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1. Introduction

Let K be an imaginary quadratic field with class number one, lying
inside the complex field C, and C the ring of integers of K. Let E be
an elliptic curve defined over K, whose ring of endomorphisms is

isomorphic to 0. Since K has class number 1, we can choose a
WeierstraB model for E

where g2 and g3 belong to O, and where the discriminant of (1) is
divisible only by the primes of K where E has a bad reduction, and
possibly by the primes of K above 2 and 3. Let p(z) be the associated
Weierstraß function and Lits period lattice. As K has class number
one, we can choose 12 E L such that L = (JO. We fix, once and for all,
an algebraic closure K of K, which we suppose lies inside the

complex field C.
Let S be the set of rational primes consisting of 2, 3, and all q such that

E has a bad reduction at at least one prime of K above q. For the rest of
the paper, we shall assume that p is a rational prime, not in S, which
splits in K, say (p) = pp. We write K, for the completion of K at p, (J, the
ring of integers of Kn, and C, for the completion of an algebraic closure
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thank the Department for its hospitality. During the preparation of this paper the author
was partially supported by a grant from the British Council.
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of Kp. We assume that we are given a fixed prime ê of K lying above p, or,
what amounts to the same thing, an embedding T of K into C,.
The aim of the present paper is to prove the existence of ê-adic

L-functions attached to E and certain abelian extensions of K, and to

give several arithmetic applications of these. Functions of this type
have already been constructed by Katz [9], [10], Manin-Vishik [15],
and Lichtenbaum [12]. In fact, much of our construction has been
based on an earlier version of Lichtenbaum’s paper [12], and we wish
to make quite clear our indebtedness to his work. We do, however, go
further than [12] both in defining P-adic L-functions for a wider class
of abelian extensions of K, and in the arithmetic applications we give.
Also, we shall treat the case in which the class number of K is greater
than 1 by similar methods in a later paper. The present paper should be
viewed as an introduction to our later work.

Finally, 1 wish to thank J. Coates for helpful suggestions on this
work.

1. Results used f rom elsewhere

In this section we summarize, without proofs, a number of results
from related papers, which will be used in our construction of the

ê-adic L-functions. We use the notation in the introduction.
Let Ê be the f ormal group giving the kernel of reduction modulo p

on the curve E; for a detailed discussion of this, see [19], p. 42. A
local parameter for Ê is given by t = -2x/y, where x and y are the
coordinates of the model (1) of E. Since p splits in K, it is easy to see
that Ê has height one. Let T be the completion of the maximal
unramified extension of Kp, and 6T the ring of integers of T. It is

shown in [13] that every formal group of height 1 defined over 6T is
isomorphic over 6T to the f ormal multiplicative group Gm. From this
fact, it is easy to deduce the following lemma. Let z be given by
t = -2p(z)/p’(z). Thus we can view z as the parameter of the formal
additive group Ga.

LEMMA 1: There exists g(X) ~ OT[[X]], and 03B3 ~ OxT, such that
t = g(e03B3Z - 1).

Here 6T[[X]] denotes the ring of f ormal power series in X with
coefficients in OT.

If L is any lattice in the complex plane, we define, as usual
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and put

where .1(2) is the discriminant function of L, and

If a is any integral ideal of K, we define

where Na is the absolute norm of a. In fact, as is shown in Robert
[16], O(z, a) is an elliptic function for the lattice L.
Assume now that H is an arbitrary finite abelian extension of K.

Let qi be the Grôssencharacter of E over K. We define b to be the
least common multiple of the conductor of Vi and the conductor of
H/K. Let h be a generator of the ideal b and define p = 03A9/h. Let Eb be
the group of b-division-points on E. By Lemma 2 of [1], K(Eb) is the
ray class field of K modulo b. We now choose and fix a set B of
integral ideals of K, which are prime to b, and which are such that
{(b, K(Eb)/K); b ~ B} is precisely the Galois group of K(Eb)/H; here
(b, K(Eb)/K) denotes the Artin symbol of b for K(Eb)/K. If a is an
integral ideal of K, we define

It is shown in [1] (cf. Lemma 7) that A (z, a) is a rational function of
p(z) and p’(z) with coefficients in H. If 0" is an element of the Galois
group of H over K, we write A03C3(z, a) for the rational function of p(z)
and p’(z), which is obtained by letting cr act on the coefficients of
039B (z, a).

If c is an integral ideal of K, prime to the conductor of H/K, we
write 03C3c for the Artin symbol (c, HIK). Let k be an integer ~ 1. We
introduce the partial Hecke L-function, for each u in the Galois
group of H over K,
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where the summation is over all integral ideals a of K, prime to b,
such that 0"0. = 03C3. It can be shown that 03BEH(03C3, k ; s ) can be analytically
continued over the whole complex plane, and we write 03BEH(03C3, k) for its
value at s = k. The following lemma is proven in [1]:

LEMMA 2: For each 03C3 E G(HI K), we have

where, fork ~ 1

Here a is any integral ideal of K, prime to b.

Finally we recall some basic facts about Leopoldt’s T-transf orm
(see [12]). Let M be any complete subfield of C,. Let QM be the set of

power series 03A3~n=0anxn in M[[x]] such that lim /ann/ = 0, where 1 1
denotes the valuation of C,. Let CM be the set of continuous functions
from Zp to M. Then both QM and CM are Banach algebras with the

norms sup /n!an/ and max |f(z)|, respectively. Let a be a residue class
n zczp

mod (p - 1). Following Leopoldt [11], Lichtenbaum has shown in [12]
that one can define the I"-transform. For the precise definition, see
[12]. We simply note that F" is a bounded linear map from QM to CM.
The following is a key lemma about F".

LEMMA 3: Given A(X) ~ QM, define

where C ranges over all p-th roots of unity. If k is an integer ~ 0 with
k ~ a mod p -1, then
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Let C, be the ring of integers of M. Given a power series f (X) E
OM[[X]], we can obtain a function f* E CM by f*(s) = f((1 + p)S -1).
We call f * an Iwasawa function in CM. Another basic result about
T" is the following (see [12]). If A(X) ~ OM[[X]], then ra(A)(s) is an
Iwasawa function.

II. é-adic L-functions

As before, let M denote a complete subfield of C,, and OM the ring
of integers of M. We suppose, for simplicity, that M contains the field
T, which is the completion of the maximal unramified extension of
Kp* By Lemma 1, there exists a power series g(X) E OT[[X]], and
y E OxT, such that t = g(e03B3z - 1). In fact, g(X) defines an isomorphism
from Gm to Ê. Let 03C0, where TT = 03C8(p) be the kernel of the endomor-
phism [ir] of E. Given A(t) E OM[[t]], we define, as before,

where C runs over all p-th roots of unity in C,.

LEMMA 4: Let B(t) E ûm[[t]], and define A(X) = B(g(X)). Then,
for each integer k ~ 0, we have

here t * ~ denotes the sum of t and TI on Ê.

PROOF: Since t = g(e03B3Z -1) and q = g(C - 1), it follows from the

fact that g is an isomorphism from Gm to Ê that t * ry = g(03B6e03B3z - 1)
(note that 03B6e03B3z - 1 is the product of 03B6 -1 and e03B3Z -1 on Gm). Hence

It is clear that q ranges over 03C0 as C runs over the p-th roots of unity.
Then the assertion of the lemma is clear.
As in § .1, let H be an arbitrary finite abelian extension of K and
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write G = G(H/K). We assume now that p is prime to 2, 3 and b,
where b is the least common multiple of the conductor of H/K and
the conductor of ip. Let a be an integral ideal of K, which is prime to
b, and let A (z, a) be as defined in §.l. The prime 03B2 of K determines a
prime 13 of H lying above p.

LEMMA 5: Let 03C3 ~ G. In terms of the parameter t = -2p(z)/p’(z),
the function

has an expansion whose coefficients all belong to Ce, the ring of
integers of the completion of H at B.

PROOF: By Lemma 11 of [1], 039B03C3(z, a) has a power series expansion
03A3~k=0hk(a, 03C3)tk, where the hk (a, 03C3) belong to OB, and ho(a, 0") is a unit in
61. It follows that the logarithmic derivative, with respect to t, of this
power series also belongs to OB[[t]]. Now we can write z = À(t),
where À is the logarithm map of Ê. It is well known that À’(t) is a

power series with coefficients in ZP and leading coefficient 1. Thus

1/(03BB’(t)) also belongs to Z p [[t]], and the assertion of Lemma 5 follows by
the chain rule for differentiation.

LEMMA 6: Let n be an integer ~ 0. There exists c ~ C such that

where the product on the left is taken over a set of representatives
modulo L of the 1,n -division points of L.

PROOF: Both sides of (3) are elliptic functions for the lattice L, and
so it suffices to verify that the two sides have the same zeros and
poles. The zeros of O(z, a) occur precisely at the elements of L each
with the multiplicity 12(Na -1). Similarly, the poles of O(z, a) are
each of order 12, and occur precisely at the elements of a-’ L which
are not in L. Using these remarks, one immediately concludes that the
right and left sides of (3) have the same zeros and poles, as required.

LEMMA 7: Let 0" E G, and let n be an integer ~ 0. There exists

C ~ C such that
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where the product on the left is taken over a set of representatives
modulo L of the ,n -division points o f L.

PROOF: Let 0" = 03C3c, where c is an integral ideal of K prime to b.
Then it is shown in the proof of Lemma 8 of [1] that

On the other hand, recalling that 7T = q,(p), it follows from (3) that

Taking the product of both sides of this equation over the b E B, and
using (5) with c replaced by cpn, the assertion of Lemma 7 follows.
We now apply Lemma 4 with B,(t) given by the expansion in t of

d log 039B03C3(z, a). By Lemma 5, this expansion does, in fact, belong todz p g

OT[[t]]. Taking the logarithm derivative with respect to z of both sides
of (4), we conclude that

Hence, if A03C3(X) = B03C3(g(X)), Lemma 4 implies that

Thus, in view of Lemma 2 and 3, we have established the following
result. Write 03BBk = 12(-1)k-1 03C1-k(k-1)!. Let a fixed be a residue class
mod (p - 1). We define

THEOREM 8: Let Bu(t) = B(t, u, a) be the expansion in t of

d log 039B03C3(z, a). Put A03C3(t) = B03C3(g(t)). Then for all integers k ~ 0 withdz (g( ) f

k ~ a mod (p -1), we have
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We now use Theorem 8 to construct P-adic L-functions. Suppose X
is a homomorphism of G into K. Replacing H by the fixed field of the
kernel of -X if necessary, we can assume that the kernel of y is trivial.

Let us denote also by X the homomorphism of G into Cx p given by
03C4  X. For each integer k ~ 1, we define the number 03A9-kL(-k~-1, k) in
Cpby

Let OT,~ be the ring of integers of the field obtained by adjoining the
values of X to T, and write 039B~ = OT,~[[X]].
Now take a an integral ideal in K, prime to b and p, and let

A03C3(t) = Au(t, a) be the power series in t, which is defined in Theorem
8. Let a be an arbitrary residue class modulo (p - 1). It follows from
Lemma 5 that there is a power series r03B1(X ; ~, a) in 03BB~ such that

for all s in Zp.

LEMMA 9: For all integers k ~ 0, with k ~ a - 1 mod (p - 1), we
have

PROOF: This is immediate from Theorem 8 and the definitions (7)
and (8).

If x is a unit in K,, we write as usual x = 03C9v(x)~x~, where 03C9(x) is a
(p -1)-th root of unity, and (x) = 1 mod p. Since ip(a) generates the
ideal a, and a is prime to p by hypothesis, the number 03C8(a) is a unit in
K, when viewed under the canonical inclusion of K in K,. Define (3(a)
in Zp by the equation

and a03B1(X ; ~, a) by
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It is clear that for all integers k ~ 0 with ~ 03B1 - 1 mod(p - 1), we
have

Since a 4 1 and 03C8(a) generates a, it is easy to see that a03B1(X ; ~, a) is
not identically zero.

Define

For À E K, let S(03BB) denote the trace, from K to Q, of a. Let D be
the different of K and d its discriminant. Let b0 be the conductor of y
and b-10D-1 = (50). We choose once for all 30 so that 50v’d has exact
denominator b0. Put, [ 18], when y is a proper character

where À runs through a full system of representatives of residue
classes mod b0. T() is different from zero.

Let wb be the number of roots of unity in K congruent to 1 mod b.
Let 03B8 be the canonical character giving the action of G(H(Ep)/K)

on the group E, of p-division points on E. We define the P-adic
L-functions Lp(~03B803B1, s ) by

(Here q is the least common multiple of the conductor of x0" and f.)
Now if H = K, X = Xo is the trivial character with conductor (1). We
take T(~0) = 1 we consider as before r03B1(X ; ~0, a), aa(X ;xo, a),
f03B1(X ; ~0, a) and we define

THEOREM 10: For all integers k ~ 0, k ~ a - 1 mod(p - 1) we have
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and

REMARKS:

1) The functions Lp(03B803B1, s ) have been also constructed in [5].

2) The factor 1- ~(p)03C8k+1(p) Np is the Euler factor of p in the Euler
product of L(~03C8k+1, 1). In fact L(X-lf/1k+l, k + 1) and L(~03C8k+1, 1) are
linked by the functional equation of L(~-1k+1, s) [7].

3) We have chosen this normalisation of L(~03B803B1, s) because in § .III,
we want to give a formula for Lp(~03B803B1, 1), which will be an analogue of
the classical complex formula for L(xf/1°, 1) (see the above remark),
arising from Kronecker’s limit formula [ 18].

4) We can choose an a such that a03B1(X ; ~, a) is a unit in 039B~. Let e
denote a generator of the ideal 12b ~ Z. Choose n to be a rational
integer, prime to p, such that (1 + ne1T) is not divisible by p and take
a = (1 + neir). Then Na ~ 1 mod p ; also 0"0. = 1 because the conductor

of H/K divides e, and f/1k(a) = (1 + ne1T)k. Then f/1k(a) == 1 mod p
because the conductor of f/1 divides e. Then f03B1(X ; ~, a) belongs to Ax
even when X = Xo is trivial. Moreover as the right hand side of (13)
and (14) is independent of the choice of a, and fa (( 1 + p)S - 1 ;x, a) is a
continuous function, it follows that Lp(~03B803B1, s) and Lp(03B803B1, s) are Iwas-
awa functions independent of a.

III. Leopoldt’s formula

Now we will compute the value Lp(~03B803B1, 1) to get an analogue of
Leopoldt’s formula and we will see that it is a p-adic analogue of the
complex formula for L(~03C8003B803B1, 1).
An important role here is played by the elliptic units of Robert [16].

Let b be an arbitrary integral ideal of K. We denote by P a pair
(si, .8’) where = {aj, j ~ J} and N = {nj, j e J} ; here J is an arbitrary
finite index set and dj are integral ideals of K, prime to S and (p)b,
and the nj are rational integers satisfying 03A3j~Jnj(Naj -1) = 0. Given
such a pair P, we put
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where 0398(z, aj) is defined in the first part. Let p be a b-division point
on E. Then Robert has shown that 0(p, 9P) is a unit in K(Eb).

1) Leopoldt’s formula
Recall that we have defined

and

where 4 is the least common multiple of the conductor of x0" (resp.
03B803B1) and f.
This formula is not convenient for studying the value L,(XO", 1). We

will find another one.

Let P a pair as before (for the ideal b least common multiple of the
conductor of y and f). For each u E G(H/K), let:

In terms of the parameter t = -2p(z)/p’(z) of Ê, Au(z,9») has an
expansion whose coefficients all belong to C,. Moreover

Thus 039B03C3(0, P) is a unit in Op. Hence Log 039B03C3(z, P 039B03C3(0, P) has an expansion in
t, whose coefficients all belong to H03B2.

LEMMA 11: Let Bu(t, P) be given by the expansion in t of

Log 039B03C3(z, 039B03C3(0, 1-9-A )and A03C3(t, P) = B03C3(g(t), P).
Then f or all integers k ~ 1, with k ~ a mod (p - 1),

PROOF: Let
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Define

and

It is easy to see that [12], for all s E Zp

But

Thus

As aj has been chosen prime to (p), we define 03B2(aj) by

and aa(X ;x, P) by

It is clear that for all integers k ~ 0, with k = a mod p - 1 we have

Using (15) and (16), we can prove the following Lemma.

LEMMA 12: For all integers k ? 1, k = a mod p - 1 we have
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LEMMA 13: If either X is non trivial or a different from 0, there
exists a pair P such that a,,,(X;X, P) is a unit in Ax-

PROOF: If y is non trivial, there exists u such that ~(03C3) ~ 1. Let e
denote a generator of the ideal 12b ~ Z. Choose a1 =(1 + ne03C0) n2 =
-(Na, - 1); take a2 to be an integral ideal of K, prime to S and p,
such that 0"0.2 = or and let n = N a2 -1.
Now if X is trivial and a ~ 0, let q be an element of (9, whose image

in 6/p is a generator of (O/p)~. Take a, = (1 + neir). Choose a2 = (a2)
where a2 is an algebraic integer in K, satisfying a2 --- 1 mod eir and
03B12 ~ 71 mod 7r. Let n1 = Na2-1 and n2 = -(Na1 -1). Then n2 is prime
to p and because the conductor of 03C8 divides e,

and

Such a choice is made in [1] Lemma 13.

continuous function on Zp, which is such that for all integers k ? 1,
k - a modp-1

if either X is non trivial or a different from zero.

LEMMA 14: If either X is a non trivial character, or a a non zero
residue class mod (p - 1), for all s E Zp,

REMARK: If X is trivial and « is zero
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But:

and

where the sum on the right is taken over a set of representatives
modulo L of the ir-division points of L. Then

But

where p is a f -division point of C mod L. This is a unit in K, then a
root of unity and

Even when X is trivial and a is zero

is a continuous function on Zp and we have

But this formula is not useful for computing Lp(03B80, 1).
Now we come back to the case where x is non trivial, and a = 0.
From (17) we have
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by lemma 4

and

where the sum on the right is taken over a set of representatives
modulo L of the 1T-division points of L. Now from Lemma 7, we
have

THEOREM 15: If X is not trivial

We now proceed to find a similar formula for 03B1~0. As before,
define

where 6 has been chosen once for all such that p-1D-1= (8) and 03B4d
has exact denominator p, and where À runs through a full system of
representatives of the residue classes mod p. Let us denote by C the
p-th root of unity e203C0riS(03B4). As p splits in K, 0/p is isomorphic to Z/pZ.
Then, we will write
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LEMMA 16: For each a, congruence class mod (p - 1) for each
rational integer n, prime to p

PROOF: Let m E Z, such that

m ~ n mod p

and

m ~ 1 mod f (where f = f n Z)

By definition

Then Lemma 16 is proved.
Let M be any complete subfield of Cp, and A E QM. For each a

congruence class mod(p - 1), let

Aa belongs to QM and does not depend on C.

LEMMA 17: For each s E Zp

PROOF: Because of the linearity of F«-O and 1-l’ we have just to
prove the equality for A(u) = (1 + u)". Then

B y definition [12]:
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and

Now let us consider

Then

Moreover

where C’ runs over all p-th roots of unity in (p. But:

Then

and:

Recall that by definition Au(t, P) = B,(g(t), P) where B,(t, e) is

given by the expansion Log 03BB03C3(z, 039B03C3(0, P P)
Define:
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and

where q is an element of C such that e(q) is the p-division point on E
which corresponds to C. Then

By Lubin Tate theory, we know that G(K(Ep)/K) is naturally isomor-
phic to the group of units of 0/p; moreover G(H(Ep)/H is isomorphic to
G(K(Ep)/K) [14]. Then to each À mod p corresponds 03C303BB E G(H(Ep)/H)
and

THEOREM 18: If a is a non zero residue class mod p - 1

(2) Analogy with complex formula
Let H be an arbitrary finite abelian extension of K and let b be the

least common multiple of the conductor of tp and b0, the conductor of
H/K. Let X’ be a ray class character mod b such that X, the proper
ray-class character associated with X’ has conductor b0.
We will see that we have complex formula for L(~’, 1) which is

analogue of (17) and (18).
We take the notation of Robert [16]. Let us consider the set A(b) of

pairs {t, bl where tEe and b is an ideal of K, such that b =

{03B1 E (7 ) |03B1t E bl. One says that {t, b} is equivalent to {t’, b’} if and only
if, there exists 0 E K* such that t’/03B8t is congruent to 1 mod b and
b’= 03B8b. Denote by ~ this equivalence. For each {t, bl E A(b), tbb-1 is
an integral ideal, prime to b. Denote by C(t,b, the ideal class of tbb-1.
Robert has shown that the map {t, b}~C{t,b} defines an isomorphism
between A(b) and the ray class group mod b, Cl(b). Let [ w,, w2] be a
basis of b ; we define
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where Y«t, t) = 12i03C0rt/(w21 - Wl W2). It can be shown that cp 12h(t, 0)
depends only on C{t, b} and we set

Now if we consider the pair fp, CI where p = f2. Then C{p,O} = Co the
identity in the ray class group mod b. So

Then:

Moreover it can be proved that [16]:

when

Now Siegel [18] has shown that

So, from (20), (21), (22) we have

This formula is the complex analogue of (17) and (18). We will try
to explain why this holds. We have
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and

Moreover, from the functional equation [7], we have

Then

and this is to compare with Lemma 12 and 13, if we could put k = 0.

IV. p-adic residue formula

Again, we suppose throughout this section that H is an arbitrary
finite abelian extension of K. As before, we write b for the least

common multiple of the conductor of H over K, and the conductor of
the Grossencharacter qi of E over K. Finally, p is a rational prime,
with p ~ 2, 3 and (p , b)=1, which splits in K, say (p)=pp. For
simplicity, we write

By analogy with Leopoldt’s work, in the cyclotomic case, our aim
is to use the result of §.III to find the residue at s = 1 of a p-adic
function that can be viewed almost as the p-adic zeta function of F.
Such a formula has been studied independently of us by Vishik [20]
and Lichtenbaum. We begin by recalling the complex analogue of this
formula. By class field theory, we have

where the product on the right is taken over the non trivial characters
X of the Galois group of F over K, and L(X, s ) is the primitive
complex L-function attached to X. Let 0394, W, g denote respectively
the discriminant of F over Q the number of roots of unity in F, and
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the degree of F over K. Let d, w denote the discriminant of K over
0, and the number of roots of unity in K. Finally, let R~ denote the
regulator of F, and h the class number of F. Multiplying by s - 1 in
the above formula and letting s - 1 we obtain

Let R, be the p-adic regulator of F over K, as defined on p. 13 of
[4]. Also, we can view |0394| and |d| as lying inside C, by taking their
images under our fixed embedding T :  ~ C, (for simplicity, we iden-
tify these elements with their images under T).

Let e be the pair defined in the previous section; p = 03A9 hp, where
(h) = b. Let for 0" E G(FIK)

Let 6, be the group generated by the E(03C3)03C3’, with 0"’ E G(F/K). It is a
group of units in F.

Let us denote by

(26)

by

(27)

and

(28)

where g~ is the least common multiple of the conductor of X and f/1,
where x runs over ait primitive character of G(F/K).

LEMMA 19: The index of E1 in the group of all units in F is given by
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PROOF: It is well known that the index of 6, in the group of all

units in F is equal to U where U = det(log|E(03C3)03C3’) with u, (T’ E

G(F/K). From (24) we have

Moreover from (23)

But we know [18] that

Combining (29) and (30), we have the lemma, recalling that

(Vfdf)g 03A0~~1 T() = |0394|
Let us denote

where the product is taken over all primes of F above p.

THEOREM 20:

where the product on the left is taken over all non trivial character of
G(F/K).

PROOF: From (17) and (18), we know that
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Then

Let

Then

But Up/Rp is equal to the index of Z, in the group of all units in F, up
to ± 1. Then

Then Theorem 20 is proved.

(2) Kummer’s criterion
Let us recall what is known about Kummer’s criterion in the elliptic

case. Let L0(03C8k, s) be the primitive Hecke L-function of 03C8k for each
k ~ 1. Let L*0(03C8k, k) = w(k-1)! Lo(.pk, k), k ~ 0 mod w. If p is a prime
number not in the exceptional set S, which splits in K, it is shown in
[4] that the numbers

are all p-integral. Let (p) = pp and H, the ray class field of K modulo
p. It is shown in [4] the Kummer’s criterion i.e.
p divides at least one of the numbers (N) if and only if there exists a

Z/pZ-extension of He, which is unramified outside the prime of Ho
above p and which is distinct from the ray class field mod p2.
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The proof of this theorem is divided in two parts. In the first part,
the authors use class field theory to establish a Galois theoretic p-adic
residue formula for F an arbitrary finite extension of K. Denote by
Koo the unique Zp-extension of K, which is unramified outside p and
Foo = K.F. The notations are those of the previous section.

LEMMA 21: Let M be the maximal abelian p-extension of F, which
is unramified outside the primes of F lying above p. Then G(M/F~) is
finite if and only if Rp 0 0. If Rp 0 0, the order of G(M/F~) is equal to
the inverse of the p-adic valuation of

where the integer e is defined by F fl Koo = Ke.

Then they combine this with a function theoretic p-adic residue
formula due to Katz and Lichtenbaum for the p -adic zeta function of Hp
over K.

Let now H be an arbitrary finite abelian extension of K and

F = H(En). Let us consider the numbers

for all primitive character X associated to the characters of the Galois
group G(F/K).

Let 13 denote any prime of H above p.

THEOREM 22: B divides at least one of the numbers (N’) if and only if
there exists a Z/p Z -extension of F, which is unramified outside the primes
of H(E,) above p and which is distinct from H(E,2).

PROOF: Theorem 20 shows that
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For all x0", Lp(~03B803B1, s) is an Iwasawa function. Then, for all integers k - 0

But from theorem 10, if k --- a mod(p - 1) k ~ 1

This shows that if k == a mod p - 1, k ~ 1

Moreover, if k --- « mod p - 1

And if k ~ 0 mod w

Or

Thus, if a --- k mod p - 1

Now we have just to use Lemma 20.
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