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ON LARGE SUBSPACES OF
THE SCHATTEN p-CLASSES*

Jonathan Arazy*

Abstract

Let Cp denote the Schatten p-class of operators on Hilbert space.
We prove that if X is a subspace of Cp (1  p  (0) which is isomorphic

to Cp, then X contains a further subspace Y which is also isomorphic to
Cp, and it is complemented in Cp. As a consequence, we get that every
complemented subspace of Cp which contains an isomorphic copy of Cp,
is actually isomorphic to Cp.
A related result is that for 1  p  00, Cp is primary.

1. Introduction

The Schatten p-classes Cp (1 :5 p  oo) of operators on the separable
Hilbert space f2 are defined as follows.
For 1  p  00 let Cp be the Banach space of all compact operators x

on e2, so that

Coc denotes the Banach space of all compact operators x on f2 with
the operator-norm induced from B(,e2), the space of all bounded

operators on e2,

* This work is based on a portion of the author’s Ph.D. Thesis, prepared at the Hebrew
University of Jerusalem under the supervision of Professor J. Lindenstrauss.
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Our main interest in this paper are the spaces Cp for 1  p  oo, but

some partial results are stated and proved also for p = 1,00. The main
result of this work is the following theorem.

THEOREM 1.1: Let X be a subspace of Cp, 1  p  oo, which is

isomorphic to Cp. Then there is a subspace Y of X so that Y is
isomorphic to Cp and Y is complemented in Cp.

Let us turn first to notation and background material. We use [7] as
a general reference to Banach space theory. By "subspace" we shall
always mean a closed subspace. If {Xn};=l is a basic sequence in the
Banach space X, then we denote by [Xn];=l the subspace spanned by
(xn)J§=i in X. The basic sequence {Xn};=l is said to be A-equivalent to
the basic sequence (yn)J§=i if there exist 0  Ai, A2  00 so that Ai . A2:5
A, and for all scalars ftnl’n=l we have

A subspace Y of X is À-complemented in X if there exists a

projection P from X onto Y with IIPII  À. A complemented subspace
is a subspace which is A-complemented for some À  00. If X, Y are

isomorphic Banach spaces, then we denote

d(X, Y) = inflilTIl - Il T-’ll; T is an isomorphism from X onto Y}.

X:= Y means that X is isomorphic to Y. We use in several places
what we call "standard perturbation arguments". By this we mean the
appropriate analogue of [1, Proposition 1.a.9].
We refer to [5] and [8] for the elementary properties of Cp, and to

[1], [2] and [10] for the study of Cp from the point of view of the
geometry of Banach spaces.

Let us establish the notation which we will use along this work.
Given orthonormal bases {e}i=l 1 and {f}i=l for é2, we represent every
x E B( (2) as a matrix x = (x(i, j»i,i=I, where x(i, j) = (xf, e).
The standard unit matrices associated with the pair ((e;)§t=i, f;)§t=i)

are

Note that ej,j(k,,e) = Si,k ’ 8j,e. In the ordering
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the {e,j}i,j=l form a Schauder basis of Cp for every p.
For every n let Pn and En be the following projections in Cp.

We use also the notation

and

Clearly flPn Il = 1 and IIE,, Il :5 2 for every n.
Another important projection is the triangular projection PT,

defined by

PT is bounded in Cp if and only if 1  p  oo (see [6, p. 121]). Denote
the space of all lower triangular matrices in Cp by

By [1, Proposition 1], C, Tp if and only if 1  p  00. So in proving
Theorem 1.1 for 1  p  00 we can use Tp instead of Cp.
The spaces Cp and Tp admit finite dimensional Schauder decom-

positions

These decompositions enjoy the property of being reproducible (see
Proposition 2 in [1] and the Definition that preceeds it). The version
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of the reproducibility which will be used below for Tp is the follow-
ing. Let V be an isomorphism of Tp into itself, then there exist
increasing sequences {nk}k=l and {mk}k=l of positive integers, so that
V([enk,j]r=l) is almost contained in P mk,mk+l Tp (so, if Uek,j = enk,’ then
V U is an isomorphism of Tp into itself with VU(Pk-I,kTp) almost
contained in P mk,mk+l Tp).

Let {Ak}k=l and {Bk}k=l be two sequences of subsets of the natural
numbers, so that for k ¥: f,

Let P(fAkl, {BJ) be defined by

then for every x E Cp,

where xk(i, j) = x(i, j) if (i, j) E Ak X Bk, and xk(i, j) = 0 otherwise. If

each of the {Ak}k=l and {Bk}k=1 is infinite, we get that the range of the
contractive projection P({Ak}, lBk}) is isometric to

(Cp EB Cp(B " ’ 0 Cp EB ... )ep. By the decomposition method (see [5],
page 54) we get that Cp:= (Cp EB Cp Cp The same
proof shows also that Tp:= (Tp EB Tp EB ... EB Tp EB ...) ep for every
1 s p s 00. Here, if p = 00, the infinite direct sum is taken in the sense
of co, and "(Ek 1 tk ’P )l/P" means SUPk 1 tk ,.
Two elements x, y E B( (2) are said to have disjoint supports if there

exists a matrix representation in which

where Je and y are the appropriate restrictions of x and y respec-
tively. If {Xk}k=l are pairwise disjointly supported elements of Cp, then
1/2k=1 Xkl/p = (2k=1 I/Xkl/)1/P. .

Let us denote by r(x), for every x E B (f2), the orthogonal pro-
jection from f2 onto (ker x)1-. Then f or x, y E B (f2), r(x) . r( y) = 0 if
and only if there exists a matrix representation in which
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with x;,; and Yi,j appropriate restrictions of x and y respectively.
For 1  p  00, the dual of Cp is Cg, q-’ + p-’ = 1. The duality is

given by (x, y) = trace(xy*), x E Cp and y E Cq. C2, the space of all
Hilbert-Schmidt operators, is a Hilbert space under the inner product
(., .), and thus its structure is well known. Therefore, the index p = 2
will be omitted in the sequel (Theorem 1.1 is trivial in this case). Also,
Cl is isometric to C! and B(é2) is isometric to C*, where the duality
is given again by (x, y ) = trace(xy *).

If 0 # x E Cp, 1 s p  00, and if x = v(x) . Ixl l is the standard polar
decomposition of x (i.e. IXI = (X*X)I/2 and v(x) is a partial isometry with
ker x = ker v(x», then we define np(x) = v(x)lxIP-1. Clearly, np(x) E Cq
if 1  p  oo, and nl(x) = v(x) E B( (2) if x E CI. Also

Another piece of information concerns the behaviour of Rade-
macher averages of elements of Cp (cf. [8] and [10]): for 1 s p  00
there is a constant Kp such that for every choice of fxij,!=, in Cp,

(here, the ri(t) are the Rademacher functions). So Cp, 1 :5 p  cn, is of

type s and of cotype r, where s = minfp, 2) and r = maxlp, 2).
Let us mention some results on tensor product of operators. Here

we use the notations Cp(H) for the class Cp of operators on the
Hilbert space H. Let f2 Q9 f2 be the Hilbert-space tensor product of e2
with itself. If x, y EE B(é2), then there is a unique element x@ y G
B(f2Q9 (2) satisfying (x Q§ y )()@ q) = x)@ yq for every e, n Eie2. If

x, y E Cp(,e2), 1 :5 P s 00, then JC0 y E Cp (,e2 (&#x26; e2) and
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Moreover, C, (t2 0 t2) is spanned by the elements x 0 y with x, y E
C, (t2). We therefore denote Cp(f2 (2) by Cp(é) @ Cp(t2), or simply
by Cp ® Cp.

Let {e}i=l 1 and {fijî=l 1 be two orthonormal bases of t2, let N =

U k=l Ak = Uk=l Bk be two partitions of the set N of positive integers
into pairwise disjoint infinite subsets, and let ’Pk: N  Ah «Pk: N  Bk
be one-to-one and onto mappings, 1:5 k  00. Since {fe fj} j=l and
{ek ® e;)§J,;=i 1 are orthonormal bases for f2 @ f2, there exist isometries
u, w of f2 onto t2 0 f2 so that for every i, j, k, e E N :

Define for x E B( (2)

Then V is an isometry of Cp onto Cp 0 Cp, 1 s p s 00. In the sequel
we shall therefore identify Cp with C, 0 Cp ; the identification will
always be made in the way described above, and usually it will be

clear from the context how the identification is made. We call this

identification a "tensor product representation" of Cp as Cp ® Cp.
Obviously, we can identify in an analogous manner Cp with

C, 0 Cp(g) Cp, with Cp 0 Cp0 Cp 0 Cp, etc.
Let us give an example to illustrate the use of the tensor product

notation. Let {Ak}k=l and {Bk}k=l be subsets of the natural numbers, so
that Ak n Ae = 0 = Bk n Be if k 0 é. Let Xk,e E B(f2) be such that

xk,,(i, j) 0 0 only for (i, j) E Ak X Be. Then there exists a tensor product
representation of Cp as Cp Cp, in which the xk,e have the form

xi = ek,e Yk,e for some Yk,e B(,e2). If, moreover, Ak = (n))?=i and
Bk = { (k)} 00 1 and «k) (f) = ( (1) (1) for every 1, j, k and ’e,
then the tensor product representation can be chosen so t at for some
y E B(,e2) we have Xk,e = ek,,,o y for every k and e.

2. Preliminaries

PROPOSITION 2.1: Let xij E Cp so that xij 0 0 only for finitely many
pairs (i, j). Then
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PROOF: If x, y E B( (2) satisfy x*y = 0 (i.e., they have orthogonal
ranges), then

This implies, by induction, that if x; E B( (2) and xtXj = 0 for i 0 j, then
I/LjXjl/oo(Ljl/Xjl/;)1/2. Similarly, if xx1=0 for i4j, then lllixill.:f-i
(Lj I/Xjl/;) 1/2. U sing these facts we get for any xi,j E B( (2), and in particular
for xi,j E Coo, that

This proves the right inequality for p = 00, while the left inequality is
trivial.

If p = 1 and xi,j E Ci, choose Y,j E B(t2) so that flYi,jfloo = llxi,jjj, and
(x i,’ y i,j) = fi x i,j Il ;. S 0,

This establishes the left inequality for p = 1, while the right inequality
in this case is just the triangle inequality.
Using the cases p = 1, 00 and the generalized Riesz-Thorin theorem

for the spaces Cp (see [3]), we get the desired inequalities for eyery
1  S oo. Note that for p = 2 we actually have an equality (the
spaces e;,; ® C2 are pairwise orthogonal). D

REMARK: One can prove (2.1) and (2.2) for 1  p  00, p 0 2,
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without the interpolation techniques of [3], by using (1.12), (1.13) and
[2, Proposition 3. 1].
Next, we want to study the subspaces of Cp which are isomorphic

to f2. By [1, Proposition 4], [4, Theorem 2], if x C Cp, P ¥: 2, then
x := é2 if and only if there exists an n such that Enlx is an isomor-

phism. We first establish the following quantitative strenghtening of
this result.

PROPOSITION 2.2: Let X C Cp, 1:5 P :5 00, P ¥: 2, and assume that
d(X, é2) = M  -.

(i) If 1 :5 p  2 and E &#x3E; 0, there exists an n such that /IBn/xII s E.
(ii) If 2poo and 0  8  (3M)-I, there exists an n such that

PROOF:

(i) If there is no such n for a given 0  E, we can find an increasing
sequence {nk}k=l of positive integers, and a sequence {Xk}k=l of nor-
malized elements of X so that for every k:

Since X is reflexive, we can assume (by passing to a subsequence and
using standard perturbation arguments) that xk = x + yk, x E Cp, and

For every m, £ 7=1 EntPnt&#x3E;nt+l is a projection of the form (1, 10). Using
(1 , I l) and (2.7) we get
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Since p  2, this leads to a contradiction if m is large enough.
(ii) If there is no such n for a given 0&#x3E; 8 &#x3E; (3M)-I, we can find an

increasing sequence {nk}k=l of positive integers, and a sequence
(xk)1=1 of normalized elements in X, so that for every k:

Using the reflexivity of X and a standard perturbation argument, we
can assume that xk = x + yk, x E Cp, Pn,x = x, and for every k,

Using Proposition 2.1, we get for every m

(We use the fact that I/PTEnkYk/lP :5 IIEnkYkl/p :5 8 and 11(l - PT )EnkYk/lp 
EnkYkllp :5 8). Since 8  (3M)-’, this leads to a contradiction if m is

chosen large enough. 0

If X C Cp and X:= t2, then by [1, Prop. 4], [4, Prop. 3], X is

complemented in Cp. If p = 2, this is trivial. If p # 2 and V = E,,Ix is an
isomorphism, let P be the orthogonal projection from EnC2 onto EnX.
Then Q = V-’PEn is a projection from Cp onto X. Since

d(EnCp, E.C2) = d(EnCp, (2):= n/l/p-1/21, , the norm of the projection Q
might be very bad. However, by passing to a subspace of X, we can
get better results. Precisely, we shall show below that, given 0  E,

there is a subspace Y of X which is 1 + E-isomorphic to é2 and
1 + E-complemented in Cp.
Let us first establish the following proposition:

PROPOSITION 2.3: Let IMkl;=, be an increasing sequence of natural
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numbers, and let {Yk}k=l 1 be normalized elements of Cp, 1:5 p :5 00, so
that for some natural number n we have, for every k,

Then for every 0  E there exists a subsequence {Ykj}j=l 1 which is
1 + e-equivalent to the unit vector basis of t2, so that [Ykj]j=l 1 is
1 + e-complemented in Cp. Moreover, the {Ykj}j=l 1 can be taken to be
arbitrarily close to normalized elements of Cp of the form Zj =

ej+i,i © a + ei,j+i © b.

PROOF: Without loss of generality, we can assume that n  ml and

that ~1. In an appropriate tensor product represemation, we can
write assumption (2.12) as

with ak, bk ECn= Cp(t2), and (Ilakllp + llbkllp)’Ip = 1 (we use the fact that
rank(PTYk):5 n and rank«I- PT)yk) 5 n). By compactness of the unit
ball of Cn there exist elements a, b E Cp with (IIa" + IlblIP)’IP = 1, and an
increasing sequence fkjlî=,, so that

If we put zj = ekj+l,l @ a + e , ; 1 k +1 @ b, then £ §f= Ifzj - Ykjffp :5 £ §f= 2,E8-j :5
2E/7. Since {Zj}j=l 1 is isometrically equivalent to the unit vector basis of e2
and [Zj]j=l 1 is 1-complemented in Cp (see [2, Theorem 2.2]), and since
(1 + 2e/7)(1 - 2E/7)-’ :5 1 + e, we get by standard perturbation arguments
that {Ykj} j= t is 1 + e-equivalent to the unit vector basis of e2, and that

[Yk)j=t is 1 + e-complemented in Cp. D

LEMMA 2.4: Let 1  p  2 and let ixkl;=, be a normalized sequence
in Cp which is equivalent to the unit vector basis of f2. Then for every
0  E  1 there exists a subsequence {Xkj}j=l i which is 1 + e-equivalent
to the unit vector basis of e2 and so that [Xkj]j=l is 1 + e-complemented
in Cp. Moreover, given any sequence (a;)§t=i 1 with 0  ai  1, there exist
normalized elements (v;)§t=i 1 of Cp and sequences {aj}j=l 1 and {bj}j=l 1 in

Cp with

so that forj2



307

and

PROOF: Since xk - 0 weakly as k - 00, we can assume (by passing
to a subsequence if necessary, and by using perturbation arguments)
that for some increasing sequence {mk}k=O of positive integers with
mo = 0, we have

We may assume that the given {a}i=l satisfies

By Proposition 2.2(i) we have

We can therefore assume that besides (2.19) we have also

For 1 :5 j  k, put

and for every k let

We now change the matrix representation so that for some increasing
sequence {nk}k=O of positive integers with no = 0 and nk-1 + mk  nk, we

have, in terms of the new Pn’s and En’s,
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and

Indeed, let no = 0 and ni = ml, and for every x E B( (2) denote by
R(x) the range of x. Choose orthonormal sequences {e}iJ.l and {filcll
so that

Since rank(Y2,I):5 ni and rank(z2,1):5 n,, there exists an n2 &#x3E;_ n, + m2
and orthonormal sequences (e;)?in+, and {/,}!’in,+!, so that (e;)?i, and
U;)?i, are orthonormal, and so that

Similarly, since rank(y3j) :5 nj - nj-I and rank(z3,j):5 nj - nj-I for j =
1, 2, there is some n3 &#x3E; n2 + m3, and there exist orthonormal sequences

(e;) ?i n+ , and U; ) ?i n+ so that (e; ) ?i and U; ) ?i are orthonormal, so that for
j = 1, 2,

and

We continue inductively in the obvious way. If the new P"’s and En’s
are defined by means of formulas (1.3) and (1.4), using the new matrix
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representation associated with the pair of the above constructed
orthonormal bases (Jei},’=,, Uili’=,), then we clearly have (2.25)-(2.28).
Note that we still have

Let C p’"‘ denote the space of all n x m-complex matrices with the
norm induced from Cp. Passing to tensor product notations, we obtain
from (2.25)-(2.28),

As in the proof of Proposition 2.3, there exist elements iij E
C;j,nj-nj-l and hj E C;j-nj-l,nj with 1 - ai S (]]ài]]$ + ))bi])$) ’P s 1 and

(Ilâillp + ]]Ç]]$)’P :5 aj-1 for 2j, and there exists a subsequence (x,)§t=i
with k1 &#x3E; 1 so that, if we define

then i. Now, if

then the fwi/llwill,}l’=, 1 are isometrically equivalent to the unit vector
basis of é2 and [w,]=! is 1-complemented in Cp. Let (t;)§t=i be scalars
so that 2i=1 It,12 =1. Then by (2.20) and (2.43),
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Since 1 &#x3E; f/wdlp a 1 - ai &#x3E; 1- E/30, we get that {xk}i=I is k-equivaient
to the unit vector basis of f2, and that [xk]i=l 1 is k-complemented in
Cp, where

Finally, let us define ci = ék; and

By (2.22) we clearly have (2.16) and (2.17). Also, it is clear how to
choose a new tensor product representation so that (2.15) holds (use
(2.43) and the definition of the a;, b; and ci in terms of the â;, b; and
ék). Clearly, (2.18) still holds. D

REMARK: Let À &#x3E; 0 and consider the sequence xk =

(Àek,l + ek,k)(À 2 + 1)-’n in Cp, 2  p  00. The equivalence constant of
every subsequence {Xkj}j=l to the unit vector basis of e2 behaves like
À -1 (which might be very large). Thus, the analogue of Lemma 2.4 is
false for 2  p  oo. It can also be easily verified that if X = [Xkj]j=l for
some increasing sequence {kj}, then for every n : IIE" lx Il a (1 + À 2)-1/2.
Therefore the analogue of Proposition 2.2(i) is also false for 2  p 
00. There are, however, averages of these {Xk} which behave in a better
way. Precisely, let 0  e, and choose an increasing sequence {kj}j=l of
positive integers, so that if dk; = k;+1- k;, then

Define for

Then
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Using Proposition 2.1 we get, for every scalar {

So {Yj}1=1 are 1 + E-equivalent to the unit vector basis of t2. Since

Px = 21=1 (x, np(E1Yj»EIyiIlEIYjll is a contractive pro jection f rom Cp
onto [EtYj]1=I, we get by (2.51) that [Yj]1=t 1 is 1 + E-complemented in
Cp.
The idea of using averages of the for (2.50) in order to "kill the

t2-part" of a séquence in Cp, 2  p  00, which is equivalent to the unit
vector basis of t2 is due to Odell [9]. This is the heart of the proof of
the following lemma, which is essentially [9, Lemma 5].

LEMMA 2.5: Let {Xk}k=l be a normalized sequence in Cp, 2  p  00,

which is equivalent to the unit vector basis of t2. Let e &#x3E; 0, then there
exists a subsequence {Xkj}1=1 1 and an increasing sequence {je}t=l of
positive integers, so that if we define

then the {Ye}t=2 are 1 + e-equivalent to the unit vector basis of e2, and
[Ye]t=2 is 1 + e-complemented in Cp.

Moreover, given any sequence with 0  ai  1, the {y,}t=2 can
be chosen so that there exists normalized elements {V,}t=2 of Cp of the
form

with maxllla;llp, llb;llpl * a-t and Ilc1I S ai for 2 s i and lla il&#x3E; +
llbllrp)’IP -&#x3E; 1 - ah so that Ilye - VIII, s ae for e = 2, 3, ....



312

PROOF: Let X = [xk]iJ= , and M = d(X,,e2)  00. Fix 0 ,6  (3M)-’
and choose, by Proposition 2.2(i), a natural number N so that

IIENx/lp  Sllxll, for every x E X. Since xk - 0 weakly as k --* 0, there is
no loss of generality if we assume that for some subsequence {xk)i=l
and some increasing sequence (mj)§t=o of integers with mo = 0 and
m = N, we have

Put Yi = PTEmj-tXkj and Zj == ( 1 - PT )Emj_tXkJ and note that I/Emj-tXkjllp =
(I/Yjl/ + IIZjl/ )Ilp, and that IIYjl/p, I/Zjl/P :5 I/Xkjl/p = l. Using a standard diagonal
process, we can pass to a further subsequence which we continue to
denote by {xkj}i=I for convenience, so that for every n  t, lim j-w)]En,x;))p
exists.

CLAIM: If a &#x3E; 0, then there is some n = n(a) so that if n  f, then
the set

is finite.

PROOF OF THE CLAIM: Indeed, if the claim is false for some a &#x3E; 0,
there exist integers

so that the complement of each An,,,,j is finite. Let m be such that
m &#x3E; (4/ a)P, and choose j so that mj-l &#x3E; f m and that j E n Í= A,,i"ei,«12.
Using Proposition 2.1 we get the desired contradiction:

thus proving the claim.
Let {aj}i=l be any sequence with 0  ai  1. We may assume that
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Using the claim, we can pass to a subsequence of {xkj}i=h which we
continue to denote by {xk)i=l 1 for convenience, so that for some

increasing sequence {nj}i=o with no = 0 and ni &#x3E; N, we have

Passing to an appropriate tensor product representation, we have

with Yj, E cn,n-n-I, Zj, E C’’’’"’-"""and

and for 2:5 j  j,

As in the proof of Proposition 2.3, we can obtain, by standard
diagonal process, a subsequence {Xk. };=I and elements ai E C;i,ni-ni-I,
bi E C;i-ni-I,ni so that IIYj", - ail/p and I/Zj",i - b/Ip tend to zero as

v - ce arbitrarily fast. Without loss of generality we assume, therefore,
that the {Xkj}j=l 1 themselves are given by

(2.63)

with

(2.64)

and

(2.65)

Here the norms IIxkj - (e;,, @ tÍ1,j + elj(&#x26; b1)IIp need not be small, since
for the norms of the uj we have only the trivial estimate ))u)]p _
( 1- 812)P)’IP. Now, the lejj (D Uj}j=l are pairwise disjointly supported, and
thus



314

for every k  m. Since 2  p oo, we can "kill" these "Ép-parts" by
taking long averages as in the example which precedes the statement
of Lemma 2.5. Precisely, let Jj,,I;=, be an increasing sequence of
integers with il = 1, so that the différences .dl = jé,,, - j,, satisfy

Set

Then

where

Now, for every 2 s m s lé,,

Similarly, for every



315

Using Proposition 2.3 again (and passing to a subsequence of {Ye}t=l i
if necessary) we can assume that in some other tensor product
representation we have normalized elements

with max{/laillp, llbillPl * a-l and llcillP :5 ai f or 2:5 i, (IlailiPp + llblllPp)"P -
1- ah and so that IIYe - veffp _ ae for t = 2, 3, 4, ....
Set i5e = (ee,l @ ai 1 + ei,@ bl)l(llalllp + IlbilIP)"P, é= 2, 3,..., and note

that {ve} f=2 are isometrically equivalent to the unit vector basis of e2, and
that {ve} f=2 is 1-complemented in Cp. If {te} f=2 are scalars with

1;=2 Iltel2 =1, then

This implies that {YI} ë=2 is 1 + e-equivalent to the unit vector basis of

t2 and [Ye]ë=2 is 1 + e-complemented in Cp.

The next proposition follows from [2, Theorem 2.2].

PROPOSITION 2.6 : Let x E Cp, llxll, = 1, 1 S p  ce, and let Xi,j _

ej,j 0 x, 1 :5 i, j  00. Then

(i) the (x;,)(=i are isometrically equivalent to the standard unit
matrices {ei,j}i,j=l in Cp, and there is a contractive projection
from C, onto [x;,;] ;-l.

(ii) the {Xi,j}ISjioo are isometrically equivalent to the standard unit
matrices {ei,j}lSjjOO of Tp, and there is a projection of norm :52
from Tp onto [Xi,j] Isjjoo.

PROOF: Assertion (i) is actually a part of [2, Theorem 2.2], and the
first statement in (ii) follows from (i). If P is the contractive pro-

jection from Cp Cp 0 Cp) onto [xi,j] constructed in [2], and if D
is the canonical contractive projection from Cp onto 2EB (e,; ® Cp) (it
is a pro jection of the f orm (1 . 10)), then Q = (1 - D)PIT p is a projection
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from Tp onto its subspace [x;,;]1;; and" QII :5 2. Clearly, the

txi,jll,sji. are isometrically equivalent to the {ei,j}lSjj&#x3E;oo. El

A triangular sequence is a double sequence of the form lxi,j},,,j,,i..
In short, we denote it also by {x;,;};; and call it simply a triangle. A
subtriangle of lxijjj,,, is a triangle of the form {Xik,je}esk, where

{ik}k=l and {je} 1= 1 are increasing sequences of positive integers
with ik jk for every k. When we consider a triangle {x;,;};; of

elements of a Banach space as a basic sequence, we shall always
mean that it is a basic sequence in the following (lexicographic)
ordering:

A triangle {Xi,j}j.i in X is M-equivalent to a triangle {y,j}j=t in Y if
lxi,jjj,gi and fyi,jjj..f:-:i are basic sequences which are M-equivalent in the
usual sense.

In what follows we shall use several times a procedure of passing
to a subtriangle {Xik,jt} e; (which has nice properties) starting with a
triangle {x,j}. The general scheme of a such procedure is the

following. Assume that A is an infinite set of naturals numbers, and
that for every j E A, every subsequence of {xi,jlî=j has a further,
"nice" subsequence. Let j, be the first element of A, and let

{ }OO be a "nice" subsequence of lxi,j,lî=jl and .(1) . Assume
that jl  j2 ...  jm have been chosen from A, and that we have
already defined increasing sequences {if)}k=l’ 1   so that

{ }oo. is a "nice" subsequence of { } and .(e) .X;t),it k=l lS a nlce su subsequence 0 xkt-l),jt jtikt-1) and 1 e :,- le.

Let j+i be the first element of A 2013 (jh ..., jm 1 which is greater than
jm, and let lxi(m,i)j 1;=m,l be a "nice" subsequence of {xkm),jm+.}jm+likm)
with i(m+’) - jm+,. If we write ik = lk , then, clearly, {Xik,j,1 5k is a

subtriangle of {jc,j},; and each column {Xik,ie}k=l is "nice".

3. Proof of theorem 1.1

In proving Theorem 1.1 we shall treat separately the cases 1  p  2

and 2p  00 (since C2 is a Hilbert space, Theorem 1.1 is trivial for

p = 2). Let us establish first the following lemma, whose proof is the
same for every 1 _ p s 00. Recall that C",m denotes the space of all
n x m complex matrices with the norm induced from Cp.

LEMMA 3.1: Let 1 _ p _ , let N be a natural number, let (mn)§J=1 1
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be an increasing sequence of integers with mi = 1 and mn+1- mn &#x3E; N

for every n, and let lxi,jjj.5j be normalized elements in Tp which satisfy

Then, for every 1 &#x3E; e &#x3E; 0 there exists a subtriangle {Xik,je}e:5k of {Xi,j}j:5,
which is 1 + e-equivalent to the triangle {ek,e}l:5k of the standard unit
matrices of Tp, and so that [Xikille-r-k is 2 + e-complemented in Tp.

PROOF: It is clear that in an appropriate tensor product represen-
tation of Cp as Cp @ Cp, assumption (3.1) can be written as

where y,, E CN,mj+l-mj and IIy../1 = 1.
Now, for a fixed j the sequence {y,j} is contained in the unit ball

of a finite dimensional space, so it has a norm-convergent sub-

sequence. We obtain, therefore, normalized elements Yj E C§f"’’&#x3E;+’"’&#x3E;
and increasing sequences of positive integers {iW)}k=j, j = 1, 2, 3,..., so
that {i+1)}k=j+1 is a subsequence of {i)}k=j, and so that

in norm. Let ik =  be the diagonal sequence. Since y;k,; k- , yj for

every j, there is no loss of generality in assuming that for every j and
every j  k, we have

Recall that for every bounded operator x in the Hilbert space H, we
denote by r(x) the orthogonal projection from H onto (ker x)1-. Now,
if j 1 ¥: j2 and kl, k2 are arbitrary, then

Moreover, each y; is an operator of rank :5 N, as an element of

C’,’j,’-’j. It follows that we can change the matrix representation (by
choosing a new orthonormal basis for the domain of the operators,
while keeping the orthonormal basis for their range unchanged) so
that y; E C p N for every j, and so that (3. 1) is still valid with the new
En’s and Pn’s. Again, by the compactness of the unit ball of CN,’,
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there is an element y E CNN with Mp = 1 and there is a subsequence
{Yit}t=l of {Yj}j=l so that I/Yit - yllp -,E - 8-" for every t. By passing to a
subsequence of {ik}k=I if necessary, we can assume that t:5 k always
implies je  jk.

Let ltk,éle,5k be scalars, and let s = minfp, 2}. Then, using Pro-
position 2.1, we obtain

From this it follows that the triangle fxikjlé’gk is 1 + E-equivalent to
the triangle {ek,e}esk. Also, inequality (3.3) and the existence of a
projection from 7p onto [ejkj, 0 Y]esk with norm 52 (see Proposition
2.6) imply the existence of a projection from Tp onto [x¡k,je]esk of norm
2 + E. 

’ 

p

In proving Theorem 1.1 we prefer, for convenience, to work in Tp
instead of in Cp (since Tp = Cp for 1  p  00, this is permissible). Our
proof works also for p = 1, and it gives an almost isometric result.
Therefore Theorem 1.1 is the consequence of the following theorem.

THEOREM 3.2: Let X be a subspace of Tp, 1 s p  00, so that X is

isomorphic to Tp, and let 0  0  1. Then there exists a subspace Y of
X so that d( Y, Tp):5 1 + 0, and so that Y is 2 + 0-complemented in Tp.

Let us sketch first the two main steps in the proof of Theorem 3.2.
We start with a triangle lxij}j,i which is equivalent to the triangle
fei,j}j,i of the standard unit matrices of Tp, and so that [Xi,j]jS1 = X. In
the first, lengthy, step of the proof we construct from the xij a triangle
of normalized elements of X which is an arbitrarily small pertur-
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bation of a triangle of the form {ek,l @ z)* and is still equivalent to

ek, f le:5 k -
In the second step we use the fact that the sequence {Ze}e=I is

equivalent to the unit vector basis of e2, and thus, using Lemmas 2.4
and 2.5, we can replace the {zj?=i by elements {Ve}e=l which are
essentially of the form ve = e,,@ b, ilbll, = 1. Thus we construct a
triangle fYk,elé’,5k of elements of X which is a very small perturbation
of a triangle of the form lek,l 0 ei,@ bl,’5k.

If we put Y = [Yk,,’],’,,k, then Y is a subspace of X, and by Pro-
position 2.6 Y is 2 + 8-complemented in Tp, and d(Y, Tp):5 1 + 0,
provided the perturbations are small enough.

PROOF OF THEOREM 3.2 FOR 1 p  2: Let ixi,jjj.,-j be a triangle of
elements of Tp which is M-equivalent to the triangle f ej,jjj.5j of the
standard unit matrices of Tp, and so that X = [xi,j]j,5i. For convenience
we want the xi,j to be normalized. This we can obtain by passing to a
subtriangle (by using perturbation arguments, and by slightly enlar-
ging M) as follows.

Let E &#x3E; 0. Using a procedure very similar to that which was used in
the proof of Lemma 3.1, we can find numbers {Ue}e=I 1 and a in the
interval [M-’, M], and a subtriangle fXi,,jle..5k of lxi,jjjci, so that

Write Xk.l = ax ik,jllllXik,ifilp» Then a computation very similar to (3.3)
shows that the triangle lx’ k, élé.5k is equivalent to the triangle {x;k,;e} ek, and
thus to lek,,elé,5k. Therefore, fx’,,Ial,1,5k is a normalized triangle in X which
is equivalent to lek,élé.5k. Note that by choosing E small enough we can
make the new equivalence constant arbitrarily close to M. We therefore
assume simply that the original xi,j are normalized, and continue to
denote the equivalence constant of {Xi,j}j to f ej,jjjgi by M.
For every j = 1, 2, 3,... let us denote Xj = [xi,j]i=j. Note that X =

LJ=l EB JÇ, and that {x,j}i=j are M-equivalent to the unit vector basis of
t2. 
We now fix a number 0  8  (M + 1)-1, and we claim:

Indeed, if (*) is false, then for some n we can construct an increasing
sequence of positive integers {kj},=, and normalized elements x; E
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lik-L+dj,l X« so that IIEnXj/lp ,6. By passing to a subsequence of {Xj}j=I
we clearly may assume that the sequence fxjlî=l is M + 1-equivalent
to the unit vector basis of fp. Since d(EnTp, é2): nl/2, we get by (1.12)
that for every natural number m :

Since p  2, the desired contradiction follows from 6  (M + 1)-1 by
choosing an m large enough, So (*) is proved.

If {Ee} t= 1 are positive numbers so that 2 t= 1 El is very small, then

using Proposition 2.2(i) and (*) we can construct increasing sequences
of positive integers {ne}t=l and {jl}f=l with n =0, ji = 1, and so that

and for every x e Xj, we have

Since X = Le=l 0153 t is a Schauder decomposition (into infinite

dimensional subspaces), and since 2l=1 Ee is arbitrarily small, we can
apply standard perturbation arguments and assume, for convenience,
that instead of (3.5) we have for every e,

For each e the sequence {} is M-equivalent to the unit vector
basis of é2. Given E &#x3E; 0, we obtain by Lemma 2.4 that fxi,j,,I;= has a
subsequence which is 1 + e-equivalent to the unit vector basis of t2
and spans a 1 + e-complemented subspace of Tp. However, we want
to choose these subsequences for t = 1, 2, ..., so that together they
form a whole subtriangle. Let us make this precise.

First, we may assume that for some increasing sequences {mk}k=l
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and likl;=1 of positive integers with mk &#x3E; nk and ik &#x3E; jh we have for
every t:!E:-: k:

Let us denote, for convenience, Uk,f = x;k,;e, and write llk = le 1 ne. We
choose now a new matrix representation (by choosing a new

orthonormal basis for the range space of the operators), so that the
new mk’s and Pn’s satisfy mk+l - mk = J.Lk+h and instead of (3.8) we
have the better expression

Indeed, for every f  k, Enf+lUk,1 = Uk,l. Therefore, rank(u,) S n+i.
If x E B( (2), let R(x) denote the range of x. Let {/3.}!’âi be orthonor-
mal sequences with k = 1,2, 3, ..., so that R(Uk,l) ç [fk)]ih and so
that U k=2 {fk)}il is an orthonormal sequence. Since rank(uk,2):5 n3,
there exist orthonormal sequences U))tin+i 1 so that R (Uk,2) ç [/]i,
and so that {fP)}il U (Uk=2{fk)}r1) is an orthonormal sequence. Con-
tinuing in the obvious way, we can clearly redefine the mk’s and the
Pn’s so that mk+l - mk = J.Lk+h and so that (3.9) holds for every t  k.
Note that in the new matrix representation we still have (3.6) and (3.7)
(assuming that je = t).

Let us denote for every t  k and 1 _ v :5 é,

Clearly, ut = Pmk,mk+p.t+lU = Pmk,mk+lut. We can therefore choose an
appropriate tensor product representation in which

Thus for e:5 k,

As in the proof of Lemma 3.1, we can assume (by passing to a
subtriangle and using perturbation arguments) that for fixed 1:5 v:5 t,
the a are independent of k, i.e. that for some elements a;) E Cp we
have, for every 1 -«5 1, --5,e:5 k :
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This allows us to pass to some other tensor product representation of
Cp as CI" 0 CP2, where CI" are copies of C, (i = 1, 2), so that the
elements Uk,e have the form

where Ze E C2). Clearly, {ze} t= 1 is M-equivalent to the unit vector
basis of t2 (since for every finite sequence of scalars f te}é=, we have
11£5=1 tZllp = lÎ£5= 1 tUk,llp).

Let 0  0  1, and let (a;)§t=i be a sequence of positive numbers
such that

Using Lemma 2.4, we find elements {VI}e=I of Cl"(C(’&#x3E; is identified

here with Cp 0 Cp ) of the form

with

so that for some subsequence of fzél;=,, which we assume without
loss of generality to be {ZI}t=l itself, we have

Write

If ftk,éle,5k are scalars with 111,’,5k tk,eUk,l/fp = 1, then
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Note that W = [Wk,e ]2seskoo is complemented in Tp. Indeed, it can be
easily shown that the projection

from Tp onto W has norm :54M(2/8)p+I. So U = [Uk,e]2:5e:5koo is

12M(2/8)p+I-complemented in Tp. The proof that U has a subspace Y
which is 2 + 0-complemented in Tp and satisfies d( Y, Tp):5 1 + 8
requires some additional work. By (3.21) it is enough to show that W
has a subspace Z which is 2 + 0/2-complemented in Tp, so that

d(Z, Tp):5 1 + 0/2. The behaviour of the {Wk,l} l:5k need not be improved
by passing to a subtriangle (consider for example the triangle
{e2k+I,t + e2k,2e}f:5k). In order to "kill the t2-part" of the {Wk,e},:5k
(namely, the elements ek,l Q9 eel 0 ai), we pass to some averages in the
tp-sense of the {Wk,f} f:5k. Precisely, let m be such that

and define for

We claim that the subspace Z = [ZV,JL]JL:5V of W has the desired

properties. Note that by Proposition 2.6, {hv,JL} JL:5v is isometrically
equivalent to {eV,JL}JL:5V and [hv,JL]JL$V is 2-complemented in Tp. Let
{tv,JL}JL:5V by scalars, so that I/2JL:5v tV,JLhv,JLI/p = 1. Then,
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By standard perturbation arguments, this implies that the triangle
{L is 1 + 6/2-equivalent to the triangle {h.,,}., (and thus

d(Z, Tp):5 1 + 6/2) and that Z is 2 + 0/2-complemented in T,. This
completes the proof of Theorem 3.2 for 1 :5 P  2. D

PROOF OF THEOREM 3.2 FOR 2  p  00: Let lxi,j}j,5i be a triangle of
elements of Tp which is M-equivalent to the triangle {e;,;};_i i of the
standard unit matrices in Tp, and so that [xi,jjj,5i = X. As in the case
1 _ p  2, we can assume (by passing to a subtriangle if necessary)
that llxi,jllp = 1 for every j _ i. Write again Xj = [x;,; ] ° ;, and note that
X = 2j=1 EB and that for each j, {x;,;} ; is M-equivalent to the unit
vector basis of e2.

CLAIM: For every n and 0  E there exists a k = k(E, n) such that
n /}:J=k 0 Xjll E.

PROOF: If there is no such k for some n and E, we can find an

increasing sequence of natural numbers {kj}j=l and a sequence {x;}; 1
of normalized elements of -X so that

It is clear that some subsequence {Xit}t=l of {Xj}j=l is equivalent to the
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unit vector basis of ép. Since for p &#x3E; 2 every bounded operator from ép
to f2 is compact (see [5, Proposition 2.c.3]), we get that

is compact. But llxj,ji, = 1, Xje - 0 weakly as f  00, and /IEnxù/lp a e/2.
This leads to a contradiction, and so the claim is proved.
Now set 0  &#x26;  (3M)-l. Using the above claim, Proposition 2.2(ii)

and the fact that for every fixed j, xi,j ---&#x3E; 0 weakly as i - 00, we can

assume (by passing to a subtriangle if necessary, and by using
perturbation arguments as in the case 1:5 P  2) that for some in-

creasing sequence of integers {v}i=o with vo = 0, we have for every

We can also assume that for every n  é and every 1:5 j,
limi-+oollEn,lxi,j/lp exists (since by a standard diagonal method we can
pass to a subtriangle of lxi,jjjr-i which satisfies this condition). For
integers 0 :5 n  t and i :5 j, and for every number 0  a, let

As in the proof of Lemma 2.5, we have:

For every j and every 0  a, there exists an n = n ( j, a )( ) so that if n  e then A(n, e, j, a) is a finite set.

Let 0  0  1, and let {a}i=l be positive numbers, so that

Now we construct increasing sequences of natural numbers {ik}k=’
{mk}k=O and {nk}k=O with ii = 1, mo = 0 = no and Mk :!-: nk for every k, so
that for f:5 k:
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where

and so that for every 1

and for and

Indeed, let mo = no = 1, il = 1, m = Pl, and write n =

maxim 1, n ( i l, a 1 a2)1, where ni , .) is the function that appeared in (+).
Then (3.34) and (3.35) are satisfied for k = e = 1, and (3.36) for é’ = 1
follows from (3.30) and from the fact that n, &#x3E;_ Vit. Let i2 &#x3E; i be such
that V2-1 &#x3E; ni, write m2 = V2’ and define

Then by (3.29), (3.30) and (3.31) we obtain (3.34) and (3.35) for
1 :5 t:5 k :5 2, and (3.36) for e = 2. Indeed, if i a i2, then

and

By (+) the set A(nI, n2, ii, a 1 a2) is finite. Let i3&#x3E; i2 be such that

V3-1 &#x3E;_ n2, and (3.31) holds for É = 1, j = 2 and every i &#x3E; i3. Write
M3 = Vi3 and

Again (3.34), (3.35) for 1:5,e:!5 k:5 3 and (3.36) for é= 3 follow from
(3.29), (3.30) and (3.3 1).
We continue inductively in the same way. Assume that ik, mk and nk

were defined for k ::5 ko, so that (3.34) and (3.35) hold for 1  - A: 

ko, (3.36) holds for 1:5 e:5 ko, and (3.37) holds for 1 é:!g ko - 2 and
for every 1:5 k «-5 ko:



327

By (+) and (3.42) the sets A(nko-’ n"o’ ie, aea4), 1 :5 f:5 ko - 1 are finite.
Choose iko+1 &#x3E; ik, such that vik 0+,-, &#x3E;_ n,, and such that (3.37) holds for
1 ko - 1, j = ko and i &#x3E;_ iko+,. Thus, trivially, (3.37) holds for every
1 :5 f:5 j  ko and i --ie+2. Let mko+l = vik +I and define n"o+I by (3.42), with
ko + 1 instead of k. As before, (3.34) and (3.35) for 1 :5 f:5 k :5 ko + 1, and
(3.36) for e = ko + 1, are easy consequences of (3.29), (3.30) and (3.31).
This completes the inductive construction of the sequences liklZ=I,
{mk}k=O and {nk}k=O, and so (3.34)-(3.37) are valid for all indices involved.

Let Uk,e = Xik,ie’ 1:5 f:5 k  00, then by passing to an appropriate
tensor product representation we have

with

and

As we have done several times before, we can assume first that
instead of just (3.36), we actually have

for every f:5 j :5 k, where {JLj}i=I 1 is some sequence of natural num-

bers. This implies that for every fixed e -- j, every subsequence of

JuV?,,I;=j has a further subsequence which converges in the norm.

Therefore, by passing to a subtriangle if necessary, we can assume

that

where we have
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Let (k;)§t= be an increasing sequence of integers with A:i = 1, so that
if 4 = k;+, - k;, then for every i: 2-p)/2p :5 t;Xi+l. By (3.33) we get for
every é:

Define for

and

If fi,e = £ bak,+i 1 ek,el L1 1’2 for f:5 i, then {fi, 1 } esi is isometrically equivalent
to {ei,e}esi. Thus (v;,); is M-equivalent to (e;,);. If {ti,e}lsi are

scalars such that I/2esi t;,v;,]]p = 1, then by (3.33) and (3.50),

This implies that (w;,); is M’-equivalent to (e;,);, where M’ S %M.
Note that v;, E [U",#L]#LS" C X for every t:5 i. Thus, in order to find a
subspace Y of X which is 2 + e-complemented in Tp and satisfies
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d( Y, Tp ) :5 1 + 0, it is clearly enough to find a subspace Z of W = [wi,"]",5i
which is 2 + 0/2-complemented in Tp, and satisfies d(Z, Tp) 1 + 0/2.
We now pass to another tensor product representation of Cp as

CI’) (D C(’), where C(’) are copies of Cp (i = 1, 2), so that (3.52) is
written as

where the elements Ze E CI" satisfy r(zk) - r(ze) = 0 for k# e. Since

we can assume (by passing to a subtriangle whose elements have
almost constant norms, and by perturbation arguments) that Ilzell, =
Il wiéjj, = 1 for every f i.

Clearly, {ze}f=l is M’-equivalent to the unit vector basis of e2. Using
Lemma 2.5 and the fact that r(ze). r(zk) = 0 for t# k, we get a
subsequence {Zlv}=’ so that for some averages of the form

and for some normalized elements of C) (represented as Cp0 Cp) of
the form

with IIb111p * 1- al and maxlllbvllp, llcvllpl  av-l f or 2  v, we have

Let ri = lelil,, and define for j:5 i,

We claim that the subspace Z = [zij]j.,5i of W has the desired

properties. Note first that
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Write

By proposition 2.6, {h,;};; is isometrically equivalent to leijjj,5i, and
[h,j]ji is 2-complemented in Tp. Let fti,jjj,5i be scalars such that

lllij*1 ti,ihi,illP = 1. Then,

This implies that Izijjj,5i is 1 + 0/2-equivalent to Ihijjj,5i (and therefore,
d(Z,Tp) 1 + 0/2), and that Z is 2 + 0/2-complemented in T,. This
completes the proof of Theorem 3.2 for 2  p  00. D

4. Applications and concluding remarks

Our first corollary might be of importance in the classification of
the complemented subspaces of Cp.

COROLLARY 4.1: Let Z be a complemented subspace of Tp, 1 :5 p 

oo, which contains a subspace isomorphic to Tp. Then Z is isomorphic
to Tp.

PROOF: Let X C Z be such that X == Tp. By Theorem 3.2, there
exists a subspace Y of X such that Y:= Tp and such that Y is
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complemented in Tp. In particular, Y is complemented in Z. So, for
some Banach spaces U and W,

since Tp:= (Tp EB Tp E9 ... E9 Tp EB ... )ep’ by using the decomposition
method (see [5, page 54]) we get that Z - Tp. 0

Since for 1  p  00, Tp is isomorphic to Cp, we obtain

COROLLARY 4.2: Let Z be a complemented subspace of Cp, 1  p 

oc, which contains a subspace isomorphic to Cp. Then Z is isomorphic
to Cp.

Theorem 1.1 and Corollary 4.2 imply by transposition and standard
duality arguments the following two corollaries on quotient spaces of

Cp.

COROLLARY 4.3: Let X be a Banach space isomorphic to Cp,
1  p  00, and let QI be any quotient map from Cp onto X. Then there
exists a quotient map Q2 from X onto some Banach space Y isomor-
phic to Cp, and there is an isomorphism V from Y into Cp so that
QI Q2 V is the identity operator on Y.

COROLLARY 4.4: Let X be a complemented subspace of Cp, 1  p 

00, and assume that X has a quotient which is isomorphic to Cp. Then
X is isomorphic to Cp.

Recall that a Banach space X is called primary if for any bounded
projection P defined on X, either PX or ( 1- P)X is isomorphic to X.

THEOREM 4.5: For 1  p  00, Cp is primary.

Since a reflexive Banach space X is primary if and only if X* is
primary, clearly it is enough to prove Theorem 4.5 for 1  P :5 2. Since

the case p = 2 is trivial, and since Cp - Tp for 1  p  2, Theorem 4.5
will be the consequence of the following, somewhat stronger result.

THEOREM 4.6: For 1 :5 P  2, Tp is primary.

PROOF: Let P be a bounded projection in Tp, 1 :5 p  2. For 1 :5 j :5
i  00, let a;,; = Pei,j and bi,j = (1 - P)ei,j. Since ai,j + bi,j = ei,b either
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lai,j(i, j)I !, or 1]b;,(i, j)] a % (or both). By Ramsey’s Theorem in com-
binatorics, there exist increasing sequences {ik}k=l and {jk}k=l of posi-
tive integers with ik &#x3E; jk for every k, so that either

or

Without loss of generality we assume that (4.1) holds (otherwise,
we consider I - P instead of P). Write for f:5 k,

and let X = span{Xk,t}esk. Since X is a subspace of the complemented
subspace Z = PTp of Tp, in order to prove that Z - Tp clearly it is

enough, by Corollary 4.1, to find a subspace Y of X with Y x* Tp. We
shall construct below a subtriangle {xkV’e#L}P.sV of {Xk,e}esk so that,
essentially, Xk e (ik ., J.e ,) = 8v v’ . ô,,,, . À for some number A with 2 essentially, Xk,,,e,,(ik,,, #L number k with 1 -
lÀ  IIPII. Using this subtriangle we complete the proof as follows.
Write for IL --5 -v, Yv,p. = xkV’e#L and let Y = span{yv,p.} p’SV. Let Q be the

following contractive projection in Cp (it is a simple case of the
projections described by (1 . 10)):

Then for every scalars {tv’#L}#LV with tv,#L # 0 only for finitely many pairs
(v, IL), we have
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Therefore, {YV’#L}#LV is 2f1PIJ-equivalent to {eV’#L}#LV’ and thus the sub-
space Y of X is isomorphic to Tp.
So let us turn to the construction of the desired subtriangle

{XkV’eJL} #LSV. Note first that for every fixed é, Xk,e - 0 weakly as k - 00.
By passing to a subtriangle of iXk,,111’5k and by standard perturbation
arguments we can assume that for some increasing sequence of
positive integers {mk}k=l with mk  ik :5 Mk+l, we have

Now, for fixed t and every scalars ftkIN

Therefore, {Xk,e}k=l is 211PII-equivalent to the unit vector basis of f2.
Let Xe = [xk,,e];=,e. Using Proposition 2.2(i), we can assume (by passing
to a subsequence of {XI}t=l and to a subsequence of {jl}e=b and by
perturbation arguments as in the proof of Theorem 3.2) that for some
increasing sequence of positive integers {ne} f= 1 with ne  je :5 ne+1, we
have

By a standard diagonal process, there exists an increasing sequence
{kp};=1 such that the following limits exist for every f’ :5 é.

Since IXk,t(ik, jl)1 a [ for every f:5 k, we clearly have )A,) ? 2. Also,
again by a diagonal process, there exists an increasing sequence of
positive integers {fIL}: = 1 so that also the following limits exist:
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By passing to a further subsequence of {kv}=’ we may clearly
assume that kv 2: tv for every v.
Now, by passing to a subtriangle of {XkJ!’IIL}JL:5v we can assume that

the sequences in (4.9), (4.10) and (4.11) converge arbitrarily fast.

Thus, by perturbation arguments, there is no loss of generality in
assuming simply that

and

Let Yv,1L = Xk",lp.’ IL :5 v. As we have stated above, in order to complete
the proof it is enough to show that

In view of (4.6), (4.8), (4.12) and (4.13), in order to prove (4.14) we
only have to show that A, = 0 for every u.

Fix o,, let N be arbitrary, and let v N + o-. Then,

Since N is arbitrary, this clearly implies that k, = 0. Thus (4.14) holds,
and this completes the proof of Theorem 4.6. D

In the proof of Theorem 3.2 we did not use the full force of the
assumption that the triangle fxi,jjj,5i is equivalent to the triangle {e,jh:5
of the standard unit matrices of Tp. A careful check of the proof of
Theorem 3.2 shows that what was relevant is the existence of a

positive constant K, so that:
(a) For every fixed j, fxi,jlî=j is K-equivalent to the unit vector

basis of f2;
(b) For every fixed i, fxi,jl’., is K-equivalent to the unit bector

basis of -e’;
Let Xj = [xi,jl-j, then,
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(c’) (1  p  2). For every n there is some j = j(n), so that for
every

(c") (2  p  ce). For every n, lim infffEnlx.II = 0.j-.. 1

Conditions (c’) and (c") are the consequence of the following con-
dition :

(c) ( 1 _ p  -, p 4 2). If {Xj}j=l 1 is a normalized sequence with

Xj G JÇ for every j, then some subsequence {Xje}e=l is K-

equivalent to the unit vector basis of tp.
Thus, actually we have the following refinement of Theorem 3.2.

THEOREM 4.7: Let 1:5 p  00, p 0 2, and let {x;,;}; be a triangle of
elements of Tp. Assume that for some positive constant K, conditions
(a), (b), and one of the conditions (c’) (for 1 _ p  2), (c") (for
2  p  (0), or (c) are satisfied.
Then for every 0  8  1 there exist a tensor product representation of

Cp as C, 0 Cp, a normalized element z E Cp, and an isomorphism V f rom
a subspace Y of X = span{x,;};i onto Tp @ z, so that for every y E Y we
have Il Vy - y]]p :5 (015)]]y]]p. Thus d( Y, Tp) s 1 + 0 and Y is 2 + 0-com -
plemented in Tp.

Moreover, the construction can be made so that for some sub-

triangle {Uk,l}e:5k of ixi,jjjgi, the elements YV,IL = V(e,,, @ z), IL :5 v, have
the following form: for 1 _ p  2, there is a positive integer m, so that

For 2  p  00, there exists an increasing sequence of positive integers
(É,)§=i, so that
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