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ON LARGE SUBSPACES OF
THE SCHATTEN p-CLASSES*

Jonathan Arazy*

Abstract

Let C, denote the Schatten p-class of operators on Hilbert space.

We prove thatif X is a subspace of C, (1 < p <) which is isomorphic
to C,, then X contains a further subspace Y which is also isomorphic to
C,, and it is complemented in C,. As a consequence, we get that every
complemented subspace of C, which contains an isomorphic copy of C,,
is actually isomorphic to C,.

A related result is that for 1 <p <, C, is primary.

1. Introduction

The Schatten p-classes C, (1 = p = ) of operators on the separable
Hilbert space ¢, are defined as follows.

For 1 = p <= let C, be the Banach space of all compact operators x
on £,, so that

[lx]l, = (trace(x*x)??)!P < oo,

C. denotes the Banach space of all compact operators x on ¢, with
the operator-norm induced from B(¢,), the space of all bounded
operators on ¢,,

lIxll = sup{lxéll; £ € &, €]l = 1}.

* This work is based on a portion of the author’s Ph.D. Thesis, prepared at the Hebrew
University of Jerusalem under the supervision of Professor J. Lindenstrauss.
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298 J. Arazy [2]

Our main interest in this paper are the spaces C, for 1 <p <o, but
some partial results are stated and proved also for p = 1, ©, The main
result of this work is the following theorem.

THEOREM 1.1: Let X be a subspace of C,, 1<p <o, which is
isomorphic to C,. Then there is a subspace Y of X so that Y is
isomorphic to C, and Y is complemented in C,.

Let us turn first to notation and background material. We use [7] as
a general reference to Banach space theory. By ‘“‘subspace” we shall
always mean a closed subspace. If {x,};_, is a basic sequence in the
Banach space X, then we denote by [x,];-; the subspace spanned by
{x,}2-; in X. The basic sequence {x,}5-; is said to be A-equivalent to
the basic sequence {y,}:-; if there exist 0 < A;, A, < so that A;- A, =<
A, and for all scalars {t,};-, we have

<[z

o

A7 'E bV RN

A subspace Y of X is A-complemented in X if there exists a
projection P from X onto Y with ||P||<A. A complemented subspace
is a subspace which is A-complemented for some A <. If X, Y are
isomorphic Banach spaces, then we denote

d(X, Y)=inf{|T|| - |T""|; T is an isomorphism from X onto Y?}.

X =Y means that X is isomorphic to Y. We use in several places
what we call “‘standard perturbation arguments”. By this we mean the
appropriate analogue of [1, Proposition 1.a.9].

We refer to [5] and [8] for the elementary properties of C,, and to
[11, [2] and [10] for the study of C, from the point of view of the
geometry of Banach spaces.

Let us establish the notation which we will use along this work.
Given orthonormal bases {¢;}7-; and {f;};=, for ¢,, we represent every
x € B(¥,) as a matrix x = (x(i, j))ij=1, where x(i, j) = (xf;, &).

The standard unit matrices associated with the pair ({¢;}i=1, {fi}i=1)
are

(101) ei,j = ('9fi)ei, 1= i’ j <oo,

Note that e;;(k, ¢) = & * 8;. In the ordering
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€11, €21, €22, €12, €31, €32, €33, €23, €13, . . .,
(1.2)

en,h en.2, .oy en,na en—l,m en—2.m .oy el,m e

the {e;;};j-; form a Schauder basis of C, for every p.
For every n let P, and E, be the following projections in C,.

We use also the notation

(1.5) E..=E,-E, P,,=P,—P,; n<m
and

(1.6) E"=1-E, P"=1-P"

Clearly |P,| =1 and ||E,|| <2 for every n.
Another important projection is the triangular projection P,
defined by

.o [x(i,)); 1=sjsi<o
a7 (Prx)(i, ) = { 0; otherwise.
Pr is bounded in Cp if and only if 1 <p < (see [6, p. 121]). Denote
the space of all lower triangular matrices in C, by

(1.8) T,={x€C,; Prx = x}.
By [1, Proposition 1], C, = T, if and only if 1 <p <. So in proving
Theorem 1.1 for 1 <p <« we can use T, instead of C,.

The spaces C, and T, admit finite dimensional Schauder decom-
positions

(19) Cp = 21 @ Pn—l,ncm Tp = 21 @ Pn—l.nTp-

These decompositions enjoy the property of being reproducible (see
Proposition 2 in [1] and the Definition that preceeds it). The version
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of the reproducibility which will be used below for T, is the follow-
ing. Let V be an isomorphism of T, into itself, then there exist
increasing sequences {m};-; and {m,};-; of positive integers, so that
V([e,,k,j]};,) is almost contained in P, ., T, (so, if Ue;= e, then
VU is an isomorphism of T, into itself with VU(P,-,T,) almost
contained in Py, m,,, Tp).

Let {A,}%-1 and {B:}%-; be two sequences of subsets of the natural
numbers, so that for k# ¢,

AkﬂA(=ﬂ=BkﬁBg.
Let P({A:}, {Bi}) be defined by

(P(A, BYxIG, = {50 1D A B for some k

otherwise,
(1.10)
then for every x € C,,
lip
(11D IPQA. Bibxl, = () <lel,

where x.(i, j) = x(i, j) if (i,j) € Ax X By, and x(i, j)= 0 otherwise. If
each of the {A,}7-; and {B,};-, is infinite, we get that the range of the
contractive projection P{A}, {B) is isometric to
CBCD - DCD- ), By the decomposition method (see [5],
page 54) we get that C,=~(C,DC, D - DCD ), The same
proof shows also that T,~(T,T,B--- D T,B- ), for every
1=<p =, Here, if p = «, the infinite direct sum is taken in the sense
of ¢y, and “(Z; [t[7)"7> means sup|t|.

Two elements x, y € B({,) are said to have disjoint supports if there
exists a matrix representation in which

_(f 0) _(0 0)
= o) Y0 /)

where ¥ and § are the appropriate restrictions of x and y respec-
tively. If {x,};-, are pairwise disjointly supported elements of C,, then
=51 xell, = s Ixellp)

Let us denote by r(x), for every x € B(¢,), the orthogonal pro-
jection from ¢, onto (ker x)*. Then for x,y € B(£,), r(x)- r(y)=0 if
and only if there exists a matrix representation in which
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_(x; O _ (0 yi2
x= (x2,l 0)’ y= <0 )’2,2)’
with x;; and y;; appropriate restrictions of x and y respectively.

For 1<p <, the dual of Cp is C,, ¢”'+p~' = 1. The duality is
given by (x, y) = trace(xy*), x EC, and y € C,. C,, the space of all
Hilbert-Schmidt operators, is a Hilbert space under the inner product
{+,*), and thus its structure is well known. Therefore, the index p =2
will be omitted in the sequel (Theorem 1.1 is trivial in this case). Also,
C, is isometric to C¥ and B(¢,) is isometric to C¥, where the duality
is given again by (x, y) = trace(xy*).

If 0#xeC, 1=p<wo, and if x =v(x)-|x| is the standard polar
decomposition of x (i.e. |x| = (x*x)"? and v(x) is a partial isometry with
ker x = ker v(x)), then we define n,(x) = v(x)|x]*~". Clearly, n,(x) € C,
if 1 <p <o, and n,(x)=v(x) € B({,) if x € C,. Also

(x, np(x)) = [Ixll; = lxll, - lImy Xl

Another piece of information concerns the behaviour of Rade-
macher averages of elements of C, (cf. [8] and [10]): for 1=p <o
there is a constant K, such that for every choice of {x;}/-; in C,,

(1.12) K (3 1k)" = ([ |3, neom :dt)”"
= (Z ”x,-llﬁ)”p ifl=p=2,
(1.13) (21 nx,.ug)”"s( J; 1 glr;(t)x,- :dt)”p

n 12
=K, (; le,-llf,) if2=<=p <o,

(here, the r;(t) are the Rademacher functions). So C,, 1 =p <, is of
type s and of cotype r, where s = min{p, 2} and r = max{p, 2}.

Let us mention some results on tensor product of operators. Here
we use the notations C,(H) for the class C, of operators on the
Hilbert space H. Let ¢, ¢, be the Hilbert-space tensor product of ¢,
with itself. If x,y € B(¢,), then there is a unique element x®y €
B(4, R 6) satisfying (x@ y)(ER 1) = x£EQ yn for every & n € 6, If
x,y € Cp(£), 1 =p <, then xQ y € C,(£,Q £,) and

(1.14) [x® )’"p = "x"p : ")’"p-
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Moreover, C,(¢£,& ¢,) is spanned by the elements x@ y with x,y €
C,(£). We therefore denote C,(£,Q ¢,) by C,(£,)Q C,(£5), or simply
by C,Q C,.

Let {¢}-, and {f;};=, be two orthonormal bases of ¢,, let N =
Uk=1 Ay = U%= B, be two partitions of the set N of positive integers
into pairwise disjoint infinite subsets, and let ¢, : N > A;, 4 : N —> B,
be one-to-one and onto mappings, 1<k <. Since {f,® f;}?;-1 and
{ex @ e}ri-1 are orthonormal bases for ¢, ¢,, there exist isometries
u, w of ¢, onto ¢,&Q ¢, so that for every i,j, k, FEN:

Wi =FfeQfi; ue,n=ea®e.

Define for x € B(¢,)

Vx = uxw™.

Then V is an isometry of C, onto C,&® C,, 1 <p =, In the sequel
we shall therefore identify C, with C,@ C,; the identification will
always be made in the way described above, and usually it will be
clear from the context how the identification is made. We call this
identification a “tensor product representation” of C, as C,® C,.
Obviously, we can identify in an analogous manner C, with
CGRCRC, with C,R C,Q C,Q C, etc.

Let us give an example to illustrate the use of the tensor product
notation. Let {A;}x-, and {B,}%-; be subsets of the natural numbers, so
that A,NA,=@=B,NB, if k#¢ Let x,,EB(f) be such that
x,(i, j) # 0 only for (i, j) € Ay X B,. Then there exists a tensor product
representation of C, as C,Q C,, in which the x,, have the form
Xie = €.0Q Yo for some y,, € B(¢£,). If, moreover, A, ={n};_, and
B, ={m®}7., and x, ,(n, m(?) = x, (n®, m{") for every i, j, k and ¢,
then the tensor product representation can be chosen so ttlat for some
y € B(£,) we have x;., = ¢,,Q y for every k and ¢.

2. Preliminaries

PropPOSITION 2.1: Let x;; € C, so that x;;# 0 only for finitely many
pairs (i, j). Then

lip
<(3 )
14

ij

2.1 (g "xullﬁ) "< l ’21 €& X
ifl=P<2:
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2.2) ('2] llx.:;llz)”p = = "‘2] € xij , = (; "xi,i"fa)m

if2=p=o,

ProoF: If x,y € B(&,) satisfy x*y =0 (i.e., they have orthogonal
ranges), then

(2.3) [l + yll. = sup |Ix + y)£[| = sup (Ix[P + [|ly£|)"
(€6 L€l
lleh=1 el =2

= (lxll2 + Iy

This implies, by induction, that if x; € B(¢,) and x}x; = 0 for i# j, then
IZ; xill- = C; |22, Similarly, if xx%=0 for i#j, then [Z;x].=
(Z; [1x;]12)"2. Using these facts we get for any x;; € B(¢,), and in particular
for x;; € C., that

2 ) 12

(2.4) ’lz € xijfl = “E Z € Qx| = (2 "2 €;Q xi;
iJ x i x i j
12 L\
= (2 2 lle;® xijlﬁ) = (; "xi.f"w) .
This proves the right inequality for p = %, while the left inequality is
trivial.
If p=1 and x;; € C,, choose y;; € B(#,) so that |yl =[xl and
(Xij» ¥ij) = x| So,
(2.5) "2 €,i® xi; = KE €, Xij, g a,,Q )’k,!/ >|
8] L] S x
= 2 (X Vi) / uk}; €ce® Yie
(8] s *

12 12
=S Il / () = (S Itk -
L) 3 i,

2 ee@ Yie
ke

This establishes the left inequality for p = 1, while the right inequality
in this case is just the triangle inequality.

Using the cases p = 1, and the generalized Riesz-Thorin theorem
for the spaces C, (see [3]), we get the desired inequalities for every
1=<p =<, Note that for p =2 we actually have an equality (the
spaces ¢;;Q C, are pairwise orthogonal). O

REMARK: One can prove (2.1) and (2.2) for 1<p <o, p#2,
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without the interpolation techniques of [3], by using (1.12), (1.13) and
[2, Proposition 3.1].

Next, we want to study the subspaces of C, which are isomorphic
to ¢. By [1, Proposition 4], [4, Theorem 2], if x C C,, p# 2, then
x = ¢, if and only if there exists an n such that E,, is an isomor-
phism. We first establish the following quantitative strenghtening of
this result.

PROPOSITION 2.2: Let XCC,, 1<p=<w, p#2, and assume that
d(X, €)= M <o,
() If 1=p <2 and € >0, there exists an n such that |E"x| < e.
Gi) If 2<p=w and 0<8 <(BM)™', there exists an n such that
| Ewxll, = 8l|x[l, for every x € X.

PRrOOF:

(i) If there is no such n for a given 0 < ¢, we can find an increasing
sequence {m}i-, of positive integers, and a sequence {x;}5-; of nor-
malized elements of X so that for every k:

(2.6) "E"‘ka"p > €, "P"k”xk"p = 2_’(.

Since X is reflexive, we can assume (by passing to a subsequence and
using standard perturbation arguments) that x, = x +y,, x € C,, and

(2.7) Pn]x =X, Yk = P’lk,'lk+1yk’ "E"kYk"P > €

For every m, 7., E™P, is a projection of the form (1.10). Using

nangty
(1.11) and (2.7) we get

14 m 2 12

2.8) Mm”2=<f I'Z rk(t)xk" dt)
0 Hk=1 14

1y m 2 1/2

3 nom dar)” - m,

= 14

IR LT

1ym 2 12 "
[I8 noEPon ] at) = m s
4

k=1

v
—
b

2 12
dt)" = m"],
p

m 1p
= (S IE P lidt) = m i,

=m'Pe — m"?x]|,.
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Since p <2, this leads to a contradiction if m is large enough.

(ii) If there is no such n for a given 0> 8 > (3M)™!, we can find an
increasing sequence {n};-; of positive integers, and a sequence
{x«}z-1 of normalized elements in X, so that for every k:

(2.9) "E,,kxk"p < 8, ”P "“‘xk"p = 2_k.

Using the reflexivity of X and a standard perturbation argument, we
can assume that x, = x + y,, x € C,, P, x = x, and for every k,

(210) Y = P'lk,’lk+]yk, "Enk(x + yk)"P <é.

m

2.11) m'"M'< (Il > n(t)x,

Using Proposition 2.1, we get for every m
0 llk=1

2 12
dt)
P
1|m 2 12
= (['|Z noxx + B+ B ar)
= p
1 m 2 12
=mul, + ([ |3 nopr| a)
=1 P
1 2 12
([ |E oa-roEx a)
0 k=1 4
i 1 m 2 12
+ (f E rk(t)E"“yk dt)
0 k=1 p

=m"8+m"§+m'"5+ m'" =36m'2 + m'P,

m

(We use the fact that ||PrE, yil, <|[E. Y, =8 and ||(1 - Pp)E, v, =
E,ydl, = 8). Since § <(3M)~', this leads to a contradiction if m is
chosen large enough. O

If XCC, and X = ¢,, then by [1, Prop. 4], [4, Prop. 3], X is
complemented in C,. If p =2, this is trivial. If p#2 and V=E,, is an
isomorphism, let P be the orthogonal projection from E,C, onto E X.
Then Q= V'PE, is a projection from C, onto X. Since
d(E,C,, E,C,) = d(E,C,, &) ~ n!"?=' the norm of the projection Q
might be very bad. However, by passing to a subspace of X, we can
get better results. Precisely, we shall show below that, given 0 <e,
there is a subspace Y of X which is 1+ e-isomorphic to ¢, and
1+ e-complemented in C,.

Let us first establish the following proposition:

ProrosITION 2.3: Let {m};-, be an increasing sequence of natural
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numbers, and let {y,};-; be normalized elements of C,, 1 =p <, so
that for some natural number n we have, for every k,

(2.12) )’k = E"Pmbmk+IYk'

Then for every 0<e there exists a subsequence {y.}i; which is
1+ e-equivalent to the unit vector basis of ¢, so that [yiJi=1 is
1 + e-complemented in C,. Moreover, the {yki}f=1 can be taken to be
arbitrarily close to normalized elements of C, of the form z; =

e1,Q0a+e ;1 Qb.

Proor: Without loss of generality, we can assume that n < m; and
that € <1. In an appropriate tensor product represemation, we can
write assumption (2.12) as

(2.13) Ve = €11 Q A + 1441 Q) by,

with a;, by € Cp = C,(¢3), and (|ac]|5 +[|bi]|2)"? = 1 (we use the fact that
rank(Pry;) < n and rank((1 — Py)y,) = n). By compactness of the unit
ball of C}, there exist elements a, b € C" with (a2 +||b|5)"? = 1,and an
increasing sequence {k;};~;, so that

2.14) la—ayll, <e-87, [b=by, <e-87".

If we put z;=¢€,.11 @ a+ e, @b, then T, [lz; -y fl, =7 287 <
2¢/7. Since {z;} -, is isometrically equivalent to the unit vector basis of ¢,
and [z]7., is 1-complemented in C, (see [2, Theorem 2.2]), and since
(1+2€/7)(1 —2€/7)' =1 + ¢, we get by standard perturbation arguments
that {yk,.};L. is 1+ e-equivalent to the unit vector basis of ¢,, and that
[yiJ7=1 is 1+ e-complemented in C,. ]

LEMMA 2.4: Let 1 <p <2 and let {x;}i-, be a normalized sequence
in C, which is equivalent to the unit vector basis of ¢,. Then for every
0 < e <1 there exists a subsequence {xki}}‘;. which is 1+ e-equivalent
to the unit vector basis of ¢, and so that [xk;]7=1 is 1+ e-complemented
in C,. Moreover, given any sequence {a;}7-; with 0 < a; <1, there exist
normalized elements {v;}7.; of C, and sequences {a;};-, and {b;};-, in
C, with

i-1
(2.15) v = 21 (6;Qai+e;Qb)+e;Rc,
£

so that for j<2
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(2.16) (la;fl? + Ilbfllﬁ)"" =apy, il < ajm
@.17) L= = (i + o) <1
and

(2.18) loi = xill, < e

PrOOF: Since x; >0 weakly as k—», we can assume (by passing
to a subsequence if necessary, and by using perturbation arguments)
that for some increasing sequence {m}s-o of positive integers with
my =0, we have
2.19) X =Pum_mXe k=1,2,...

We may assume that the given {o;}7; satisfies

(2.20) S & =< €/30.
k=1

By Proposition 2.2(i) we have

(2.21) lim(st:p"E'”xk",,) =0.

We can therefore assume that besides (2.19) we have also

(2.22) slklpIIE’"ix,(lLD =@, j=1,2,....

For 1 =j <k, put

(2.23) Yij = PrEm \mX  2cj = (1= Pr)Ep_ mXi

and for every k let

(2.24) w=Ep  mXe-

We now change the matrix representation so that for some increasing
sequence {n;}i—, of positive integers with n,= 0 and n,_, + m; < n,, we

have, in terms of the new P,’s and E,’s,

(225) Yej = PTEn,,I,nI»Pnk,l,nk,1+ni.VkJ, 1= ] <k,
(2.26) 2y = (1= Pr)Ey nPomonzin 1§ <k
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(2.27) uk = Enk_l‘nkPnk_l.Ilkuk
and
(2.28) I + zeills = Uyiills +12eillp)”? < ;. 2<j<k.

Indeed, let ny=0 and n, = m,, and for every x € B(¢,) denote by
R(x) the range of x. Choose orthonormal sequences {¢;}71, and {f;}/L,
so that

(2.29) [ D R(u) U UJ R(zy)
k=2

(2.30) [f17: D R@H U UJ R(yL).
k=2

Since rank(y,,) = n; and rank(z,) < n,, there exists an n, = n, + m,
and orthonormal sequences {€;}2, ., and {f}[2, .1, so that {¢}2, and
{fi}?2, are orthonormal, and so that

(2.31) (e, «1DR(y21),  [fi1i2h«1 D R(z2y)

2.32) & DR U U R(za)
k=3

2.33) 12020 Rt U U RGYE).
k=3

Similarly, since rank(y;;) < n; — n;_; and rank(z;;) < n; — n;_, for j =
1,2, there is some n; = n, + m;, and there exist orthonormal sequences
{e}2n,1and {f;}12, ., so that {e;}72, and {f;} 2, are orthonormal, so that for
ji=1,2,

(2.34) ()25 D Ry, [fi1iZmis D R(z35)
and

(2.35) [e]f2n,c1 D R(u) U HR(zk3)
(2.36) [£1220e1 D RWHU H R(yY).

We continue inductively in the obvious way. If the new P,’s and E,’s
are defined by means of formulas (1.3) and (1.4), using the new matrix
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representation associated with the pair of the above constructed
orthonormal bases ({¢;}7-;, {fi}/=1), then we clearly have (2.25)-(2.28).
Note that we still have

k-1

(237) Xy = 21 (yk,,- + Zk‘j) + u, k= 1, 2, ceee
i=

Let C;™ denote the space of all n X m-complex matrices with the
norm induced from C,. Passing to tensor product notations, we obtain
from (2.25)-(2.28),

(2.38) Vi=eiQa, a4 €ECH™, 1=j<k
(2.39) =@ by, b €ECHMvN, 1=j<k
(2.40) W= € ® o G € Clmmmy

(2.41) (lailly + 1beill)” < @, 2=<j<k.

Clearly, for k =2 we have || < o, and
242) 1= ar = | Eyxill, = (lawally + belf) =< 1.

As in the proof of Proposition 2.3, there exist elements d; €
Cpnm- and b€ Cpi with 1-a= (lalls +16:l5)"* <1 and
(lall5 +1B;|p)""? < a;-, for 2= j, and there exists a subsequence {x,}-,
with k; > 1 so that, if we define

ki—1

(243) E(ek,}®aj+e1k®b)+ekk®ck9

=
then ||x,, — v, = a;. Now, if

(2.44) wi=e,Qd +e,® b,,

then the {wj/||wi|,}7-; are isometrically equivalent to the unit vector

basis of ¢, and [w;]i-, is 1-complemented in C,. Let {t;}7_, be scalars
so that =5, [t;? = 1. Then by (2.20) and (2.43),

2 [tilevi + I,Et(v. )

at 3 el + 3 2 W ®

(2.45) "}:‘1 tix, —

i
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als +161" (3, 15F)

i = /10.

K\)
i
MB uMs

IA
&)
M

R

I
-~

I
[}

Since 1=|wifl, =1~ a;> 1~ ¢€/30, we get that {x,}7, is A-equivalent
to the unit vector basis of ¢,, and that [x,]7-, is A-complemented in
C,, where

(2.46) A=(1+€10)(1-¢€/30)'(1-€10)"'<1+e

Finally, let us define ¢; = ¢, and

t ol

;-1

(2.47) a=23 a®d, j=1, j=12,..,

4 ki—l

-1

(2.48) b; = e @b, j=1,2,...

€=kj_y

K

I
ay

By (2.22) we clearly have (2.16) and (2.17). Also, it is clear how to
choose a new tensor product representation so that (2.15) holds (use
(2.43) and the definition of the a;, b; and ¢; in terms of the a;, 5, and
Cx). Clearly, (2.18) still holds. O

REMARK: Let A >0 and consider the sequence x;=
(Aexi + e )(A*+1)712 in C,, 2<p <. The equivalence constant of
every subsequence {xkj}le to the unit vector basis of ¢, behaves like
A" (which might be very large). Thus, the analogue of Lemma 2.4 is
false for 2 < p <. It can also be easily verified that if X = [ 15=1 for
some increasing sequence {k;}, then for every n:||E"[x]|=(1+A)™"~
Therefore the analogue of Proposition 2.2(i) is also false for 2<p <
o, There are, however, averages of these {x;} which behave in a better
way. Precisely, let 0 < ¢, and choose an increasing sequence {k;}7-; of
positive integers, so that if 4k; = k., — k;, then

(2.49 Ak; = (8IA e wIo-D),

Define for j=1,2,...,

l+|

(2.50) 2 R Silll5ill,-

Then
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ki+l

Zxk

K=K+l

@51 IE'yil, = A7(1 + A%)'"(Ak)~" | E*
iip

14
< A-I(Aki)(2—p)l2p <e-871

Using Proposition 2.1 we get, for every scalar {t;}/,

e (SiF) =S o] =18 B - S iE,

=(S 1 a-1Ewhr) - (Shk)"
X (Z (- 8—")2)”2 = (2 lt,-lz)m a+e™.

So {y;}7-; are 1+ e-equivalent to the unit vector basis of ¢,. Since
Px =35, (x, n,(E\y,)))E\y/|E\y;|lb is a contractive projection from C,
onto [E,y;]j-;, we get by (2.51) that [y;]7-; is 1+ e-complemented in
Cp.

The idea of using averages of the for (2.50) in order to “kill the
¢,-part” of a sequence in C,, 2 < p <, which is equivalent to the unit
vector basis of ¢, is due to Odell [9]. This is the heart of the proof of
the following lemma, which is essentially [9, Lemma 5].

LEMMA 2.5: Let {x;}i-, be a normalized sequence in C,, 2 <p <o,
which is equivalent to the unit vector basis of ¢,. Let € >0, then there
exists a subsequence {x.}i.; and an increasing sequence {j.}7-, of
positive integers, so that if we define

Je+1

(2.53) Ye= E xki’ e = Y||9 el

i=iet

then the {y,}7-, are 1 + e-equivalent to the unit vector basis of ¢,, and
[y,17-2 is 1+ e-complemented in C,.

Moreover, given any sequence {a;};-, with 0 < a; < 1, the {y,}7-, can
be chosen so that there exists normalized elements {v,}7-, of C, of the
form

-1
(2.54) Ve = 21 (eri@ai+e,Qb)+eQce

with max{|ail,, |bil,} = @i and |cl|=a; for 2=<i and (|a\f +
Ib:fB)"? =1— a,, so that ||y, — v/, < a, for €=2,3,....
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Proor: Let X =[x]i.; and M =d(X, ¢,) <. Fix 0< 8§ <(3M)!
and choose, by Proposition 2.2(i), a natural number N so that
|Enx|l, = 8|x||, for every x € X. Since x, -0 weakly as k -0, there is
no loss of generality if we assume that for some subsequence {xki}j;,
and some increasing sequence {m;}7., of integers with my=0 and
m; = N, we have
L, j=12,...

]

(255) xk,. = P,,,i_l‘,,,l.xk

Put y; = P;E,_ x, and z; = (1 - Pr)E,,_x. and note that I Em,_ i [l =
(ly;ll5 + llz;l15)""?, and that [ly;]|,. [|z;ll, < [|x.]l, = 1. Using a standard diagonal
process, we can pass to a further subsequence which we continue to

denote by {x, }i_, for convenience, so that for every n < €, lim;_..|| E, x|,
exists.

CramM: If a >0, then there is some n = n(a) so that if n < ¢, then
the set

An,(’,a = {j . "E'l‘[x]."P > a}
is finite.

PrOOF OF THE cLAIM: Indeed, if the claim is false for some a >0,
there exist integers

l=n<lO<n<tH<---<p<b<---
so that the complement of each A, .. is finite. Let m be such that

m > (4/a)’, and choose j so that m;_,> ¢, and that j € N, A, .an-
Using Proposition 2.1 we get the desired contradiction:

m
’2 E, X
i=1 p
m lip
= (S 1Bl + 1B, 2l

= (2 llEﬂb&"i"Z) = (aef2)m'? > 2,
=

256)  1=|xl,=

thus proving the claim.
Let {a;}7-, be any sequence with 0 < o; < 1. We may assume that

.57 2 a; = €/100, and 2 a; = a,, for every m.
i=1 i

i=m+1
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Using the claim, we can pass to a subsequence of {xkl.}}';l, which we
continue to denote by {x.}i=; for convenience, so that for some

increasing sequence {n;}7_, with no=0 and n,> N, we have

(2.58) X, = Py 0 X,

] ]

(2.59) IEn, mXilly <aii/16M, 2<i=<j-1.

Passing to an appropriate tensor product representation, we have

60 S
(2.60) Xy, = 2:1 (€ yit+e;®z)+e;Qu

with Yii S C"i’ni_ni_', Zj; e Crm-r" and
(2.61) Uyl +lzullp) =8, j=2,3,...,

and for 2=j <j,

2.62)  (lyull +llzullp)' = |En_, nxily < @ici/16M.

As in the proof of Proposition 2.3, we can obtain, by standard
diagonal process, a subsequence {x, }-, and elements g; € Cp*" ",
b, e Cr - so that |y — aifl, and |z, —bil, tend to zero as
v - arbitrarily fast. Without loss of generality we assume, therefore,
that the {xki};‘;. themselves are given by

(2.63) Xy = SI (6;® di + €@ b)) + ¢;R u;
with

(2.64) lalls +16:)"" < a;1/8M, 2=<i<w
and

(2.65) (als + 1B, = 8/2.

Here the norms "x,‘l. —(,®d,; + e, ;@ b)), need not be small, since
for the norms of the u; we have only the trivial estimate [y, =
(1—8/2y)"?. Now, the {¢;;® u;};-, are pairwise disjointly supported, and
thus
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m m 1p
'2 €;® “i" = (2 "“i"'h)
=k P N=k

for every k <m. Since 2<p <, we can “kill” these “¢,-parts” by
taking long averages as in the example which precedes the statement
of Lemma 2.5. Precisely, let {j,}7_; be an increasing sequence of
integers with j, = 1, so that the differences 4, = j,., — j, satisfy

(2.66) AGPI < o 12 M.
Set
e+t
(2.67) o= 2 X Ve = el elp-
Then
(2.68) Ye = 2 P+ 29+ w,,
where
) Jes1
(2.69) yO= 3 €:® allel,
j=ig+1
) Jerr
(2.70) 9= Z €@ bill3ello,
I1=lJ¢

Jes Jes1 dext
(2.71) W€={.z eu®u1+2 2 (6@ d; +eu®b)}/")’€"p

J=]et i=jg j=i+1

Now, for every 2=m < j,

e e+t
er  |Eyorw] =marn (3 S japepes)”

lm] [+

=M 2 a;_/8M + MA;'? - AlYp

Jer1=1 Je+r

o\
+MAPE (3 Sl +I61R)
i=j j=i+

= 2 ald+MAGP? <o, 4+ a2

Similarly, for every 2<=m <,
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2.73) < ap_1/4+ a 2.

14

Je
S 29+ w,
i=m

Using Proposition 2.3 again (and passing to a subsequence of {y,}7-,
if necessary) we can assume that in some other tensor product
representation we have normalized elements

-1
(2.74) Ve = 2] (e(,,'® a; + e,"(® b,) + e[,(® Co,

with max{|al,, |bill,} =< &y and |lcifl, = for 2<i, (la\fl; +[bill})"? =
1— ay, and so that |ly, — v/, <a, for ¢=2,3,4,....

Set 5, = (e @ ar+ e, Q b)l(lajll} +[bi[5)", €=2,3,..., and note
that {,}7-, are isometrically equivalent to the unit vector basis of ¢,, and
that {5,}7-, is l-complemented in C,. If {t,}7_, are scalars with
37-2llt.? =1, then

(2.75) "2 ti(ye— )| = ltelae+ | te(ve—10)
= = =

4

=¢/100+ !22 [te] lve = Bell,
=¢/100+4 > a; < €20.
i=1

This implies that {y,}3, is 1 + e-equivalent to the unit vector basis of
¢, and [y/]7-, is 1 + e-complemented in C,.

The next proposition follows from [2, Theorem 2.2].

PROPOSITION 2.6: Let x€C,, |x[,=1, 1=p=w, and let x;; =
€;iQx,1=i, j<o. Then

(i) the {x;;}7i=1 are isometrically equivalent to the standard unit
matrices {e;;};j-1 in C,, and there is a contractive projection
from C, onto [x;;]17i=1.

(ii) the {x;j}i<j<i<~ are isometrically equivalent to the standard unit
matrices {e;;}1<j<j<= Of T,, and there is a projection of norm <2
from T, onto [x;j]i<j<jc<e-

PROOF: Assertion (i) is actually a part of [2, Theorem 2.2}, and the
first statement in (ii) follows from (i). If P is the contractive pro-
jection from C, (=C,Q® C,) onto [x;;]7;-; constructed in [2], and if D
is the canonical contractive projection from C, onto =, (e;;® C,) (it
is a projection of the form (1.10)), then Q = (1 — D)Pjr, is a projection
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from T, onto its subspace [x;j]i<j<i<= and [|Q[|<2. Clearly, the
{x:;}1<j<i<~ are isometrically equivalent to the {€;;} <j<j>w- O

A triangular sequence is a double sequence of the form {x;;};<j<i<.
In short, we denote it also by {x;;};<; and call it simply a triangle. A
subtriangle of {x;;};<, is a triangle of the form {x;;}.<, Where
{i}i<1 and {j}7-, are increasing sequences of positive integers
with i, =j, for every k. When we consider a triangle {x;;};<; of
elements of a Banach space as a basic sequence, we shall always
mean that it is a basic sequence in the following (lexicographic)
ordering:

X115 X2,15 X225 X3,15 X325 X33, X415 X425 X4.3, X445« - «

A triangle {x;;};=; in X is M-equivalent to a triangle {y;;};<; in Y if
{xi;}j<i and {y;;j};<; are basic sequences which are M-equivalent in the
usual sense.

In what follows we shall use several times a procedure of passing
to a subtriangle {x; ;},<; (which has nice properties) starting with a
triangle {x;;};<;. The general scheme of a such procedure is the
following. Assume that A is an infinite set of naturals numbers, and
that for every jE€ A, every subsequence of {x;;}i.; has a further,
“nice” subsequence. Let j, be the first element of A, and let
{xin;}i-1 be a “nice” subsequence of {x;;}i; and i’ =j,. Assume
that j, <j,<::-<j, have been chosen from A, and that we have
already defined increasing sequences {i{}i-,, 1=¢=m, so that
{xi(0;,}c-¢ is a “nice” subsequence of {x,-;(z—n‘,-[},-,s,-;e—n and i¥ = j,.

Let j,.; be the first element of A~ (j,, ..., j.} which is greater than
Jm> and let {x;mw; 32,1 be a “nice” subsequence of {xim; }; . <im
with i = j.p0. If we write j =i, then, clearly, {x;;},<« is a
subtriangle of {x;;};=;; and each column {x; ; }x-, is “nice”.

3. Proof of theorem 1.1

In proving Theorem 1.1 we shall treat separately the cases 1 <p <2
and 2 < p < (since C, is a Hilbert space, Theorem 1.1 is trivial for
p =2). Let us establish first the following lemma, whose proof is the
same for every 1=p =, Recall that C;™ denotes the space of all
n X m complex matrices with the norm induced from C,.

LEMMA 3.1: Let 1<p <o, let N be a natural number, let {m,};_,
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be an increasing sequence of integers with m;=1 and m,,,—m, > N
for every n, and let {x;;};; be normalized elements in T, which satisfy

(3~1) xi‘j = Em,~,mj+|Pm,-,m,~+in.i-

Then, for every 1> € >0 there exists a subtriangle {x; ;}.<c of {X;;}i=i,
which is 1+ e-equivalent to the triangle {e,,},<; of the standard unit
matrices of T,, and so that [x;;Je<c is 2+ e-complemented in T,.

ProoF: It is clear that in an appropriate tensor product represen-
tation of C, as C,® C,, assumption (3.1) can be written as

3.2) Xii=€;Qv J=i

where y;; € CN¥™+7™i and |y, = 1.

Now, for a fixed j the sequence {y;;}{-; is contained in the unit ball
of a finite dimensional space, so it has a norm-convergent sub-
sequence. We obtain, therefore, normalized elements y; € CYmi+i™™i
and increasing sequences of positive integers {i$};-;, j=1,2,3,..., s0
that {i¥*"};.;. is a subsequence of {i{’};_;, and so that

Yivj— Vi

in norm. Let i, = if be the diagonal sequence. Since y; ; — for

every J, there is no loss of generality in assuming that for every j and
every j <k, we have

19 = Yill, = € - 877,

Recall that for every bounded operator x in the Hilbert space H, we
denote by r(x) the orthogonal projection from H onto (ker x)*. Now,
if j; # j, and k,, k, are arbitrary, then

r(eikl,i,~® )’j,) : r(eikz,iz ® yy) = 0.

Moreover, each y; is an operator of rank <N, as an element of
Cymi+=—m_ Tt follows that we can change the matrix representation (by
choosing a new orthonormal basis for the domain of the operators,
while keeping the orthonormal basis for their range unchanged) so
that y; € C)*N for every j, and so that (3.1) is still valid with the new
E,’s and P,’s. Again, by the compactness of the unit ball of CH'V,
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there is an element y € C)*N with ||y||, = 1 and there is a subsequence
{y;,}7-1 of {y;}7-1 so that ||y;, — y|l, = € - 87 for every ¢. By passing to a
subsequence of {i,};., if necessary, we can assume that ¢ <k always
implies j, < ji.

Let {t..}.<x be scalars, and let s =min{p,2}. Then, using Pro-
position 2.1, we obtain

63 [ et e ®)

p

= "{2’( b i, X ()’ik,i[ - Yj[)
= p

+"2 te i, @ (¥, = y)
<k p
© © s
=< ;‘ Itk,(le . 8—’(_( + ((2=] kg[ tk,(’el'k,i(® (y][ - Y)"ls’)
< l+(m 87%)° )"
=30 Suplticd+ (X (¢-87) (g,( [tiel ) )
Z Ly cere

5+ (S es)]

<< | — - -

=[50t &€ 8 P
€

6 [B ey

From this it follows that the triangle {x;;},< is 1+ e-equivalent to
the triangle {e,.},<. Also, inequality (3.3) and the existence of a
projection from T, onto [e; ;, ® y],<x with norm <2 (see Proposition
2.6) imply the existence of a projection from T, onto [x; ;],<« of norm
=2+e O

P

2 b cere

<k

<£.
)

P

In proving Theorem 1.1 we prefer, for convenience, to work in 7,
instead of in C, (since T, = C, for 1 <p <, this is permissible). Our
proof works also for p =1, and it gives an almost isometric result.
Therefore Theorem 1.1 is the consequence of the following theorem.

THEOREM 3.2: Let X be a subspace of T,, 1 <p <, so that X is
isomorphic to T,, and let 0 < 0 <1. Then there exists a subspace Y of
X so that d(Y, T,) <1+ 0, and so that Y is 2+ 6-complemented in T,.

Let us sketch first the two main steps in the proof of Theorem 3.2.
We start with a triangle {x;;};<; which is equivalent to the triangle
{e;j};<i of the standard unit matrices of T, and so that [x;;];<; = X. In
the first, lengthy, step of the proof we construct from the x;; a triangle
of normalized elements of X which is an arbitrarily small pertur-
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bation of a triangle of the form {e,; & z,}, and is still equivalent to
{exee<k-

In the second step we use the fact that the sequence {z,}7_; is
equivalent to the unit vector basis of ¢,, and thus, using Lemmas 2.4
and 2.5, we can replace the {z,}7-; by elements {v,}7_, which are
essentially of the form v, =e, @b, ||b||, =1. Thus we construct a
triangle {y;.},<: of elements of X which is a very small perturbation
of a triangle of the form {e,, ® e, ;R b} <.

If we put Y =[y./]¢<k,» then Y is a subspace of X, and by Pro-
position 2.6 Y is 2+ #-complemented in T,, and d(Y,T,)=1+86,
provided the perturbations are small enough.

PrROOF OF THEOREM 3.2 FOR 1 =p <2: Let {x;;};=; be a triangle of
elements of T, which is M-equivalent to the triangle {e;;};; of the
standard unit matrices of T,, and so that X = [x;;];<; For convenience
we want the x;; to be normalized. This we can obtain by passing to a
subtriangle (by using perturbation arguments, and by slightly enlar-
ging M) as follows.

Let € > 0. Using a procedure very similar to that which was used in
the proof of Lemma 3.1, we can find numbers {a/}7-; and « in the
interval [M~', M], and a subtriangle {x; ;}.<« of {x;;};<;, so that

I "x,'k_jf"p b aA =€ 8_’(_[, Iag - al <€- 8_[.

Write x;, = ax;;/||x;;l,- Then a computation very similar to (3.3)
shows that the triangle {x; /} . is equivalent to the triangle {x; ; } <k, and
thus to {e ,},<i. Therefore, {x; Ja}.<\ is a normalized triangle in X which
is equivalent to {e, .}.<. Note that by choosing € small enough we can
make the new equivalence constant arbitrarily close to M. We therefore
assume simply that the original x;; are normalized, and continue to
denote the equivalence constant of {x;;};; to {e;;};<; by M.

For every j=1,2,3,... let us denote X;=[x;;]i=;. Note that X =
3%, X;, and that {x;;};-; are M-equivalent to the unit vector basis of
0.

We now fix a number 0 < 8§ <(M + 1)”!, and we claim:

For every n there is a k = k(n, ) so that for every

* =

x€E 2{ @ X; we have |E"x]|, = 8||x|,.
-

Indeed, if (*) is false, then for some n we can construct an increasing
sequence of positive integers {k;};.; and normalized elements x; €
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St X, so that |[E"x;||, < 8. By passing to a subsequence of {x;}7-,
we clearly may assume that the sequence {x;}}-, is M + l-equivalent
to the unit vector basis of ¢,. Since d(E,T,, £,) < n'”?, we get by (1.12)
that for every natural number m:

m

2 ri(t)x;

j=1

G4  (M+1)y'm =< (f'

0

p lip
dt)

p

m

> r(OE,x;

i ri(t)E"x;

1 p 1/p
=(/ )
0 lij=1 p
1 P lip
+ ( f dt)
0 llj=1 p

m 1p
<n2.miny (2 "Enx,_"g)
j=1

=n2.m2+§5.mtr

Since p <2, the desired contradiction follows from 8§ <(M +1)! by
choosing an m large enough, So (*) is proved.

If {e,}7-, are positive numbers so that 27_, ¢, is very small, then
using Proposition 2.2(i) and (*) we can construct increasing sequences
of positive integers {n,}7-; and {j,}7-, with n, =0, j, =1, and so that

(3.5) B, | <
and for every x € X;, we have
(3.5 | E"ex]l, = 8]x,.

Since X =3%_, P X;, is a Schauder decomposition (into infinite
dimensional subspaces), and since 2%_, €, is arbitrarily small, we can
apply standard perturbation arguments and assume, for convenience,
that instead of (3.5) we have for every ¢,

3.7) Ereiy, =0,

For each ¢ the sequence {x;;}i~; is M-equivalent to the unit vector
basis of ¢,. Given € >0, we obtain by Lemma 2.4 that {x;; }?-, has a
subsequence which is 1+ e-equivalent to the unit vector basis of ¢,
and spans a 1+ e-complemented subspace of T,. However, we want
to choose these subsequences for £=1,2,..., so that together they
form a whole subtriangle. Let us make this precise.

First, we may assume that for some increasing sequences {m,};-,
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and {i;}i-, of positive integers with m, > n, and i, > j,, we have for
every £ <k:

3.8) X

iie = P My X

Let us denote, for convenience, u, = x, j, and write u; = Sk n. We
choose now a new matrix representation (by choosing a new
orthonormal basis for the range space of the operators), so that the
new m;’s and P,’s satisfy my,,—m; = u,.;, and instead of (3.8) we
have the better expression

(39) Uy = P,,,k'mk.,.,,,“luk‘(.

Indeed, for every ¢ <k, E,,, U= uy.. Therefore, rank(uy,) < ne.,.
If x € B(4,), let R(x) denote the range of x. Let {f}"2, be orthonor-
mal sequences with k=1,2,3,..., so that R(u,) C [f*]"2,, and so
that Jr_,{f¥}12, is an orthonormal sequence. Since rank(u,) < n;,
there exist orthonormal sequences {f*}/2, ., so that R(u,) C [f{1%2,,
and so that {f{"}72, U (U%-,{f*}#2,) is an orthonormal sequence. Con-
tinuing in the obvious way, we can clearly redefine the m,’s and the
P,’s so that my.; — my = w1, and so that (3.9) holds for every ¢ <k.
Note that in the new matrix representation we still have (3.6) and (3.7)
(assuming that j, = ¢).

Let us denote for every <k and 1 s v <,

(3.10) u=E, . Uk

- - )
Clearly, u§) = Pp me+np, 45> = Prmym,. 42 We can therefore choose an
appropriate tensor product representation in which

G.11) uf)=e,®af), af}€ Cpenma™.

Thus for £ <k,

(3.12) Upe = 2 Y= 2 e, @ a).

r=1

As in the proof of Lemma 3.1, we can assume (by passing to a
subtriangle and using perturbation arguments) that for fixed 1=v < ¢,
the af’ are independent of k, i.e. that for some elements a¥’ € C, we
have, for every l=sv=<¥¢<k:
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(3.13) af)=a?®.

This allows us to pass to some other tensor product representation of
C, as CPR® C?, where C{ are copies of C, (i=1,2), so that the
elements u, , have the form

(314) Ure = € ® Zyy < k,

where z, € C?. Clearly, {z,}3-; is M-equivalent to the unit vector
basis of ¢, (since for every finite sequence of scalars {t,}¥_, we have

251 tezell, = 251 teuellp)-
Let 0<6 <1, and let {o;}7; be a sequence of positive numbers
such that

(3.15) i‘l o= min{ 0/20M, (g)p“ / st}.

Using Lemma 2.4, we find elements {v,}3-; of CP(C? is identified
here with C,® C,) of the form

-1
(3.16) vy = ZI (e,i®a;+e,Qb)+e . Qce

with

(3.17) max{”a,-",,, "b,”p} = ;g and "C,‘"p = i1, 2=i<w

(3.18) (aillz +16:d5)"” = 1= ar, |bill, = 812,

so that for some subsequence of {z,}%-,, which we assume without
loss of generality to be {z,}7-, itself, we have

(3.19) lze—vel, =as, €=1,2,....
Write
(3.20) Wie =€, Q v,

If {t, /}¢<i are scalars with |2, t 4|, =1, then

-1

Zk bt @ (ze — ve)

(3.21) ";(:k be (Ui e — Wi e)

p
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o 12
= llze = vell, - (2 |tk,l|2)
=1 k=¢
. 8 p+1
=Y a- -M= m1n{0/20, (5) /SM}
=1

Note that W = [w, ;]r<¢<i<= is complemented in T,. Indeed, it can be
easily shown that the projection

(3.22) Px = 2 (x, (e @ €1, b)ywid||bilp

2=f=<k<w

from T, onto W has norm =4M(2/8Y"". So U =[u lr<i<ik<= is
12M(2/8y*'-complemented in T,. The proof that U has a subspace Y
which is 2+ #-complemented in T, and satisfies d(Y,T,)<1+6
requires some additional work. By (3.21) it is enough to show that W
has a subspace Z which is 2+ 6/2-complemented in T,, so that
d(Z, T,) =1+ /2. The behaviour of the {w, /},<, need not be improved
by passing to a subtriangle (consider for example the triangle
{exs11+ enacte<k). In order to “kill the ¢-part” of the {w, ,},<
(namely, the elements ¢,; & e,; Q a,), we pass to some averages in the
¢,-sense of the {w; ,},;. Precisely, let m be such that

(3.23) (%) 202 . { 143 }:j] q,.} = 9/10,
and define for l = pu < v <o,

(3.24) Zop =g Wom-ium il Drll,m P
(3.25) B = 3y Comiit @ s @ bl lym ™.

We claim that the subspace Z ={[z,,],-, of W has the desired
properties. Note that by Proposition 2.6, {h,,},-, is isometrically
equivalent to {e,.}.-, and [h,,],-, is 2-complemented in T,. Let
{t,.}.<, by scalars, so that |,.,¢t,.h,.[], = 1. Then,

(3.26)

2 tv,u(zu‘u - hv,u)

n=v p

m
= "blll;lmA”p {" 2 tV.u 2[ €um+jl ® €um+ijl ® Cum+j
i=

n=v

p
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+2

i=1

+2,

i=2

<[l m |

+3 lad,

m
2 ty.‘v 2 evm+j‘l ® eumﬂ',l ® a;
w=v j=1

p
m
Z tv./-t El evm+j,l ® el‘umﬂ' ® bi

L )

had LJ 12
3 lewnsily (2 11uF)
1 p=1 v=p

m
2 tv,u 21 evm+j,l ® ep.m+j,l
j=

n=v

m
2 Ly Z Comiit @ €1 pum+j
p=v j=1

m

14
p}
o

<ol m{ 3 el + 3 lalm™+ 3 Iol,m )
lip {

+ 2, lIbil,
i=2

i=m+
m

2 a; + (1 +2 i a,-) mllz}
i=m i=1

s(%) m®-20p {1 +3 i a,-}s 6/10.
=1

=|bjll;'m"

By standard perturbation arguments, this implies that the triangle
{z,,.}.<, is 1+ 6/2-equivalent to the triangle {h,,},~, (and thus
d(Z,T,)<1+6/2) and that Z is 2+ 6/2-complemented in T,. This
completes the proof of Theorem 3.2 for 1 =p <2. O

ProOOF OF THEOREM 3.2 FOR 2 <p <: Let {x;;};<; be a triangle of
elements of T, which is M-equivalent to the triangle {e;;};<; of the
standard unit matrices in T, and so that [x;;];<; = X. As in the case
1=p <2, we can assume (by passing to a subtriangle if necessary)
that ||x; ], = 1 for every j =i Write again X; = [x;;]7;, and note that
X =37, X; and that for each j, {x;;}7; is M-equivalent to the unit
vector basis of ¢,.

CramM: For every n and 0 < e there exists a k = k(e, n) such that
IEr 5. sn] =€

Proor: If there is no such k for some n and €, we can find an
increasing sequence of natural numbers {k;}7-, and a sequence {x;};-,
of normalized elements of X so that

kj+l

(3.27) ||E,xi||,,26/2, x,-E 2 Xk
kh+1

It is clear that some subsequence {x; }7-, of {x;};, is equivalent to the
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unit vector basis of ¢,. Since for p >2 every bounded operator from ¢,
to ¢, is compact (see [5, Proposition 2.c.3]), we get that

(3.28) E

lix; 171

:[x;,1%-1 = E, T,

is compact. But ||x; ||, = 1, x;, >0 weakly as ¢, and |E,x, [, = €/2.
This leads to a contradiction, and so the claim is proved.

Now set 0 <8 <(3M)". Using the above claim, Proposition 2.2(ii)
and the fact that for every fixed j, x;; >0 weakly as i >, we can
assume (by passing to a subtriangle if necessary, and by using
perturbation arguments as in the case 1=<p <2) that for some in-
creasing sequence of integers {v;}iy with »,=0, we have for every
j=1:

(3.29) E, X =0
630) 1,1l = ol x€X,
(3.31) Xij = P,,l._h,,‘.x,-,,—, j =j<oo,

We can also assume that for every n<¢ and every 1=j,
lim_.J|E, x|, exists (since by a standard diagonal method we can
pass to a subtriangle of {x;;};-; which satisfies this condition). For
integers 0 <n < ¢ and i < j, and for every number 0 < a, let

(3.32) A(n’ (5 j9 a) = {i; i = j’ "En,(’xi,j"p > a}'
As in the proof of Lemma 2.5, we have:

+) {For every j and every 0 < a, there exists an n = n(j, a)
so that if n < ¢ then A(n, ¢, j, ) is a finite set.

Let 0< 8 <1, and let {o;}7~, be positive numbers, so that

©

(3.33) 2M Y ;< 620, and >, a; <a, for every ¢.
i=1 i 1

=7+
Now we construct increasing sequences of natural numbers {i,}r-1,

{my}i—o and {m}5-o With iy =1, my=0= ny and m, < n, for every k, so
that for € < k:

k
(3.34) Xii, = 2 X
i=¢
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where

(3.35) xﬁ{?.; =P mk_l,mkEniAl,nixik,ip
and so that for every ¢:

(3.36) IEn, nXiidl, = 8, ir=<i,

and for ¢<j and i = i,.,:
(3.37) IEn,  nXiillp = ajere.

Indeed, let my=n,=1, i=1, my=v,, and write n,=
max{m, n(i;, a;a,)}, where n(-, ) is the function that appeared in (+).
Then (3.34) and (3.35) are satisfied for k = ¢ =1, and (3.36) for ¢£=1
follows from (3.30) and from the fact that n, = »;. Let i,>i; be such
that v,_, = n,, write m, = v;,, and define

(3.38) n, = max{my, n(i;, ajas), n(i, asas)}.

Then by (3.29), (3.30) and (3.31) we obtain (3.34) and (3.35) for
l=¢=<k=<2, and (3.36) for ¢ =2. Indeed, if i = i,, then

(3.39) E, xi,= En,Ev,-z—lxi.iz =0
and
(3.40) ”Ell|,ll2xi,i2"l’ = IIElliz_[.V,'zxi.i2'|P = 6‘

By (+) the set A(ny,n,, i, aya,) is finite. Let i;>i, be such that
Vi1 =n,, and (3.31) holds for ¢=1, j=2 and every i=i; Write
m; =y, and

(3.41) ny = max{ms, a(i;, aay), n(iz, aray), n(is, asay)}.

Again (3.34), (3.35) for 1 = ¢ <k =3 and (3.36) for ¢ =3 follow from
(3.29), (3.30) and (3.31).

We continue inductively in the same way. Assume that i,, m, and n,
were defined for k < ko, so that (3.34) and (3.35) hold for 1= ¢<k=<
ko, (3.36) holds for 1= ¢ =<k, and (3.37) holds for 1< ¢ =< k,—2 and
for every 1 =k < k,:
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(3.42) n, = max{my, n(ie, as - e )}toor.

By (+) and (3.42) the sets A(ny,-i, ny, ie, aeay), | = € < ko— 1 are finite.
Choose iy > iy, such that Vi1 = Ny and such that (3.37) holds for
l=¢=ky—1,j=koand i =iy, Thus, trivially, (3.37) holds for every
I=st=j=koandi =i, Letmy, = Vi and define n ., by (3.42), with
ko + linstead of k. As before, (3.34)and (3.35)for 1 = ¢ <k < k,+ 1, and
(3.36) for ¢ = ky+ 1, are easy consequences of (3.29), (3.30) and (3.31).
This completes the inductive construction of the sequences {iy}i-1,
{m}¢-oand {n;}5-o, and so (3.34)—(3.37) are valid for all indices involved.

Let w,=x;,, 1=¢=k<ox, then by passing to an appropriate
tensor product representation we have

(3.43) o= g &, Q@ ufly,

with

(.44 i, = &

and

(3.45) |u@, = aja, for €+1=j=<k—1.

As we have done several times before, we can assume first that
instead of just (3.36), we actually have

(3.46) u), € Climi-

for every ¢ =j<k, where {u;}i-, is some sequence of natural num-
bers. This implies that for every fixed ¢=j, every subsequence of
{uP}z-; has a further subsequence which converges in the norm.
Therefore, by passing to a subtriangle if necessary, we can assume
that

k=1
(3.47) Ue = Z{ & QuP+ e, e,
=

where 4 € C4"i~"- for ¢ =< j, and for every ¢ we have

(3.48) Ol = 812,
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(3.49) "u?f)”p = 2(1]'6!(, < j.
Let {k;}~, be an increasing sequence of integers with k, = 1, so that

if A; = k;,, — k,, then for every i:A?P? < qa,,,. By (3.33) we get for
every ¢:

(3.50) <§w: Af_z—p)/p) i @D < g,
=t =

Define for 1= =i <,

Kivy
(3.51) vie= > WdAl”
k=k+1
and
ki+1
(3.52) Wi = E e QulAV.
k=k;+1

i

If fie =Sk e d Al for € <, then {f;/}<; is isometrically equivalent
to {e¢}e<i. Thus {v;,},; is M-equivalent to {e;},<;. If {t;;},=; are
scalars such that ||2,-; t; ;. ||, = 1, then by (3.33) and (3.50),

©

2 Lio(Vie — Wig)
p

(3.53)

ztze(vw Wil =
=i 14

kiv1 k-1 )
1A Z ( 2 a;Qud+ e ® ﬁkk)

=

Ms
T

=1 kSE+1 \j=e+1 »
o0 0 ki+l

SE {EI elAT 12 2 €k X i i
=\ K=K+l P

—+

@ 2\ 12
( 2 2 t; A7 g, e ;@ ud ) }
=0+ k=max{j+1,k;+1} p
© © i o 12
{2 lt lA(z—p)lzp + ( 2 "“9)",2, E lti.e’lz) }
1 \i=¢ j=¢+1 i=¢

o n =
(E{A?‘"””) + 2 aja[}

j=€+1

IA
IIMB

13

IA

IA

M3
£=1

MS (a+a)<M S 2a,<0/20.
=1 =1

This implies that {w;,}.; is M'-equivalent to {e;,},<; where M' <%4M.
Note that v;, € [u,,].<,C X for every ¢ =i. Thus, in order to find a
subspace Y of X which is 2+ §-complemented in T, and satisfies
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d(Y, T,) =<1+ 0, itis clearly enough to find a subspace Z of W = [w; /],<;
which is 2+ 6/2-complemented in T,, and satisfies d(Z, T,) <1+ 6/2.

We now pass to another tensor product representation of C, as
CPQ CP, where C? are copies of C, (i=1,2), so that (3.52) is
written as

(3.54) W,"[ = e,-‘, ® 2y, [ = i,
where the elements z, € CQ satisfy r(z) - r(z,) =0 for k# ¢. Since
(3.55) 812=ul, =llzell, = Iwicllp, <llueell, <1,

we can assume (by passing to a subtriangle whose elements have
almost constant norms, and by perturbation arguments) that |z, =
[Wiell, = 1 for every €<i.

Clearly, {z,}7-1 is M'-equivalent to the unit vector basis of ¢,. Using
Lemma 2.5 and the fact that r(z,)-r(z)=0 for £#k, we get a
subsequence {z, }-;, so that for some averages of the form

(3.56) -3 2 /

v-zrl+l

‘T;+l

v= ¢rl+l

and for some normalized elements of C? (represented as C,® C,) of
the form

i=1
(3.57 v = S €, @b, +¢;Qc

p=

with [|bj, = 1~ e, and max{||b, |, [c.],} < &, for 2= », we have

(3.58) 12— vjll, < a;.
Let 7, = ¢,,,, and define for j <i,
Tj+1 Tj+1
(3.59) Zii= Y Wi / > W
v=oj+1 v=oj+1 p

We claim that the subspace Z ={[z;];<; of W has the desired
properties. Note first that

(360) Zij = €1 ® Ej’ j =i
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Write

(3.61) hij=e.1 Qe ;Qbillbill,, j=i.

By proposition 2.6, {h;;};=; is isometrically equivalent to {e;;};~;, and

[hijli=i is 2-complemented in T,. Let {t;;};~; be scalars such that
IZj<i tijhisll, = 1. Then,

(3.62) "Z ti(hij— z.,)

"; tije.1 Q@ :i®”_bb]i|—p_ Uj)

14

+ "z tije, ® (v — 7))

=t

<a + th,,e,,@[E e,;Qb, +e]l®cl]

=t

+ Z lo; = Zll, - 2 lijen
=1 =] 14
o -]
+ JE 2 L i€, "ci"p
=2 IliZ]
<] x
+2 1 2 tieaQe| b+ «
v=2 llv+1=<j=i p j=1

+2 ai_,+2 a,,_1+2 2 4]
j=2 v=2 j=1

0

43 oj=<2 (2M 3 a,-)s 8/10.
= =

IA

IA

This implies that {z;;};; is 1+ 6/2-equivalent to {h;;};<; (and therefore,
d(Z, T,)=1+6/2), and that Z is 2+ 6/2-complemented in T,. This
completes the proof of Theorem 3.2 for 2 <p <. O

4. Applications and concluding remarks

Our first corollary might be of importance in the classification of
the complemented subspaces of C,.

COROLLARY 4.1: Let Z be a complemented subspace of T,, 1 <p <
%, which contains a subspace isomorphic to T,. Then Z is isomorphic
to T,

ProoF: Let X CZ be such that X = T,. By Theorem 3.2, there
exists a subspace Y of X such that Y =T, and such that Y is
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complemented in 7,. In particular, Y is complemented in Z. So, for
some Banach spaces U and W,

T,~ZQU, Z~YOW~T,® W.

since T,~(T,T,p---PT,P-- e, bY using the decomposition
method (see [5, page 54]) we get that Z = T,,. O

Since for 1 <p <, T, is isomorphic to C,, we obtain

COROLLARY 4.2: Let Z be a complemented subspace of C,, 1 <p <
o, which contains a subspace isomorphic to C,. Then Z is isomorphic
to C,.

Theorem 1.1 and Corollary 4.2 imply by transposition and standard
duality arguments the following two corollaries on quotient spaces of
C,.

COROLLARY 4.3: Let X be a Banach space isomorphic to C,,
1<p <, and let Q, be any quotient map from C, onto X. Then there
exists a quotient map Q, from X onto some Banach space Y isomor-
phic to C,, and there is an isomorphism V from Y into C, so that
Q,Q,V is the identity operator on Y.

COROLLARY 4.4: Let X be a complemented subspace of C,, 1 <p <
o, and assume that X has a quotient which is isomorphic to C,. Then
X is isomorphic to C,.

Recall that a Banach space X is called primary if for any bounded
projection P defined on X, either PX or (1 — P)X is isomorphic to X.

THEOREM 4.5: For 1 <p <, C, is primary.

Since a reflexive Banach space X is primary if and only if X* is
primary, clearly it is enough to prove Theorem 4.5 for 1 <p <2. Since
the case p =2 is trivial, and since C, = T, for 1 <p <2, Theorem 4.5
will be the consequence of the following, somewhat stronger result.

THEOREM 4.6: For 1=p <2, T, is primary.

PROOF: Let P be a bounded projectionin T,, 1<p <2.For 1 =j =<
i<ow, let a;;=Pe; and b;;=(1-P)e;. Since a;;+b;; = ¢, either
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lai;(i, )| =13, or ||b;;(i, )| =4 (or both). By Ramsey’s Theorem in com-
binatorics, there exist increasing sequences {i;}x-; and {ji}5-; of posi-
tive integers with i, > j, for every k, so that either

4.1) |a; i, (i, Jo)| =3, for every ¢ <k,
or
4.2) lbik.j,(ik’ jo)|=3, forevery ¢<k.

Without loss of generality we assume that (4.1) holds (otherwise,
we consider I — P instead of P). Write for ¢ <k,

(4.3) Xi,e = aik,i( = P eibf(’

and let X = E{xu}(sk. Since X is a subspace of the complemented
subspace Z = PT, of T,, in order to prove that Z =~ T, clearly it is
enough, by Corollary 4.1, to find a subspace Y of X with Y = T,. We
shall construct below a subtriangle {ka["}#s,, of {x; ¢} so that,
essentially, x, ¢ (i, jo,) = 8,, * 8,, + A for some number A with }=<
[x|=||P|. Using this subtriangle we complete the proof as follows.

Write for u <w, y,,, =X ¢, and let Y =span{y,,.},.<,. Let Q be the
following contractive projection in C, (it is a simple case of the
projections described by (1.10)):
4.4 (Qx)i ) = {x(g j).; ifi= zk and j = j,, for some v and u

> otherwise.

Then for every scalars {t,,},-, with t,,, # 0 only for finitely many pairs
(v, n), we have

4.5)

Z Luen,

u=v

2 tv,neikv,i(“

p n<v 4

=|P[™

> bV
n=v p

> 4,.Qy..

u<v

2 tv,uyv,n (ik,,’ jfu)eik Je
usv v Blp

=[P

p

=[P

= AP

2 bt
Wl sle
n=v k" »

| 2 tv,uev,u
wsv

14

=2|P|”

P
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Therefore, {y,,}.<, is 2||P|-equivalent to {e,,}.<,, and thus the sub-
space Y of X is isomorphic to T,.

So let us turn to the construction of the desired subtriangle
{x,‘w[‘t},‘s,,. Note first that for every fixed ¢, x,,—>0 weakly as k — oo,
By passing to a subtriangle of {x,.},<, and by standard perturbation
arguments we can assume that for some increasing sequence of
positive integers {m,};-; with m; < i, < my,,, we have

(46) Xke = P,,,k,,,,mxk‘(, €=k

Now, for fixed ¢ and every scalars {t,}2-,,

@7 121 (3 1) = uPul’ 5 e,

kxk ¢

kxk f(’ka][)eak je
p

N Co\mn
= <2 'tklzlxk,!(’k,]€)|2>
=

= kﬁ’;{ w)”2 />

Therefore, {x..}i-¢ is 2||P|-equivalent to the unit vector basis of ¢,.
Let X, = [x; (]i-¢. Using Proposition 2.2(i), we can assume (by passing
to a subsequence of {X,}7_, and to a subsequence of {j;}.,-, and by
perturbation arguments as in the proof of Theorem 3.2) that for some
increasing sequence of positive integers {n,}7-, with n, <j, < n,,,, we
have

4.8) E"1X, =0.

By a standard diagonal process, there exists an increasing sequence
{k,}7-, such that the following limits exist for every ¢ < ¢.

4.9 lim x; (iy,, Jo) = Ace.

Since |xi¢(iy, jo)| =3 for every ¢ =<k, we clearly have |A,,|=31. Also,
again by a diagonal process, there exists an increasing sequence of
positive integers {¢,}5_; so that also the following limits exist:
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(4.10) A =lim A(w(u, '/\'I Z%,
‘L—)w
(4-11) Ao. =lim /\gw{a, g = l, 2, P
“—)‘m

By passing to a further subsequence of {k,};.,, we may clearly
assume that k, = ¢, for every v.

Now, by passing to a subtriangle of {x ¢ },<, we can assume that
the sequences in (4.9), (4.10) and (4.11) converge arbitrarily fast.
Thus, by perturbation arguments, there is no loss of generality in
assuming simply that

4.12) Xi, e, (i, Je,) = Aoy T<p =,
and
(4.13) X6, (i, Je ) = A, p=w

Let y,, =Xy ¢, u =v. As we have stated above, in order to complete
the proof it is enough to show that

(4~l4) yv,;.l.(ik,," j(’#l) = 6y.v' ) 8;1..;4' <A

In view of (4.6), (4.8), (4.12) and (4.13), in order to prove (4.14) we
only have to show that A, =0 for every o.
Fix o, let N be arbitrary, and let v = N + ¢. Then,

o+N .
> Youliv, )| = AN
p=o+1

=
P

(4.15) PN =

o+N
DI
p=oc+l

Since N is arbitrary, this clearly implies that A, = 0. Thus (4.14) holds,
and this completes the proof of Theorem 4.6. O

In the proof of Theorem 3.2 we did not use the full force of the
assumption that the triangle {x;;};~; is equivalent to the triangle {e;};-;
of the standard unit matrices of T,. A careful check of the proof of
Theorem 3.2 shows that what was relevant is the existence of a
positive constant K, so that:

(a) For every fixed j, {x;;}i-; is K-equivalent to the unit vector

basis of ¢,;

(b) For every fixed i, {x;;}i-; is K-equivalent to the unit bector

basis of ¢i;
Let X; = [x;;]i-;, then,
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(¢) (1=p <?2). For every n there is some j=j(n), so that for
every x € X, |E"x|, = QK) '||x[},;
(c") (2<p <=). For every n, lim inf||E,.,x." =0.
sl 7

Conditions (c¢') and (¢") are the consequence of the following con-
dition:

() =p <o, p#2). If {x;}j; is a normalized sequence with
x; € X; for every j, then some subsequence {x;}7-, is K-
equivalent to the unit vector basis of ¢,.

Thus, actually we have the following refinement of Theorem 3.2.

THEOREM 4.7: Let 1 <p <o, p#2, and let {x;;};<; be a triangle of
elements of T,. Assume that for some positive constant K, conditions
(a), (b), and one of the conditions (c¢') (for 1=p <2), (c") (for
2 < p <), or (c) are satisfied.

Then for every 0 < 8 < 1 there exist a tensor product representation of
C,as C,Q C,, anormalized element z € C,, and an isomorphism V from
a subspace Y of X = span{x; iti<ionto T,Q z, so that for everyy € Y we
have |Vy — y|,, < (8/5)|yll,- Thus d(Y, T,)<1+6 and Y is 2+ §-com-
plemented in T,.

Moreover, the construction can be made so that for some sub-
triangle {u ;}o<; Of {x;;};<i, the elements y,, = V(e,,® z), u < v, have
the following form: for 1 <p <2, there is a positive integer m, so that

(416) ywl. = 21 uvm+j,p.m+j/m”p-
j=

For 2 < p < x, there exists an increasing sequence of positive integers
{€.}5=1, so that

Cu+1
4.17) You = 2 ul’.,n,l’/(fuﬂ - {“)1/2.
/=t’“+l
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