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Introduction

The purpose of the following is to introduce a new method for

analyzing terms of finite type by means of ordinals and to apply it to
the case of bar recursion of type zero (BRo).
The method may be described briefly as follows. A term H is said

to be semi-closed if all of its free variables have type level not

exceeding 1. Suppose, in addition, that H has level not exceeding 2.
We say that H has measure h if H has a computation tree of length
2’. Let F(X) be a term of type 0 with no free variables of level
exceeding 2 and just one free variable X of level 2. For a suitable
family or ordinal functions 03BEf parametrized by ordinals f, we say that
F(X) has measure f if F(H) has measure %(h) for all semi-closed H
of measure h. Proceeding essentially in this way we extend the

concept of measure to all finite type levels. The basic results about
measures are derived in §2.

Let P + BR0 denote the theory obtained by adding BRo to Gôdel’s
free variable theory g of primitive recursive functionals of finite
type. To analyze fi + BRo we make use of the reformulation au of bar
recursion of type zero given in [6]. Our results about measures yield
the ordinal analysis of au. This is carried out in §3. Let A denote the
Bachmann ordinal ~~03A9+10. The main result of the present paper is that
every semi-closed term of type 0 in W has a computation tree of
length less than 0394. This has the following consequences. Let H be
elementary intuitionistic analysis plus axioms of choice plus
Brouwer’s bar theorem (bar induction of type zero). Let Y(d) be

0010-437X/81/01105-15$00.20/0



106

Skolem (free variable) arithmetic of lowest type extended by ordinal
recursion and transfinite induction over the ordinals less than d. Then

(i) The consistency of A is provable in Y(.1).
(ii) Every provably recursive function of d is definable by ordinal

recursion over the ordinals less than some ordinal less than .1.

(iii) Suppose in d there is a proof that a decidable tree T is

well-founded. Then T has length less than 0394.
These results are discussed in §4. By [2] the upper bound 0394 is best

possible. Thus 0394 is the ordinal of bar induction of type zero.
Let 3-jk denote the theory Y + BRo restricted to the case in which

the bar recursion and primitive recursion functors have type levels
not exceeding j and k, respectively. For j ~ 4, Vogel [7] has given a
lower bound for the ordinal of 9-jk. In §4 we show that for j ~ k the
lower bounds given by Vogel are indeed upper bounds. Thus we have
a detailed correspondence between ordinals and subsystems 3-jk of
g + BRo.
Let 7lt(d) denote elementary intuitionistic analysis plus the axiom

of choice plus transfinite induction over the ordinals less than d. The
natural system for carrying out our proof of each of the results above
is 7lt(d) for the appropriate ordinal d. As we point out in §4, the

proofs of the final results can be carried out in 9(d).

1. Preliminaries

It is necessary for the reader to be acquainted with the following
three items: the system P+BR0, the system ôli, and computation
trees. The definitions of these were given in [5] and [6], but in the
interest of convenience and clarification we give the relevant features
below. (A small difference from [5] and [6] is that we omit the

operator 8 and we simplify the definition of length).

Notation

The notation is as in [6]. In particular, n, m and c always denote
numerals; c is the numeral corresponding to the sequence

(co,..., Ck-1) of numerals co,..., ck-1, where k = 1(c); t denotes a term
of type 0; a denotes a variable of type 1, to be thought of as varying
over free choice sequences; and FH denotes FHI ... Hk.
The level of a term is the level of its type symbol. The type symbol

0 has level zero. A term of type 03C3~03C4 has level equal to the maximum
of level (03C3) + 1 and level (T).

The system P + BRo. Only terms of type zero will be contracted.
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Besides the primitive recursion functors R we have bar recursion
functors 0. The deterministic contractions are:

(1.1) (03BBXF(X))GH contr F(G)H

(1.2) RFGOH contr GH

(1.3) RFG(n+1)H contr Fn(RFGn)H

(1.4) OAFGCH contr R(03BBx03BByL1)L2(l(c) - A[c]),

where L1 and L2 denote GcH and Fc(03BBu03A6AFG(c*u))H, respectively.
The nondeterministic contractions are:

(1.5) x contr r

(1.6) Xm1...mk contr n

(1.7) am contr n

for all numerals MI, mk and where x and X (and of course 03B1) are
free variables.

The system Gh is obtained by extending P + BR0 by adding a new
rule of term formation: from a, c and t, form {03B1, c, tl of the same type
as OA. For computation in GlC we replace the contraction (1.4) by the
following three contractions.

(1.8) OAFGCH contr fa, c, A03B1}FGcH,

where a is chosen so as not to be free in A,

(1.9) {a, c, tlFGcH contr R(03BBx03BByM1)M2(l(c)  te),

where MI and M2 denote GcH and Fc(03BBu{a, c, t}FG(c*u))H, and te
denotes the result of substituting [c] for a in t, and

(1.10) {03B1, c, tlFG(c*n)H contr fa, c*n, tlFG(c*n)H.

We require that a subterm am of {a, c, tl be contracted only when
m  1(c), in which case am must be contracted to cm. It was shown in § 1
and §5 of [H4] that it is sufhcient to give an ordinal analysis of U.
A computation tree of a term K is a tree T such that: K is attached

to the initial node; if E is attached to a node, then the successors of E
are obtained by contracting a fixed subterm of E according to

(1.1)-(1.3) and (1.5)-(1.10); and each final term of T is a numeral. It is
understood that when a subterm t of E is contracted by a nondeter-
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ministic contraction, E has the successors Eo, Ei, ..., En, ..., where
En is the result of replacing t by n in E.
At first thought it would seem that we ought to require a con-

sistency condition; namely, if t has been contracted to a numeral at a
node Al, and if X is a descendant of Al, then t must not be contracted
to a different numeral at .N’. There is no difhculty in adding the
consistency condition but in the present paper we will not require it.
A computation tree is said to have length b if there is a function f

from nodes « to ordinals f(M) greater than zero such that if Al is the
initial node, then f(M)~ b, and if Al has a successor .N’, then f(JK) &#x3E;

f(N). A term E of type 0 is said to have computation size b if E is the
initial term of a computation tree of length b. If E has type level 1 or

2, then there are variables Xl, ..., Xk such that EX, ... Xk has type 0;
and a computation size for EX, ... Xk is understood to be a com-

putation size for E.
If a term E has no free variables of level greater than 1, then E is said
to be semi-closed. Whenever we speak of a computation size for E it
is understood that E is semi-closed and of level not exceeding 2.

Ordinals

In this paper d + e denotes the natural sum (Hessenberg sum) of
the ordinals d and e ; and de denotes the natural product. The natural
product can be characterized as follows: it is commutative and

associative, it distributes over the natural sum, and 2d2e = 2d+e.
As usual, Q denotes the first uncountable ordinal. For notational

convenience let 41 denote the function  treated in [1], page 215, the
related function ~ being based on the starting function ç0b =,Eb. In
the present paper, ’ordinal’ means: ordinal less than or equal to En+i.
Hence çe and oie are well-defined. Essentially as on page 367 of [4]
let Oe denote 4teO and let d ~ e denote the relation: d  e and (Jd  Oe.

It is useful to keep in mind that d ~ e is equivalent to: d  e and
(IVIX  il)(.pdx  eex). A number of properties which are useful for
carrying out the proofs in §2 are listed on page 367 of [4]. We denote
the Bachmann ordinal ~~03A9+10 by à.
To formalize the metamathematics, the ordinals are represented by
notations as in [2] and then the notations are numbered.

2. The notion of measure and dérive the basic results about measures

Degree
Let F be a term and X be a list of variables such that FX has type
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0. We say that F has degree j + 1 if all free variables of FX have level
less than j + 1 and at least one of the variables has level j. A term of
level 0 with no free variables is said to have degree 0. We say that a
list of terms D1,..., Dk has level (resp. degree) j if each D, has level
(resp. degree) j.

Preliminary remarks
Suppose F(X) has level 0 and degree j + 1, where X is a list of the

free variables of level j in F(X). Corresponding to the list X, let D be
a list of terms of level and degree j. Then F(D) has degree not
exceeding j. Thus F(X) has associated with it a mapping of lists D of
level and degree j into terms F(D) of degree not exceeding j. The
definition of the measure of F(D) is based on this mapping.
The notion of measure of a term F will be defined relative to a

number called the height. The height is always at least 2 and at least
the degree of F. Heuristically: to attach height p to F, where p is

greater than the degree of F, means that we are considering F to
contain free variables of level p - 1 vacuously.
We will define three versions of the notion of measure. Each

version is based on a family of functions 03BEj(b, d) of ordinals b and d,
where j ranges over degrees not less than 3. We write çjbd for çj(b, d).
It is understood that a measure is an ordinal greater than 0.

First Version. We take ejbd to be 2’d for all j - 3.
Second Version. We take e3bd to be 03C8bd, where Ji is as in §1;

)4bd = b + d, and eibd = 2 bd for i - 5.
Third Version. We take e3bd to be b + d, and çjbd = 2bd for j ~ 4.
Say that a list of terms Dl, ..., Dk has measure b for height p if

each D, has measure b for height p.

Definition of measure
(i) First and Second Versions: if a term F of degree not exceeding

2 has computation size 26, then F has measure b for height 2. Third
Version: replace 2 b by Eb.

(ii) For F not of type 0 and a variable X not free in F: if FX has
measure b for height p, then so does F.

(iii) Suppose the notion of measure has been defined for all terms of
degree j, and let F(X) be a term of level 0 and degree j + 1, where X
is a list of the free variables of level j in F(X). If F(D) has measure
03B6j+1bd for height j, for all D of degree j and measure d, then F(X) has
measure b for height j + 1.

(iv) If a term F of level 0 has measure 03BEj+1b1 for height j, then F
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has measure b for height j + 1 except in the following cases. Second
Version: if F has measure b for height 3, then F has measure b for
height 4. Third Version: if F has measure b for height 2, then F has
measure b for height 3.

Mainly, in the present paper, we will be concerned with the Second
Version of the measure. This is the version appropriate to the ordinal
analysis of BRo when the functor (D has level not less than 4.

REMARK 2.1: It is easy to prove that if F has measure b for height j,
and if b  e, then F has measure e for height j.
For the Second Version it is not hard to verify the following

relations (where b, d, e, f, g are greater than 0).

Substitution

The notation F» indicates the result of substituting various mem-
bers D, of the list D for free variables of F. Some of the free
variables may occur vacuously.

REMARK 2.2 Suppose G has measure g for height j + 1 and let D be
a list of degree j and measure d for height j. It is easy to see that if
GD has degree not exceeding j, then GD has measure çj+lgd for height
j.

In Lemmas 2.1-2.11 we will use the Second Version, but the proofs
of Lemmas 2.1-2.8 go through (with appropriate modifications) for
the First and Third Versions also.

LEMMA 2.1: Suppose F(X) and G have measures f and g for height
j + 1. Then F(G) has measure f + g for height j + 1.

PROOF: If F(X) has level greater than 0, we can replace F(X) by
F(X)Y of level 0 and same degree as F(X). Hence it suffices to
consider the case in which F(X) has level 0. Also note that the lemma
is obviously true if the variable X occurs vacuously in F(X). Hence
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we can assume that X occurs nonvacuously in F(X). We now

proceed by induction on j.
Suppose j = 1. Then F(X) and F are terms of degree not exceeding

2 with computation sizes 2f and 29, respectively. Hence F(G) has
computation size 2f2g~2f+g by Theorem 2.1 of [6].

For the inductive step, assume the lemma is true for j replaced by
j - 1, where j - 2.

Case 1: F(X) and G have degree less than j + 1. Suppose ~3.
Then F(X) and G have measures 03B6j+1f1 and 03BEj+1g1, respectively, for
height j. Hence, by induction hypothesis and (2.2), F(G) has measure
03BEj+1(f + g)1 for height j. Thus F(G) has measure f + g for height j + 1.
For the case j = 3, replace 03BEj+1f1, 03BEj+1g1 and Çj+l(f + g)1 by f, g and
f + g in the argument just given.

Case 2: At least one of F(X), G has degree j + 1.
Case 2.1: All free variables of F(G) have level less than j.
Case 2.1 a : X has level less than j. Then all free variables of F(X)

have level less than j, so F(X) has degree less than j + 1. Also G has
level less than j. But G occurs nonvacuously in F(G), so all free

variables of G have level less than j. Hence G has degree less than
j + 1, contradicting the requirements for Case 2. Thus Case 2.1a does
not occur.

Case 2.1 b : X has level j. Then G has level j and degree j (see Case
2. la), and G has measure 03BEj+1g1 for height j (or simply g if j = 3). Hence
F(G) has measure 03BEj+1(f + g)1 for height j by (2.4) if j~ 3. If j = 3, then
F(G) has measure ç41g = f + g for height 3.
Case 2.2: F(G) has free variables of level at least j. The maximum

level of these free variables must be j because both F(X) and G have
degree not exceeding j + 1 by hypothesis of the lemma. Let Y be a list
of the free variables of level j in F(G), and let D be a corresponding
list of degree j and measure d for height j. We must show F(G)D has
measure 03BEj+1(f + g)d for height j.
Case 2.2a : G has level j. Then G D has degree j, and, by (2.3), the

list G", D has measure 03BEj+1gd for height j. Substituting this list into

F(X) we get FD(GD) of measure 03BEj+1f(03BEj+1gd) for height j. Hence, by
(2.4), F(G)D has measure Çj+l(f + g)d for height j.
Case 2.2b: G has level less than j. Then FI(X) is the result of

substituting elements of the list d for all free variables of level j in
F(X). Hence. by Remark 2,2, FD(X) has measure 03BEj+1fd for height j.
Hence, by induction hypothesis and (2.1), FD(G D) has measure

Çj+l(f + g)d for height j so long as j 0 3. It remains to discuss the case
j = 3. In this case G D has measure g + d for height 3. We must show
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that (F(G)D)E has measure 03C8(f+g+d)e for height 2, for all suitable
lists E of degree 2 and measure e for height 2. Assume G has level 2.
Then the list (GD)E, E has level 2, degree 2, and measure t/1(g + d)e
for height 2. Substituting this list into PD(X) we get (PD)E«GD)E) of
measure 03C8(f + d)(t03C8(g + d)e) for height 2. This is easily seen to be less
than t/1(f + g + d)e by use of Theorem 4.1, p. 215, of [1]. Assume G
has level less than 2. Then (PD)E(X) has measure 03C8(f + d)e for height
2. Recall ((GD)E has measure 03C8(g+d)e for height 2. Hence, by
Theorem 2.1 of [6], (FD)E«GD)E) has measure 03C8(f + d)e + 03C8(g + d)e
for height 2. This is less than t/1(f + g + d)e by Theorem 4.1 of

[G1. D
The proof of Lemma 2.1 goes through if we replace X and G by

lists X and G of a given level.

LEMMA 2.2: Suppose a term F of type 0 reduces to G in one

reduction step, and G has measure g for height k - degree(F). Then
F has measure g + 1 for height k.

PROOF: By induction on k. If,k = 2, then G has computation size
2g, so F has computation size 2g + 1 ~ 2g+1. For the induction step
assume the lemma is true for k - 1 in place of k.

Case 1: k = degree(F). Let D be a suitable list of terms of degree
and level k - 1, where D has measure d for height k - 1. Then F D has
degree not exceeding k -1, and G D has measure çk-lgd for height
k - 1. Hence, by induction hypothesis and (2.5), FD has measure
ek-,(g + I)d for height k - 1. Thus F has measure g + 1 for height k.

Case 2: k  degree(F), Replace F D GD and d by F, G and 1 in
Case 1. D

LEMMA 2.3: Let the variable x be free in F(x). Suppose F(n) has
measure d ~ e, for height k, for every numeral n (where d may
depend on n). Then F(x) has measure e for height k.

PROOF: For a suitable list of variables Z the terms F(n)Z and
F(x)Z have the same measures as F(n) and F(x), respectively.
Hence it is sufhcient to consider the case in which F(x) has level 0.
Now proceed by induction on k as in Lemma 2.2. D

REMARK 2.3: The proof of Lemma 2.3 uses the axiom of choice in
an essential way. This occurs in the proof of the basis of the



113

induction-namely, the case k = 2. Specifically, we suppose that a
computation tree is represented in the metamathematics by a charac-
teristic function (see[5]) and observe that this function can be com-
bined with the length function. Thus the assumption ’F(n) has

measure d for every n’ has the form ~n~fA(n, f), where franges over
functions of type 0 ~ 0. By the axiom of choice there exists g such
that VnA(n, gn). From the existence of this g we infer that the term
F(x) has computation size e.

LEMMA 2.4: Let the variable x be free in F(x). Suppose F(x) has
measure e f or height k. Then F(n) has measure e f or height k f or every
numeral n.

PROOF: It is easy to prove that if a semi-closed term G(x) of type 0
has computation size g, then so does G(n). Using this, proceed by
induction on the degree of F(x) as in Lemmas 2.2 and 2.3. 0

LEMMA 2.5: Suppose F(x) has measure e for height k, and suppose
t (of type 0) has computation size b. Then F(t) has measure e + b for
height k.

PROOF: By induction on k as in Lemmas 2.2-2.4. For the case in
which F(x) is semi-closed and has level 0, it is easy to see that F(t)
has computation size 2e + b - 22+b. 0

LEMMA 2.6: Let R be a primitive recursion functor of level k. Then
RXYn has measure 2n + 2 for height k for every numeral n.

PROOF: By induction on n. It is easy to see that the variable Y has
measure 1 for height k. Also RXYOZ contracts to YZ. Hence RXYO
has measure 2 for height k by Lemma 2.2. For the induction step, let
u and W be variables and observe that XuW has measure 1 for

height k. Hence also does Xn W (by Lemma 2.4). By induction
hypothesis RXYn has measure 2n + 2 for height k. Hence, by Lemma
2.1, Xn(RXYn) has measure 1 + 2n + 2 for height k. Hence, by
Lemma 2.2, RXY(n + 1) has measure 2(n + 1) + 2 for height k. 0

LEMMA 2.7: Let R be a primitive recursion functor of level k. Then
R has measure CI) f or height k.

PROOF: Simply observe that, by Lemmas 2.3 and 2.6, RXYu has
measure W for height k. ~
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LEMMA 2.8: Suppose t has computation size b. Then the term

{03B1, c, t}XYc of degree k has measure (bw + 203C9 + 1)2 for height k.

PROOF: It is assumed that we are given a computation tree T of t.

Let ord(a, c, t) be defined as follows. If, for computation in T, the
term to be contracted in t has the form am with m ? 1(c), say that c
is m -critical in t. If t is not a numeral and c is not critical in t, define

ord(a, c, t) to be 03C9(b + 2). If c is m-critical in t define ord(a, c, t) to
be w(b + 1) + m + 1-l(c). If t is a numeral n, define ord(a, c, t) to be
03C9(b + 1) + (n + 1) l(c).
By transfinite induction on ord(a, c, t) we will show that

{a, c, tlXYc has measure (ord(a, c, t) + 1)2. In the present proof,
measures are for height k.

Case 1 : t is a numeral less than 1(c). Then {03B1, c, t}XYcZ reduces,
in finitely many steps, to YcZ which has measure 1, so apply Lemma
2.2.

Case 2: t is a numeral not less than 1(c) or c is critical in t. Then

ord(a, c*n, t)  ord(a, c, t) for every n. By induction hypothesis
{03B1, c*n, t}XY(c*n)Z has measure (ord(a, c*n, t) + 1)2 for every n.

Hence, by (1.10) and Lemma 2.2, {a, c, t}XY(c*n)Z has measure
(ord(a, c*n, t) + 1)2 + 1 which is less than ord(a, c, t)2 + 2. Therefore
Aula, c, t}XY(c*u) has measure ord(a, c, t)2 + 4 by Lemmas 2.2 and
2.3. But Xc WZ has measure 1. Hence M2-see (1.9)-has measure
ord(a, c, t)2+5 by Lemma 2.1. Also Ml has measure 1. For each

numeral m the term R(03BBx03BByM1)M2mZ reduces to MI or M2 in no
more than 2 steps and hence has measure ord(03B1, c, t)2 + 7. By
Theorem 2.1 of [6], tc has computation size bw. Hence l(c)  tc has
computation size less than bw + w. Hence, by Lemmas 2.3 and 2.5,
R(03BBx03BByM1)M2(l(c)  tc)Z has measure ord(a, c, t)2 + 8 + bw + W which
is less than ord(a, c, t)2 + 2ord(a, c, t). But the latter term is obtained
by one reduction step from {03B1, c, t}XYcZ so {03B1, c, t}XYcZ
measure ((ord(03B1, c, t) + 1)2 by Lemma 2.2.
Case 3: Neither Case 1 nor Case 2. Then t has one or more

successors t’ in T, and ord(a, c, t’)  ord(a, c, t). Since {03B1, c, t}XYcZ
has the sùccessor or successors {03B1, c, t’}XYcZ we can apply the
induction hypothesis and Lemma 2.2. 0

LEMMA 2.9: For k &#x3E; 4 the BRo functor 0 of level k has measure f2
f or height k.
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PROOF: For ordinals b 1, - .., b" ... define [bl, ..., b,] by induction
on r by the equations [bl] = bl and [bl, ..., b,,,] = 2[b1,..., br]br+1. For
suitable variables XI, X2, X3, U, Z the term tPXlX2X3UZ has type 0.
Denote this term by Li and consider the sequence of terms

L1, ..., Lk-l where L,,, is obtained from L, by substituting a list D’of
level and degree k - r for all the variables of level k - r in Lr. It is
easy to see that to prove Li has measure f2 for height k it suffices to
show that Lk-1 has measure 03C8([03A9, di,..., dk-4] + dk-3)dk-2 for height 2,
for all sequences D1, ...,Dk-2 with corresponding measure dl, ..., dk-2
for heights k - l, ..., 2.
The term Lk-2 has the form 03A6X1F1G1uB, and Lk-1 1 has the form

03A6AF2G2uC, where A belongs to the list Dk-2 and hence has measure
dk-2. Denote dk-2 by b and observe that {03B1, c, Aa}X2X3cZ has

measure (03C92b+203C9+1)2 for height k by Lemma 2.8. Hence

03A6AX2X3cZ has measure e + 1 for height k by Lemma 2.2, where e
denotes (03C92b + 2co + 1)2. Hence tPAX2X3UZ has measure e + 2 by
Lemma 2.3. But now, substituting D’ into the latter term, then

substituting D2 into the result, and so on, we again obtain Lk-1. Hence
Lk-, has measure 03C8([e + 2, d1, ..., dk-4] + dk-3)dk-2 for height 2. To

prove that this is less than 03C8([03A9, dl, ..., dk-4] + dk-3)dk-2 we appeal to
Theorem 4.1 of [1], p. 215, which involves the notion of ’constituent’
(p. 204). Observe dk-2  03A9. Hence e  03A9, so [e + 2, dl, ..., dk-4] + dk-3
is less than [03A9, dl, ..., dk-4] + dk-3. Also it is easy to see that the
constituents of the former are less than the next epsilon number after
the latter. The desired inequality now follows from Theorem 4.1 of
[1]. 0

LEMMA 2.10: The BRo functors 0 of levels 3 and 4 have measure 1

f or height 4.

PROOF: This follows from Theorem 2.4 of [6] and the basic order
relations for the function e-together with Lemma 2.2. 0

LEMMA 2.11: The primitive recursion functors R of levels 3 and 4
have measure 1 for height 4.

PROOF: Similar to the proof of Lemma 2.10 but adapting the proof
of Theorem 2.4 of [6] to the case of R rather than 0. Il

LEMMA 2.12: For the Third Version of the measure: the BRo
functor 0 of level 3 has measure 1 for height 3.



116

PROOF: By Theorem 2.3 of [6] and Lemma 2.2. D

LEMMA 2.13: For the Third Version of the measure: the primitive
recursion functor R of levels 2 and 3 have measure 1 for height 3.

PROOF: Similar to the proof of Lemma 2.12. D

3. C omputation sizes

Let J;k denote the set of all terms of P + BR0 in which the

primitive recursion functors R and the BRo functors 0 have levels
not exceeding j and k, respectively. We will now determine com-
putation sizes for the semi-closed terms of 9-jk (considered as terms of
U).

Elementary terms
By an elementary term is meant a term built up from the

constant 0, the successor functor S and variables by means of the
operations of application and 03BB-abstraction.
The f ollowing lemma holds for all three versions of the measure.

LEMMA 3.1: Let F be an elementary term of degree k. Then F has
finite measure for height i ~ k, so long as i ~ 3.

PROOF: The result is easy to prove if F is 0, S or a variable. For

general F, choose a fixed height j - i such that j is greater than the
level of every free or bound variable in F. In building up F, suppose
we have constructed a term A of finite measure for height j and the
next step is to construct 03BBYA From Lemma 2.2 and the fact that

(03BBYA)YZ reduces to AZ in one step, it follows that A YA has finite
measure for height j. On the other hand, if the next step is to

construct AB, where B has finite measure for height j, observe that
AB arises by substituting B for X in AX and apply Lemma 2.1. Thus
F has finite measure for height j. Now lower the height to i.

Notation

(a, i, b) denotes the ordinal defined by the recursion equations
(a,0,b)=b and (a,j+1,b)=a(a,j,b). The function ~ is as in § 1.

THEOREM 3.1: For each semi-closed term E of type 0 in Pjk with
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j a 5 we can find b  (cv, k - j, w) such that E has computation size

~(03A9, j - 4, b )0.

PROOF: Suppose k &#x3E; j. The term E arises from an elementary term
F by substituting various functors R and 03A6 for free variables. In the
following discussion some substitutions may be vacuous. We work
with the Second Version of the measure. By Lemma 3.1, F has finite
measure p for height k + 1. We now proceed by steps. The first step is
to substitute all functors R of level k into F, getting a term Hl. By
Lemma 2.7, H1 has measure 03C9r for height k, where r = 2k. The second
step is to substitute all functors R of level k - 1 into Hl, getting a
term H2 of measure 03C9r03C9 for height k - 1. In k - j steps we get a term
Hk-j of measure (w, k - j - 1, w) for height j + 1. Now substitute all
functors 0 and R of level j into Hk-b getting a term Hk-j,,. By
Lemmas 2.7 and 2.9, Hk-j+l has measure f2a for height j, where
a  (w, k - j, W). In j - 4 more steps of this kind we get a term Hk-3
with measure (03A9,j-4,d) for height 4, where d  (03C9, k - j, 03C9) - by
possible use of Lemma 2.11. In one more step we get Hk-2 with
measure (03A91, j - 4, e) for height 3, where e  (03C9, k - j, 03C9). Finally, in
one more step we get Hk-1 with measure 03C8(03A9,j-4,f)1 for height 2,
where f (03C9, k- j, w). This measure is less than ~(03A9, j - 4, b)0,
where b = f + 1. But Hk-1 is E. Since ~(03A9, j - 4, b)O is epsilon num-
ber, it is a computation size for E.
The proof for the case k ~ j is similar. D

Let ’-?-j be the union of the sets fIjk for all k. From Theorem 3.1 we
conclude the following two theorems.

THEOREM 3.2: Each semi-closed term of type 0 in J with j a 5 has
computation size less than e(f2, i - 4, Eo)O.

THEOREM 3.3: Each semi-closed term of type 0 in fi has com-

putation size less than lpEn+IO.

Computation sizes for the terms of fIjk for j = 3 and j = 4 were
found in Theorem 3.4 of [6]. Let us observe that thèse results can be
obtained by the présent method.

THEOREM 3.4: For each semi-closed term E of type 0 in ’-?3k or P4k we
can find b  (w, k  j, w), where j = 3 or j = 4, respectively, such that E
has computation siZe ~b or ~b0, respectively.
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PROOF: Similar to the proof of Theorem 3.1. For j = 4 use the
Second Version of the measure, and Lemmas 2.10-1.1 l. For j = 3 use
the Third Version and Lemmas 2.12-2.13. 0

In [6] we defined operators 03A6 suitable for the functional inter-

pretation of Kônig’s lemma. Using the First Version of the measure
we see from Theorem 2.2 of [6] and Lemma 2.2 that the functors
have measure 03C9 + 2 for height 3. Hence by the methods above we find
that a semi-closed term E of type 0 containing the functors 0 and
primitive recursion functors R of level k a 3 has measure less than
(w, k - 2, 03C9) for height 2, so E has computation size less than (03C9, k -
1, úJ) as in Theorem 3.4 of [6]. However, for k = 2 the present
methods yield a computation size less than (w, 2, 03C9): not quite as good
as the size less than (03C9, 1, 03C9) obtained in [6].

REMARK 3.1: In the case of the rule of BRo we do not include the
functors 0. Rather, we introduce the following rule of term for-
mation : for each closed term A of type 2 introduce a functor OA
together with the contractions obtained by replacing OA by OA in
(1.4) and (1.8). Using the First Version of the measure we see by
Lemma 2.8, and the methods above, that a semi-closed term of type 0
has computation size less than Eo. Thus we get an analysis of the rule
of BRo by means of the ordinals less than Eo.

4. Conclusions

We recall that (a, i, b) is defined by the recursion equations
(a, 0, b) = b and (a, j + 1, b) = 2(a,j,b). Let 9-jk, H(d) and 91(d) be as
defined in the Introduction, and let g¡ be the union, over all k, of the
theories Pik. Suppose j~5 and let A be a theory with a Gôdel
functional interpretation in g¡. As mentioned in the Introduction,
Theorem 3.1 is provable in H(~(03A9, j - 4, b)0), where b  (03C9, k - j, 03C9).
Hence, by the same discussion as in §§4-5 of [6], the following
theorems are provable in P(~(03A9, j-4, ~0)0).

THEOREM 4.1: A is consistent

THEOREM 4.2: Each provably recursive function of si is definable
by ordinal recursion (of lowest type) over the ordinals less than some
ordinal less than ~(03A9, j - 4, Eo)O.
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THEOREM 4.3: Suppose in A there is a proof that a decidable tree T
is well-founded. Then T has length less than ~(03A9, j - 4, Eo)O.

Similarly we have the more detailed versions of Theorems 4.1-4.3
in which J and ~(03A9, j - 4, ~0)0 are replaced by fJjk and ~(03A9, j -
4(,w, k -* j, 03C9))0, respectively, and the less detailed versions in which
T + BRo corresponds to ~~03A9+10. By [7] all these ordinal bounds are the
best possible. For completeness we recall that in [6] it was shown that
the ordinals corresponding to fi3 and J4 are e, and ~~00, respectively.

In line with the discussion in the Introduction we mention that the
theorems above are of particular interest when the theory H is taken
to be elementary analysis plus BIO plus axioms of choice and other
axioms which have a Gôdel functional interpretation in ET + BRo (see
[3]).
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