4jl = 0 if j +l-1 ~ {03C31,...03C3r-1}.
(2) n03C4jl = d03C3 if j + l - 1 = i, or, which is the same, l=i-j+1.
(3) nT;, E 2fi- 1 if j + 1 - 1 E {03C41,..., ï,-J and this because 03C4r-r ~ i - 1

and u03C3-1 ~ i - 1.

So we get for all j=1,...,i-r:n03C4jl~ui-1 if 1=1,...,i-j and

n03C4j,i-j+1 
= d,. Then we can write
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By expanding the determinant along the first r columns we get

mod ui-1;

but clearly A, is a symmetric matrix, hence det Ni= ± di-r+103C3 mod ui-1.
It follows that du E rad(ui-1, fi), since, as we have seen, det Ni E (fi);
this completes the proof.

COROLLARY 1.2: With A and fr, ..., f as before, we have:

rad(A) = rad(fr, ... , fs).

PROOF: By Theorem 1.1,

rad(A) = rad(us) = rad(us-1, fs) = rad(rad(us-1) + rad(fs))
= rad(rad(us-2, fs-l) + rad(fs)) = rad(21s-2, ÎS-1, fs )
= ... = rad(91 r, fr+1, ..., fs) = rad(fr, ..., fs).

REMARK 1.3: If the elements of the matrix A are indeterminates

over an algebraically closed field k, the ideal (A) is the defining ideal
of the locus V of chordal [ r - 2]’s of the normal rational curve of
ps+r-2, where if p ~ 2 a chordal [p-1] of a manifold is one which
meets it in p independent points (see [4] pag. 91 and 229). V is a

projective variety in ps+r-2 of dimension 2r - 3 and order s ;
hence the codimension of V is s + r - 2 - 2r + 3 = s - r + 1 and the
above result proves that V is set-theoretic complete intersection. The
case r = 2 is the main result in [5].
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In this section A is a partly symmetric r x (r + 1) matrix whose
elements belong to R. Therefore we may write

where the matrix S = ~aij~ is r x r symmetric.
Let B=~A b1...br0~, fi = det S and f2 = det B; next, for all i =

1, ..., r + 1, denote by Ai the matrix which results when the i-th

column of A is deleted, and put di = det Ai. Then f1 = dr+1, (A) =
(d1, ..., dr+1) and f 2 E (A).

THEOREM 2.1: With the above notations we have:

rad(A) = rad(f l, f2).

PROOF: Since (f1, f2) ~ (A) and d,+1 = fi, it is enough to prove that
(dl, ..., dr) ç rad(f1, f2). Let i be any integer, 1 ~ i ~ r; by expanding
the determinant of Ai along the last column, we get di = 03A3rk=1 bkCki
where cki is the cofactor of bk in Ai. Denote by B’ the matrix obtained
by replacing the i-th row of B by the linear combination of the first r
rows of B with coefficients Cli, C2i, ci. Then it is clear that det B’ =

cii det B and the i-th row of B’ is:

But 03A3rk=1 akjcki is the determinant of the matrix obtained by replacing
the last column of Ai, by the j-th column of A. Hence 03A3rk=1 ak;ck; = 0 if
j ~ i, while 03A3rk=1 akicki= ± f1. Therefore we get:
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By expanding this determinant along the first r columns we get:

But S is symmetric, hence ciif2 = di det Ati = ± di det Ai = ± d2i mod
fi, and the theorem is proved.

EXAMPLE 2.2: Let V be the rational cubic scroll in P’; then it is

well known that V is the locus where rk X ° X 1 X3 = 1. Hence the
IIXI X2 X4~ 

=

above theorem shows that V is set-theoretic complete intersection.

3

In this last section we will be interested in a particular 2 x 3 matrix.
Suppose a, b and c are elements of the ring R, such that the ideal
they generate is of height 3; next let pi, q;, ri (i = 1, 2) positive integers
not necessarily distinct. Let us consider the 2 x 3 matrix

and put p =p1+p2, q=ql+q2, r= r1+r2 and f1=bq1ap2 -cr, f2 =
ap - bq2cr1, f3 = ap1cr2 - bq,
We want to show that if (A) = (f1, f2, f3) then rad(A) is equal to the

radical of an ideal generated by 2 elements; but first we shall give
some remarks which are useful in the following.

Let k be any integer, 0 s k s q; then we can write

Hence we have kq = kql + kq2 = tq + s + kq2; it follows that
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Now, since q2(q - k) - 0, we have (q2 - k + t)q + s ~ 0; but s  q by
(1), hence

(3) q2 - k + t ~ 0 for all k = 0,..., q.

Then we have also

(4) 0 ~ (q-k)r1+r2(q2-k+t)=(q-k)r+tr2-q1r2 for all k=

0,..., q.

This allows us to consider the element

THEOREM 3.1: With the above notations we have:

rad(A) = rad(g, f3).

PROOF: We have

since by (1) kq 1 = tq + s for all k = 0, ..., q we get

or f q = cqlr2g mod f3. On the other hand

hence, using (2) and (3) we get

But kp + p1(q2 - k + t) = kp2 + p 1 q2 + tp 1, hence, using (4), we get fq2 =

ap1q2g mod f3. This proves that (A) ç rad(g, f3).
Next we have seen that 11 = cQl’2g mod f3; hence cQl’2g E (A). Let B
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be a minimal prime ideal of (A), then h(B)~2 by [1, Theorem 3], so
c,É 13, because if c e 13 then (a, b, c) ~ B which is a contradiction
since we have assumed h(a, b, c) = 3. It follows that g C rad(A); this
completes the proof.

EXAMPLE 3.2: Let k be an arbitrary field, t transcendental over k.
Let ni, n2, n3 natural numbers with grestest common divisor 1, and let
C be the affine space curve with the parametric equations X = tnl,
y = t"2, Z = tn3. Let ci be the smallest positive integer such that there
exist integers rij ~ 0 with c, n, = r12n2 + r13n3, c2n2 = r2in, + r23n3, c3n3 =
r3in, + r32n2. In [2] it is proved that if C is not a complete intersection
then rij &#x3E; 0 for all i, j and c = r2l + r3, , c2 = r12 + r32, c3 = r, + r23 .

Furthermore if f = Xr31 Yr32 - ZC3, f2 = Xc1 - yrl2Zrl3 and f3 =
Xr21Zr23 - YC2, then the vanishing ideal I(C) C k[X, Y, Z] of C is

I(C) = ( f,, f2, f3). Then it is easy to see that I(C) is the ideal generated
by the 2 x 2 minors of the matrix

It follows, by Theorem 3.1, that C is set-theoretic complete inter-
section. This result has been proved in [3] by completely different
methods; see also [6].

Finally we remark that if C = {(t5, t7, t8) E A3(k)} then the matrix is

~X Y Y2 Z2 v2 h which is not partly symmetric; so the conclusion that
C is set-theoretic complete intersection cannot be drawn from

Theorem 2.1.

EXAMPLE 3.3: Let n, p be non-negative integers; we have seen (see
Example 3.2) that if

the vanishing ideal I(C) in k[X1, X2, X3] is generated by Xn+p1X2 -
XN+13, Xn+p-11-X2Xn3 and X1X3 - X22. Let C be the projective closure
of C in P3. Since C has only one point at the infinity, it is well known
that the homogeneous ideal of C in k[Xo, Xl, X2, X3] is generated by
the polynomials Xn+p1X2 - Xp0Xn+13, Xï+p+l - XgX2X3 and XIX3 - X 2.-
It is immediately seen that this ideal is generated by the 2 x 2 minors
of the matrix
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Thus, by Theorem 2.1, C is set-theoretic complete intersection of the
two hypersurfaces X1X3 - X22 and X2p0X2n+13+ X2n+2p+11 -
2Xp0Xn+p1X2Xn3.

EXAMPLE 3.4: If C = {(t3, t7, t8) ~ A3(k)}, the vanishing ideal

I(C) ç k[Xo, XI, X2, X3] of the projective closure C of C in p3, needs
five generators and our methods do not apply in order to see if C is
set-theoretic complete intersection.
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