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The purpose of this paper is to verify the Hodge conjecture for
certain "Fermat hypersurfaces", i.e., hypersurfaces V m in pnll
defined by X’ + ... + Xmn+1 = 0. Recall that the Hodge Conjecture [2],
also known as the "Generalized Hodge Conjecture", states that, for a
projective algebraic manifold vn and integers r, k, a class c E

Hr(V, Q) whose Poincaré dual has Hodge filtration k should lie in the
image of H,( W, Q) ~ Hr(V, Q) for some subvariety W of codimension k
in V.’ In particular, for 2n - r = 2k this says that if c is a Hodge class,
i.e., its Poincaré dual is a (k, k) class, then c is algebraic, i.e., can be
represented by (a linear combination of) algebraic subvarieties of V. The
latter statement is also sometimes called the Hodge conjecture.
Our results include the following:

(1) The Hodge conjecture is true on Vm for r = n = 2k provided m
satisfies a certain arithmetical condition; this is satisfied, for

instance, if m is prime or m = 9. In fact, for m prime, the Hodge
classes are generated over Q by the fundamental classes of linear
spaces.

The way this result comes about is this: We introduce a natural

geometric opération, *: Hn’(Vn’m) ~ Hn"(Vn"m) ~ Hn’+n"+2(Vn’+n"+2m) which
associates to c’ fi?) c" a sort of "ruled cycle" spanned by c’ and c"; by
definition, * preserves algebraic cycles. One of our main results
asserts the injectivity of * (on primitive homology), which in turn
allows us to determine its image exactly. This, combined with explicit
information on the Hodge classes [6], [7], [3], gives result (1). It also
gives:

* Partially supported by a U.C. Berkeley graduate fellowship.
’ This conjecture is, in general, false in this form and has to be weakened somewhat [1],
but in the cases we shall consider, we shall actually verify it in the original form.

0010-437X/81/01121-22$OO.20/0
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(2) For fixed m, there are finitely many Hodge classes ci E Hni( Vnim),
such that, for all n, repeated *-products of the ci generate the

Hodge classes in Hn(Vm), modulo the action of the symmetric
group induced by permutations of the coordinates on Vm.

(3) If a certain (verifiable) arithmetical statement holds, the Hodge
conjecture holds on Vm for r = n = 2k + 1, m prime.

By a similar but slightly different method we also prove:
(4) With a similar arithmetical provision, the generalized Hodge con-

jecture holds on Vm for k = 1.
We proceed with the detailed contents of the sections. §1

establishes some notation and preliminary facts. We discuss the

action of roots of unity on Fermat hypersurfaces and their homology;
this leads to a somewhat explicit determination of the Hodge filtration
which, by work of W. Parry can, for certain degrees m (in particular
m prime), in fact be made very explicit for the case of Hodge classes.
Finally we discuss lines on the Fermat surface, and the space spanned
by their fundamental classes.

In §2 we give a topological construction related to degenerations of
certain kinds of hypersurfaces in pn . The main point here is to show
that certain open sets in pn are contractible.

In §3 we apply the result of §2 to study the homology of a smooth
hypersurface X defined by the equation g(X0, ..., Xn-1) + Xmn +
Xmn+1 = 0 in Pn+1. We introduce certain operations 03A6k, s~ which put
together give us a precise and effective description of the homology
of X in terms of that of X ~ {Xn+1 = 0} and that of X ~

IXn = Xn+l = 01; and, what’s most important, 03A6k in fact preserves the
rank of cycles; specializing to the Fermat case, we get result 4 above.

In §4 we introduce the operation * (in a more general context) by
means of a projective-geometric construction. The main fact to prove
about it is its injectivity (on primitive homology). We prove this in the
Fermat case by an application of the machinery of §3, using the
compatibility of * with 03A6k and s~; the more general case follows
immediately from this by an easy deformation argument. Given the
information about the Hodge filtration, this gives results 1, 2, 3.

Note: After seeing a preliminary draft of this paper, T. Shioda has
given another proof of the injectivity of *, and has deduced a version
of result 1 above with a similar but less restrictive arithmetical

assumption. Cf., Math. Ann., 245 (1979), 175-184.

Finally it is a pleasure to record here my thanks to Arthur Ogus for
his generous advice and many keen suggestions related to this paper.
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1 would also like to thank Blaine Lawson and Robin Hartshorne for

helpful discussions and encouragement.

§1. Notations and preliminary results

We begin by making a few remarks of a trivial nature concerning
representations of finite abelian groups, for the convenience of the
reader.

Let r be a finite abelian group, and let H be a finite dimensional

complex T-vector space.

(1.1) We have H =~{H~:~~0393*}, where r* = Hom(r, Cx ) is the

dual group and H~ = {c E H : y(c) = X(y)c, Vy E FI. In particular, if

T ~ Z/mZ then 0393~Z/mZ too, so that we have H = ~ Hr.
rEZ/mZ

(1.2) Any r-equivariant surjection H ~ H’ has a r-equivariant
cross-section, so that H = H’(D ker a, r-equivariantly.

(1.3) Consequently, H contains no nonzero vector fixed by r V [in
the above decomposition (1.1), H0 = 0] ~ [ in (1.2) H’ contains no
nonzero vector fixed by 0393].

All our varieties will be projective and over C, and will be con-
sidered as topological spaces in their complex topology. Our

homology and cohomology will be with C-coefficients, unless other-
wise stated, and for nonsingular varieties we shall usually identify
them via Poincaré duality, which will allow us to talk about pull-back
and intersection product (= Poincaré dual of cup product) on

homology.
For a variety V of dimension n in PN, possibly singular and

reducible, we denote by 03C9i ~ Hi(V) the homology class of the inter-
section of V with a general PN-n+(i/2) if i is even, 0 if i is odd. We
denote by Pi(V) "the primitive homology" of V which we define to
be the kernel of Hi(V)~Hi(PN). These definitions of course depend
on the projective embedding, but in all the varieties we shall be

considering such an embedding will be implicit. In case V is non-
singular connected, Pi(V) coincides with the Poincaré dual of usual
primitive cohomology, i.e. the kernel of cup-product with the hyper-
plane section class. Thus Hi(V) = Pi(V) EB Cwi. It is clear from our
definitions that if we have a cartesian diagram
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then fPi(V) ~ Pi(V’) and f(03C9i) = multiple of w;. Now fix an integer
m ~ 1 and let 03B6=03B6m = e203C0-1/m. Dénote by 03C3n the projective trans-
formation of PN, N ~ n defined by [X0, ..., Xn, ..., XN] ~
[X0, ..., 03BEXn, ..., XN]. Let rn be the subgroup of PGL(n + 1)

n+i

generated by 03C30, ..., 03C3n+1, so that 0393n ~ ~ Z/mZ/(diagonal) and 0393n =
o

n+l

{~=(~0...~n+1)~Z/wZ:03A3~i=0}; we have an obvious map
o

rn’ ~0393n f or n’ ~ n, namely 03C3i ~ 03C3i, i ~ n, 03C3i~1 otherwise. Also put
0394n= ~03C30,...,03C3n-1, 03C3n03C3n+1),1 039Bn= ~03C3n, 03C3n+1~. Now let X be a non-

singular hypersurface in Pn+1 with homogeneous equation
f(X0, ..., Xn) + Xmn+1 = 0. Then O"n+l acts on X and we claim:

LEMMA 1.4: 03C3n+1 fixes no nonzero vector in Pi(X).

PROOF: Note that via the projection X~Pn: 03C0[X0,..., Xn+1] =
[Xo,..., Xn], pn becomes topologically the qutoient space of X under
~03C3n+1~. Therefore, identifying homology and cohomology, image 03C0* =
Hi(X)~03C3n+1~. Since image 03C0* = CWi, Q.E.D. ~

By (1.3) we can state the lemma also as:

(1.5) In the eigenspace décomposition Pi(X) = ~ c" Co = 0.
r~Z~Z/mZ

Note that this implies

(1.6) For c E P;(X), 03A3m-1j=0 03C3jn+1*(c) = 0.

We now turn our attention to Fermât hypersurfaces Vm. Note that
rn acts on Vnm; the next proposition, communicated by Ogus, de-
scribes the corresponding représentation on Pn(V) and its relation to
the Hodge filtration. The result follows immediately from results in
[6]; we have however made the (obvious) translation from

cohomology to homology.

’ ( ) means subgroup generated by.
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PROPOSITION 1.7: (i) With respect to the action of rn, the character
decomposition (eigenspace decomposition) o f Pn(Vm) is as follows :

with each Hx 1-dimensional. (The X appearing in the latter decom-
position will be called "relevant characters.")

(ii) For the Hodge filtration F· on Pn(Vnm), the Poincaré dual of
FkPn(Vnm) is given by ~{H~:~ relevant and s(~)~ (n - k + 1)m},
where s(X) = s(xo,..., ~n+1) = 03A3 (Xj) (recall that ~·~ denote the unique
integer representative between 0 and m - 1).

(iii) Let (Z/mZ)X act on 0393n by coordinatewise multiplication. Then
the Poincaré dual of [FkP"(Vm) rl Hn( V, Q)] Q9 C is (DfH,:,y is rele-
vant and s(~~) ~ (n - k + I)m, BlE E (Z/mZ)~}. In particular for n
even, the "Hodge subspace," i.e. then Poincaré dual of [Hn/2,n/2(V:,) n

Hn(V, Q)] ~ C is ~{H~:~ relevant and s(~~) = (n 2 + 1)m, ~~~
(Z/mZ)~} (these latter X will be called "Hodge characters"). D

We shall need more precise information on the Hodge subspace
and the Hodge filtration than Proposition 1.7 provides. Such in-

formation comes from recent arithmetical work of W. Parry [7], and
we will now state his results in the form we shall use:

For X’ E rn;, ~" ~ 0393n" denote by X’*X" E rn’+n"+2* the character

obtained from X’ and X" by "juxtaposition," i.e. if y= (XÓ, ..., X’n+1),
X" = (~"0, ...,~"n"+1) then X’*X" = (XÓ, ..., ~’n’+1, XÕ, ... , ~"n"+1).

PROPOSITION 1.8: (i) For m prime, the Hodge characters in all

dimensions are generated under *, up to permutations, by those in
dimension 0, namely by (1, m - 1), ..., (m - 1, 1).

(ii) For m = p2, p prime, there are generators-up-to-permutations in
dimensions 0 and p - 1. D

(Of course, the "dimension" of X E rn* is n.)

PROPOSITION 1.9: For arbitrary m there is always a finite set of
generators-up-to-permutations of the Hodge characters. D

For the proof of these statements, it is convenient to represent a
character X by the function f:[Z/mZB{0}] ~ Z which assigns to a
residue class the number of times it occurs in X. Then 1.8(i) follows
immediately from the proposition in [3]: namely, they prove that an f
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corresponding to y Hodge can be written f = 2 rfi with fi cor-

responding to (1, m -1 ) ... ([m 2], m-[m 2]), r, E Q. Since fi have

disjoint supports, it follows that ri must be positive integers, which
gives what we want. 1.8(ii) is more complicated, but we won’t really
use it. 1.9 follows from a general lemma of Gordan saying that in Zk
the semigroup of positive integral solutions to a finite number of

linear equations with integer coefficients is finitely generated. Cf.

Vorlesungen über Invariantentheorie, vol. 1, p. 199 (Leipzig: Teubner,
1885).

1 also want to record here for future reference two statements, each
of which, when true, will give us, as we shall later see, a case of the
Hodge conjecture. (Of course, in view of Proposition 1.7, it is

possible to check them by hand (or computer) in any given instance.)

STATEMENT 1.10m : Suppose H~ is contained in the Poincaré dual
of [F1P3(V3m) ~ H3(V3m, Q)] ~ C, m ~ 3. Then by a suitable per-
mutation of coordinates we can arrange that ~3 + ~4 ~ 0 and that

(XO, xi, X2, X3 + X4) be a Hodge character on V£. D

In the second statement we take m prime.

STATEMENT 1.11m,k: The Poincaré dual of [FkP2k+1(V2k+1m) ~
H2k+1(V2k+1m, Q)] 0 C is ~{H~: ~ = (~0, ..., ~2k+2) contains k - 1 pairs
of opposites}. ~

I have verified these statements for m s 8, k ~ 2.

REMARK 1.12: Take for example k = 1, n = 3. It is clear that if y
contains a pair of opposites, say Xl = -Xo, then the conclusion of
statement (1.10)rn holds for for X, since then if, say, ~3 + ~4 ~ 0 then
(XO, ~1, X2, X3 + X4) consists of two pairs of opposites, which makes it a
Hodge character.

EXAMPLE 1.13: Take n = 3, m = 8. One verifies that the characters

X with Hx C Poincaré dual of [F1P3(V3m) ~ H3(V3m, Q)] ~ C either
contain a pair of opposites or are permutations of (14551) or (23722),
and for the latter the conclusion of statement (1.10)m holds. In

particular, statement (1.10)m holds for m = 8.

Finally 1 want to give a result for the Fermat surface which will
later be generalized to higher dimensions.



127

On V2 = V2m, let Li,j denote the homology class of the line with
equations Xo = eCiX,, X2 = 03BE03BEjX3, 03BE = m-th root of -1.

PROPOSITION 1.14: {Mij : = Li,j - Li,j+1 - Li+1 + Li+1,j+1 ; i, j = 0,...,
m - 2} forms a basis for ~ {H~ : Xo = -,YI, X2 = -~3}.

PROOF: Since the latter space has dimension (m -1)2 and clearly
contains Mi,j, it suffices to prove that the latter are linearly in-

dependent, which will follow once we prove their intersection matrix
to be nonsingular. Now from the facts that L2; = 2 - m (adjunction
formula) and that L;,;, Li’,j’ = 8i,i’ + 8j,j’ f or (i, j) ~ ( i’, j’), it follows that

the intersection matrix of the Mi,j has the form

(m - 1)B is the intersection matrix of {L0,j - Lo,j, 1 : j = 0,..., m - 2}.
Note that A = mB ~ B, so to prove A nonsingular it suffices to prove
B is. One way to see the latter is to note that L0,j · Li,;, = Sjj,, so
{L0,j: j = 0, ..., m - 1} are linearly independent. Therefore so are

{L0,j - L0,j+1 : j = 0, ..., m - 2}. Hence by the Hodge index theorem
their intersection matrix (m -1)B is nonsingular. D

§2. The topological construction

By way of introduction to this section, consider the f ollowing prob-
lem : given a hypersurface D in P", find a pencil of hypersurfaces
{Dt}t~1 with, say D1 = D, such that for some path 03B2 in P’, if we let

L def U Dh then pn - L is contractible. (Motivation for considering
tep

this problem is provided in §3). Consideration of the case n = 1

clearly suggests what the answer might be: namely take {Dt} to be a
pencil with Do = multiple hyperplane, 03B2 = path from 1 to 0. This in
fact turns out to be true, at least in some cases, as we shall see

presently.
We shall consider in detail only the case which will be of use later
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Fig. 1. P" - L is contractible; an illustration for n = 1.

on; so assume now that D has homogeneous équation of the form
g(Xo,..., Xn-1) + X,:: = 0, where Xo,..., Xn are homogeneous coor-
dinates in pn. For t ~ C define Dt ~ Pn by the equation

tg(X0,...,Xn-1)+Xmn=0, and let Ldet U Dt.

LEMMA 2.1: For an y neighborhoods N 01 Do, N’ o f L there exists a
diffeomorphism 03C8 of Pr+1 such that 03C8|Pr+1-N’ = identity, and 03C8(L) ç N.

PROOF: Let {03C8’s} be the flow on Pr+1 given by [X0,...,Xr+1]~
[Xo,..., X" e-sXr+1]. Then for s » 0, surely 03C8’s(L) ç N. (Note that the
fixed points of {03C8’s} consists of [0,...,0,1] ("repelling") plus the
hyperplane {Xr+1= 0} (which attracts everything).) Let {03C8’s} be given
by a vector field v’. Let a be a C°° function on Pr+1 which is =1 near L
and =0 in an open neighborhood of Pr+1-N’. Let {03C8s} be the ftow
determined by av’. Then «/1sIpr+l_N’ = identity for all s ; also since

03C8’s(L) ~ L for s ~ 0, it follows that 03C8’s|L = 03C8s|L for s ~ 0. So we can
take 03C8 = 03C8s for s » 0. D

A formal conséquence of this is the following:

COROLLARY 2.2: 03C0i(Pr+1 - L) = Hi(Pr+1 - L) = 0 for i ? 1 and Pr+1 -
L is connected.

PROOF: We give the proof f or 03C0i; the rest is proved similarly. Let c
be a représentative of a class in 03C0i(Pr+1 - L). By compactness there is
a neighborhood N’ of L in Pr+1, so that c ~ Pr+1 - N’. Now Do is a
hyperplane in P’+’, so Pr+1 - Do = C’+’ is contractible. Hence there is a
homotopy F of c to a constant. Again by compactness there is a

neighborhood N of Do such that image(F) ç Pr+1 - N. Now let 03C8 be
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given by Lemma 2.1. Then 03C8-1(Pr+1) ~ Pr+1 - L and ip-’(c) = c. There-
fore 03C8-1 F is a homotopy of c to a constant in Pr+1 - L. Q.E.D. ~

The proof of the above corollary shows that it continues to hold

whenever the following assumptions hold:
(1) Do is a (multiple) hyperplane.
(2) The pencil {Dt} forms a "fibre space" in the following sense:

there are finitely many points p1, ..., p~ ~ P1, with
1 é {p1, ..., pel such that if {03C4s}s~[0,1] is an isotropy of idpl, fixing
a neighborhood of {p1, ..., p,,I, then there is an isotropy ifj of
idpn which "lifts {03C4s}" in the sense that s(Dt) = D03C4s(t).

In fact, standard deformation theory [5], [8] shows that assumption 2
is satisfied, for instance, whenever Dl is smooth. Thus the conclusion
of the corollary still holds whenever D, is smooth, Do is a multiple
hyperplane and 13 is a simple path between 0 and 1, omitting all "bad
points" except 0.

§3. A homology description

In this section V will denote a nonsingular hypersurface in Pn+1 with
equation g(Xo,..., Xn-,) + X n + X’ 1. We project V to Pn:

by 03C0([X0, ..., X.,,]) = [Xo,..., XnJ, and note that the branch locus of
7T in P" is the hypersurface D with equation g(X0, ..., Xn-1) + Xmn.
Thus we may apply the construction of §2 to D, as indeed we do,
letting D, and L be as there. Also set t = ’TT-IDh L = 03C0-1L. The point
of that construction can now be stated:

PROPOSITION 3.1: The map Hj() ~ Hj(V) induced by inclusion is
an isomorphism for j 2n - 2 and is surjective for j = 2n - 1.

PROOF: Consider the sequence Hj+1(V, ) ~ Hj() ~ Hj(V) ~
Hj(V,). By Lefschetz duality, Hi(V,)=H2n-i(V-). Now since
L contains the branch locus of 03C0, Ir: V -  ~ Pn - L is a covering; but
by Corollary 2.2 pn - L is contractible. Thus V - L is a union of m
contractible pieces, so H2n-i(V - ) = 0 for i  2n, and the proposi-
tion follows. 0
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Fig. 2. Picture of L and Ê for n = 1, m = 3.

We now turn to examining f. The picture we want to portray is of
 as essentially a fibre space over [0, 1] except for some pinching
down occurring (in different ways!) at both ends. This leads to a
description of the homology of Ê by cycles on the general fiber which
"vanish" at both ends, à la Lefschetz. We now make this precise.
Note that on V, Ô, is defined by the equation (t - 1)Xmn = tXmn+1, and

hence for t ~ 0, 1, Ôt is reducible with components t,i =
{t1/mXn+1 = 03BEi(1 - t)1/mXn}, for i = 0,..., m -1, where t’l’" denotes the

positive m-th root and 03B6 = e203C0-1/m. Set E = Dl/2, Ei = 1/2,i. Also put
B = V ~ ixn = Xn+, = 0}. Note that B is the base locus of the pencil
wmr nr nr r

DT, i.e. Dt n Dt’ = B whenever t ~ t’. Also B = Dt,i n D,,i, whenever
i ~ i’. B itself is a (nonsingular, by the Jacobian criterion) hypersur-
face in Pn-1.

LEMMA 3.2: Let Lo = U Dt, Ll/2 = U Dh L 1 = U Dt. Then
0~t~3/4 1/4~t~3/4 1/4~t~1

Du is a deformation retract of Lu f or u = 0, 1 2, 1.

PROOF: Define a map Q : E x [0, 1] - L by

Note that Q has the properties:
(a) Q(E, t) = Dt.
(b) Q is topologically a quotient map (being a surjective map of

compact Hausdorff spaces).
(c) If Q(x, t) = Q(x’, t’) and t, t’ ~ 0, 1 then either (x, t) = (x’, t’) or

x =x’EB.
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Now define homotopies Fn GS, HS of the identity on E  [0, 1] by

It is then a straightforward matter to check, using properties (a), (b)
and (c) above that Fs, Gs, HS descend via Q to define the requisite
deformations, in the requisite order. D

REMARK 3.3: Note that, in the above notation, Po = F1|E: E ~ 0
and P1  lIE : E ~ 1 are explicitly given by

Note further that all the maps t ~ t’ induced by the above defor-
mations all have the form [Xo,..., Xn+1] ~ [Xo, ..., Xn-h aXn, bXn+1]
for some a, b. D

Now consider the following diagram:

in which: (*) is the Mayer-Vietoris sequence for  = 0 ~ 1, po, pl
are as above, i stands for the various inclusions, and the vertical
isomorphisms are also induced by inclusions.
Now note that 039Bn acts compatibly on the various spaces above; (*),

and therefore (**), are thus 039Bn-equivariant. Furthermore, Do and 1
are both smooth hypersurfaces of dimension n - 1, so that Hn(i)=
n and image(Hn(0)~Hn(1)~Hn(V) is spanned by wn; also

i:Hn() ~ Hn(V) is an isomorphism f or n ~ 2, by Proposition 3.1, so
finally the map Hn() ~ Hn-1(E) is injective on i* i(Pn(V» for all n.

Taking its inverse where defined we obtain:
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LEMMA 3.4: There is a 039Bn-equivariant map

for n ~ 2, 1/’ is an isomorphism while for n = 1, 1/’ is surjective and its
kernel equals the image of the composite H2( V, ) ~ H1()~ H0(E).

0

(The last statement of course comes from the fact that for n = 1,
Ker(H1() ~ H1(V)) = image(H2( V, ) ~ Hl(L)) by the proof of Pro-
position 3.1.) Geometrically gi should be interpreted as taking an
(n - 1)-cycle c on 1/2 to the n-cycle it describes as it is being dragged
off to vanish at Do and bl; thus it is a version of the "cone on a

vanishing cycle" construction of Lefschetz.

REMARK 3.5: Note that 03A8 will in fact also be equivariant with
respect to any bigger group acting on the situation (*), (**) above. For
instance in case V is a Fermat hypersurface the whole group 0393n acts
on that situation, so in this case 03A8 is actually 0393n-equivariant.
Next we turn to the construction of some (in fact, as we shall later

see, of all) elements of Wn.
Let q; : D - E; be defined by

qi is an isomorphism, so we may use it to identify Ei with D. Note the
following identities:

Denote by i; the inclusion Ej ~ E. Now o-, acts on P,-,(D). For
r ~Z/mZ let Cr be the 03B6r-eigenspace; i.e. for c E Cr, 03C3n(c) = CrC.
Then by (1.5) we know Cr~ (0) only if r ~ 0 ~ Z/mZ. Let Kk =

~ {Cr : r~ -k} ~ Pn-1(D) for k ~ 0, and define



133

By (3.6), we obtain:

LEMMA 3.9: lÎJk goes into Wn.

PROOF: We must show P0k and p1k vanish, so we just com-
pute, for c E Cr, r~ k :

To get the rest of Wn for n ~ 2 we have to make another construction.
Consider for ~ = 1,..., m - 1 the Meyer-Vietoris sequence

The image of ae is clearly Pn-2(B). Also Wn E Hn-1(Eo U Ee) is clearly
in the image of a. Hence ~~ : Pn-l(Eo U E~) ~ Pn-2(B) is already onto.
Now note that 03C3n+1  03C3n acts on the situation (the action of B, of
course, being trivial). As 03C3n+1  03C3n generates a finite group Z/mZ, de
admits an equivariant cross-section ~ : Pn-2(B) ~ Pn-1(E0 ~ E~). By
abuse of notation, we get a map Se: Pn-2(B)~ P,,-,(E). Note that Se is
only defined if n - 2.

REMARK 3.10: Note as before that 91, can in fact be made

equivariant with respect to any bigger finite group acting on the above
situation. For example, in the Fermat hypersurface case, L1 n so acts,
so in that case we may assume Se is in fact L1 n-equivariant.
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LEMMA 3.11: Se goes into Wn.

PROOF: By construction, (03C3n+1  03C3n)  Se = se. Since pi ° 03C3n+1 ° un =

o-n - pl, we get the image of pi* o Se is fixed by O"n*. But that image is con-
tained in Pn-1(D), hence by (1.4) it is zero, i.e. pl* o Se = 0. The proof that
Po*se = 0 is similar. Q

LEMMA 3.12:

(i) The map Pn-1(E0)~···~ Pn-1(Em-1)~Pn-1(E) is injective.

(i) (03A3image(~)) ~ (03A3 image ir* = 0.
(iii) k, ~ are all injective and their images are linearly independent.

PROOF: (i) We prove by induction on j that

Pn-1(E0) ~··· ~ Pn-1(Ej) ~ Pn-1( U E,) is injective. For j = 0 this is
0SrSj

easy. Assuming this is true for j, consider the Mayer-Vietoris sequence:

Hn-1(B) ~ Hn-1(~ Er) ~ Hn-1(Ej+1) ~ Hn-1( U Er)···
As Hn-1(B) is spanned by ’Wn-1, P,-,( U Er) ~ Pn-1(Ej+1) ~

0SrSj

Pn-,( U Er), hence the assertion holds for j + 1. This proves (i).
0~r~j+1

(ii) Take c ~ 03A3 image 9,, and suppose c = 03A3 ir*(cr); as c is primi-

tive we may assume, replacing the cr by their primitive parts, that
Cr ~ Pn-1(Er). Write c, = qr*(dr), dr ~ Pn-1(D). Now as (03C3n+1  un)* °

Se = ~, (03C3n+1 03C3n)(c) = c and since O"n+l ° O"n ° lr o qr = ir o qr ° O"m we see by
(i) that O"n*(d,) = dr. Hence by (1.4), dr = 0, so c = 0.

(iii) Injectivity of tÎJk follows from (i), and that of 9,, from the
definition. The independence of the images of -Î5k for the different
k ~ 0 follows because, by (3.8), 03C3n+1(c) = (-k(C) for c E image k (and
hence

Of course by (ii) (03A3 image q6k) ~ (S image ~) = (0), so to complete the
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proof we have only to show (image St) ~(03A3 image r) = (0) for all é.
So assume ~(c) = T sr(cr). By the injectivity of Pn-l( U Er) ~
Pn-l(E) it follows that this relation already holds in Pn-1( ~ Er). Now

0~r~~

from the Mayer-Vietoris sequence

it follows that se(c) is in the image of i0:Hn-1(E0) ~ Hn-1(E), so by
(ii), ~(c) = 0. D

We now invoke the map 03A8 from Lemma 3.4 and set 03A6k = 11’0 k,
s~=03A8~.
Now we can finally state the result we have been aiming for:

PROPOSITION 3.13: 03A61, ..., 03A6m-1, sl, ..., Sm-l put together give an
isomorphism

PROOF: a is injective: if n - 2, 1ft is injective, so the injectivity of
a follows immediately from 3.12(iii). For n = 1, there are no s~, and
we must show that (1 image ok) n ker 1ft = 0. By Lemma 3.4 ker 03A8 =

image(H2(V, ) ~ H1(E)). Now by Lefschetz duality H2(V, Ê)
H0(V - ) is generated by the components of V - L. P1 - L is con-

tained in the afline piece XI 0 0 with coordinate z = X0 X1. As P1- L isXI
simply connected, the nowhere-zero function 1 + zm has on it a

single-valued m-th root m1+zm. Thus the components of V - Ê are

just given by y = 03BEi(m1+zm), where Y T X2 X1.
The upshot of this is that 03C30, which sends z to Cz, acts trivially on

the set of components of V - Ê, hence on ker 1/1’. But on 1 image k,
o-0 acts with all eigenvalues ~ 1, by (1.5). Hence ker 1/1’ n

(2 image k) = (0).
To show a is surjective we consider first the case where V is a

Fermat hypersurface Vi. In this case D = Vn-’ 1 and B = Vn-2m and
by (3.11) and (3.8), we see, in the notation of (1.7), that
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03A6k(H(~0,····~n)) = H(~0,...,Xn+k,-k) for X,, 0 - k. Also by (3.11) and dimension

counting ~{image(s~)} = ~{H~:~n + ~n+1 = 0} (since C is clear).

Hence by counting again we get that a is surjective.
To show a is surjective in general we can proceed as follows: Form

B
"the universal smooth hypersurface of degree m in Pn-1", Il 1,", i.e. U is

u

the set of homogeneous forms g of degree m defining smooth
hypersurfaces, and

We similarly define 1"’ , ~03C0", globalizing D and V. Note that 7r is
U U

smooth, so that Hn-2(B)  Rn-203C0(C) forms a local system over U.
Note that other groups such as Pn-2(B), Kk, also globalize to local
systems denoted by Pn-2(B), Kk, etc. Our maps 03A6k and sj also

globalize to maps of the corresponding local systems. All in all, we
get a map of local systems 03B1: [~ Xk 1 EB [~ Pn-1(B)] - Pn(V). We
know a is surjective at the point corresponding to the Fermat

hypersurface. But U is connected, and a map of local systems over a
connected space which is surjective at one point is surjective at every
point. Q.E.D. D

In the next lemma we take V to be a Fermat hypersurface. By
Remark 3.10 we may then assume ~ is 0394n-equivariant, and we shall
do so. The lemma tells us that his requirement in fact determines ~
uniquely:

LEMMA 3.14: Let A be a vector space on which rn-2 acts and for
some j, q fixes no nonzero element, and let 03BB : A ~ Pn-2(B) be a

rn-2 -equivariant map. Note that Li n then also acts on A and Pn-2(B),
making À 0394n-equivariant. Then ~03BB is the unique 0394n-equivariant map
03BC: A ~ Hn-1(E0 ~ E~) with ~~ 03BC = A.

PROOF: In fact for such li, C image(~  03BB - IL) Ç image(Hn-1(E0)
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EB Hn-1(E~)~Hn-1(E0~E~)). Since for c ~ C, 03A3 03C3ij(c) = 0, we see
that C C Pn-l(Eo U Ee), hence that C C image(Pn-l(Eo) (D Pn-1(E~) ~
P.-,(Eo U E~)). Since Pn-1(E0) 0 Pn-l(Ee) 4 P,,-,(E) by 3.12(i), we can
consider C as a subspace of Pn-1(E). As C is elementwise fixed by
03C3n+1  03C3n, the proof of (3.11) now shows that Ce W,. Now we have
n ~ 2, so 1/1’: Wn ~ Pn(V) is an isomorphism. Therefore by Proposition

3.13 and Lemma 3.12(ii), (03A3 image ir* n Wn = ~ cPk. We know that
03C3n+1 0 O"n fixes no nonzero element in the right hand side, hence none in
the left hand side. But C C L.H.S. Therefore C = 0, i.e. 03BC = Se 0 À.

Q.E.D. D

This completes setting up our machinery, and we now turn to some
applications. First we want to note a remarkable property of the Ok,
namely that they preserve the rank of cycles. This is a special feature
of our set-up and cannot be expected to hold in general pencil
situations, even though the constructions may generalize.

PROPOSITION 3.15: Assume c has rank r. Then so does cfJk(c).

PROOF: c lies in the image Hn-1(Y) ~ Pn-,(D), hence in the image
Pn-1(Y) ~ Pn-1(D), where Y is some subvariety of codimension r in
D. Replacing Y if necessary by y-’ yY, where 03B3:D~Pn-1 is the

projection sending [Xo, ..., Xn] to [Xo, ..., Xn-,], we can assume that
Y = D fl Z, where Z is a subvariety of codimension r in P’ whose
equations do not involve Xn. Let 2 = 1T-IZ,  = î n V where 1T Pn+1 ~
pn is projection [X0, ..., Xn+1] ~ [X0, ..., Xn], defined away from

[0, ..., 0, 1]. Say c E Kk. Then it is clear that c belongs to the subspace
Kk(Y) of Pn-1(Y), analogous to Kk. Going through the construction one
sees that we can still define in an analogous manner Ok : Kk(Y) ~ Pn()
(note especially that, by Remark 3.3, the deformations used to define 03A8
leave Y invariant), so that we have a commutative diagram

Since Ê has codimension r in V, Q.E.D. D



138

We apply this to the Hodge conjecture for Fermat 3-folds:

THEOREM 3.16: Assuming statement (1.10)m holds, every class of
Hodge filtration 1 in H3(V3m, A) has rank 1.

PROOF: Indeed our assumption says exactly that every such class
can be written after an appropriate permutation as (/Jk(C) with c E
H2(V2m, Q) n H1,1(V2m). By the Lefschetz (1, 1) theorem, c is algebraic,
i.e. has rank 1. Hence by Proposition 3.15 so does (/Jk(C). 0

EXAMPLE 3.17: By Example 1.13, Statement (1.10)m holds for

m = 8, hence the Hodge conjecture holds for V3

§4. On ruled cycles

Let P’ = Pn’+1, P" = Pn"+1, = Pn’+n"+3 and embed P’ and P" into P via
[X0,..., Xn’+1] ~ [Xo;..., Xn’+1, 0, ..., 0] and [Xp, ..., Xn"+1] ~
[0,..., 0, Xo,..., Xn,,+1], respectively. Thus P’ n P" = 0. Now let V’ C P’
and V" C P" be nonsingular hypersurfaces of degree m with equations
f’ = 0, f" = 0, respectively, and let V C P be the hypersurface with
equation f’ + f" = 0. 
Note that if p’ ~ V’ and p" E V" then the line p’p" spanned by p’

and p" is entirely contained in V. Thus for subsets c’ of V’ and c" of
V" we can form the subset c’ * c" of V, the union of the lines spanned
by a point in c’ and a point in c". Note that if c’ is a point, then c’ * c"
is the projective cone on c" with vertex c’. It is easy to see that this
construction descends to homology, and thus we get a map

:Hi(V’) ~ Hj(V") ~ Hi+j+2(V). To describe this formally we proceed
as follows: consider the incidence correspondence

where G = Grassmannian of lines in P, I = {(~, p) E G x P : p Gel.
Note that I forms a P’-bundle over G. Now via the map V’ x V" - G
defined by (p’, p ") ~ p’p ", we can consider V’ x V" as embedded in G.
Let Io = p 11( V’ x V"), so that P2(IO) C V so we have
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and we define * as the composite

where K is the Künneth map. Note that * preserves primitive
homology, so from now on we shall only consider * as a map

It is obvious by construction that if c’ and c" are algebraic then so is
c’ * c" .

The main fact to prove about * is that it is injective (on primitive
homology); here we shall first deduce this in case V’ and V" are

Fermat hypersurfaces, using the machinery of §3, and the com-
patibility of * with this machinery. In fact, as we shall see, it is

essentially only this compatibility that we shall use (plus Proposition
1.14), rather than the precise nature of *. Then the general case
follows easily from this using a similar argument as in the last part of
the proof of Proposition 3.13. So assume until further notice that V’
and V" and hence also V are Fermat hypersurfaces.
Note that since pi is a Pl-bundle projection, the map pf is defined

whether or not the base is a manifold. This allows us to define * in a

compatible way also for (possibly singular) subvarieties of V’ and V".
In particular we can define

where E(s)r, B(s) means the Er or B we constructed on Vsm.
Note also that * is equivariant in the appropriate sense: namely

Now we can state the above-mentioned compatibility:
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LEMMA 4.4: For V’, V" Fermat hypersurfaces, we have
(i) c’03A6k(c") = 03A6k(c’c").

(ii) CI * se( c") = se( c’ * C").

(This is a slight abuse of notation as the Ok and se on the L.H.S. are
on V", while those on the R.H.S. are on V; in (i) we are also assuming
c" E Kk on V", in which case clearly c’ * c" E Kk on V.)

PROOF: (i) is immediate by construction (note that the whole con-
struction on V restricts to that on V"). To prove (ii), we also have to
make use of Lemma 3.14: let À : Pn"-2(B(n")) ~ P,,-2(B("» be c"~ c’ * c"
and 9: Pn"-2(B(n")) ~ Pn-1(E(n)0 U E(n)~ be c"- c’ * se(c"), and consider
Pn"-2(B(n")) as a T"-2-space in the obvious way. Then, by construction,
the hypotheses of Lemma 3.14 are satisfied, and therefore g = ~  03BB.
Hence c’ * se(c") = s~(c’  c").

COROLLARY 4.5: c’  a(c") = 03B1(c’  c"). 0

PROPOSITION 4.6: For V’ and V" Fermat hypersurfaces, * is in-

jective.

PROOF: For n’ = n" = 0, our assertion is just (1.14): namely note
that if pi = [1, 03BE03BEi] ~ V0m, then a basis for P0(V0M) is given by (the
classes of) p; - po, i = 1, ..., m - 1. Now (pi - p0)  (pj - p0) = Mij,
which are linearly independent. For general n’, n" we induce on
n’+n"&#x3E;0. By permuting coordinates we may assume n"&#x3E;0. Take

c’ E Pn’(V’), c" E Pn"(V") with c’, c" 0 0. By Proposition 3.13 we can
write c" = a(d) for an appropriate d, so that by Corollary 4.5, c’ * c" =
a(c’ * d). By induction, c’  d ~ 0. Hence by (3.13) again c’  c" ~ 0. ~

COROLLARY 4.7: H~’  H~" = H~’~", where ~’  ~" is obtained from
~’, ~" by juxtaposition (in fact C is clear by (4.3)). ~

Now we pass to the general case:

THEOREM 4.8: For arbitrary smooth hypersurfaces V’, V", * is

injective.

PROOF: We just copy the last part of the proof of (3.13): form the

universal smooth hypersurfaces 1 , 1 (here we do not projectivize U’,
U’ U"
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y

U") and also 1 , giving rise to local systems Pn(V’), Pn"(V")
U’ x U"

(hence Pn’(V’) ~ Pn"(V") over U’ x U") and Pn(V) and to a map

Pn’(V’) ~ Pn"(V")  Pn(V). By (4.3) this map is injective at the "Fermat
point," and hence it is injective at every point. ~

Combining Corollary 4.7 with explicit information about

characters, namely (1.8)-(1.11), gives us results concerning the Hodge
conjecture for Fermat hypersurfaces:

THEOREM 4.9: If the Hodge characters for m are generated by those
in dimensions 0 and 2, e.g., m is prime or m = 0, then the Hodge
conjecture is true on Vnm for n even. Moreover, if m is prime, the
Hodge subspace is generated by the homology classes of linear spaces.

THEOREM 4.10: Fixing m arbitrary, there are finitely many Hodge
classes Ci ~ Pni(Vnim), such that for all n, the Hodge classes in

Pn(Vnm) are generated up to permutations by repeated *-products of
the ci. D

THEOREM 4.11: Assuming (1.11)(m,k) holds, the Poincaré dual of
Fkp2k+1(V2k+1m) ~H2k+1(V2k+1m, Q) consists of cycles of rank k. ~

REMARK: Note that for m = 8, k = 1, for example, (1.11)(m,k) is not
satisfied, so that Theorem 4.11 does not apply; however we have seen
before ((1.13) and (3.17)) that (1.10)m is atisfied, so that Theorem 3.16
does apply to give the desired conclusion.
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