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SOME PROPERTIES OF DOUBLE POINT SCHEMES

Joel Roberts*

0. Introduction

Let k be an algebraically closed field (of arbitrary characteristic),
and let f: X —>Y be a morphism of nonsingular algebraic varieties
over k. Let m:(XxX)—>X XX be obtained by blowing up the
diagonal A C X X X, and let E = 77'(A) be the exceptional locus. We
define the double point scheme Z = Z(f) C (X X X)' exactly as in [12,
Section 4] or [11, Chapter V, Section C]. (See Section 1 below.) In
particular, if z €(X X X)'— E, then z € Z if and only if 7(z) =(x, y),
where f(x) = f(y). (Recall that 7 induces an isomorphism (X X X)' —
E 3 X x X — A.) On the other hand, the points of 7 '(x, x) are in 1:1
correspondence with the 1-dimensional subspaces of the Zariski
tangent space T(X),. If w(z)=(x,x), then z€ Z if and only if z
corresponds to a 1-dimensional subspace of the kernel of the linear
map T(X): = T(Y)w-

Consider a projective embedding X C P" and a morphism f: X —»P"
(m = dim(X)) induced by projection from a linear subspace L CP",
with codim(L)=m + 1 and L N X =@. Kleiman proved the following
theorem in [11], using the techniques of [10].

TueoreM (0.1): If char(k) =0 and L is in general position, then
Z(f) is smooth over k. Moreover, every irreducible component of Z(f)
has dimension =2 - diim(X) — m, or else Z(f) = 0.

To obtain similar results over a field of arbitrary characteristic we
have had to impose some conditions on the embedding X C P". For a

closed point x € X, let tx, C P" be the embedded tangent space at x. If
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b is a positive integer, we say that Ox,/m%, is spanned by linear
coordinate functions if the following condition holds.

(*) If H is a hyperplane in P" such that x& H and if P"—H is
identified with Spec k[T, .. ., T,], then every element of Ox./mk%, is a
linear combination of the residues of 1, T},..., T,.

The definition is independent of the choice of the hyperplane HZ x.
(See [16, Section 6].)

THEOREM (0.2): Let X be an (irreducible) nonsingular subvariety of
P". Assume that tx, Ntx, =@ whenever x#y and that Ox,/m%, is
spanned by linear coordinate functions for every x € X. If f: X >P™ is
induced by projection from a linear subspace L CP" in general posi-
tion, then Z(f) is smooth and of pure dimension =2 - dim(X)—m, or
else Z(f) = 8.

The results of [16, Section 6] imply that every nonsingular pro-
jective variety has an embedding which satisfies the hypotheses of
Theorem (0.2). A relatively elementary proof of Theorem (0.2), using
the methods of [16], will be given in Section 2. In [11, Chapter V,
Section D], Kleiman sketched a proof of a result that is similar to
Theorem (0.2). In Section 3, I have worked out the details of that
proof. Thus, we obtain a second proof of Theorem (0.2).

If f:X > Y and Z = Z(f) are as before, let g: Z— X be induced by
p2o 1, where p,: X X X - X is projection to the second factor. Sup-
pose that x,, x,, and x; are distinct points of X such that f(x;) =
f(x2) = f(x3). If 7w(z1) =(x1, x3) and 7(22) = (x2, x3), then g(z)) = g(zo).
Thus, triple points of f induce double points of g. This observation is
the basis of the study of triple points in [11, Chapter V, Section D]. It
is also interesting to ask what happens for “limiting positions” of
triple points, where some or all of the points x;, x,, and x3; coincide.
This is the motivation for Section 4, 5, and 6 below.

If f is ramified at x and f(x) = f(x') for some x’ # x, then we have a
stationary point of f. If w(z)=(x,x’), then g is ramified at z by
Corollary (4.2) below. Our main local results about stationary points
are Theorem (4.3) and Proposition (6.2). Theorem (6.3) gives a for-
mula for the rational equivalence class of the stationary point cycle.

Finally, a point x € SP(f) — SP(f) can be regarded as a “‘limiting
position of triple points” because the local ring at x on the fibre
f'(f(x)) has length=3. (The singularity subschemes S{?(f) are
defined as in [16, Section 3].) These points give rise to ramified points
of g which lie on the exceptional locus E. In fact, g induces isomor-
phism
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(S1”(g) — S1"*"(g)) N E S S{*0(f) — S1*2(f)

for all g =1, by Theorem (4.5). Theorem (5.6) gives a formula for the
rational equivalence class of the cycle associated to the subscheme
SP(f)C X. It is the same as the characteristic 0 formula. The proof,
however, works in all characteristics because it uses a formalism that
is based on Theorem (4.5). In order to be able to work in the rational
equivalence ring, we have restricted to the case where Z is smooth.
Thus, the result is valid for generic projections. It also seems likely
that one could work with the Chow homology theory of [3] and prove
a more general result.

Terminology and notation will be similar to what is used in [11] and
[16].

1. The basic constructions

Let f: X > Y be a morphism of non-singular varieties, and let Ay
and Ay be the diagonals in X XX and Y XY respectively. Then
Ax C(f Xf)'(4y) so that EC((f X f) o m)"(Ay), where 7:(X X X)'—>
X x X is as in the introduction and E = 7 '(Ax). Therefore J C I,
where J is the sheaf of ideals in Oxxxy defining the subscheme
((f Xem) (Ay) C(X X X) and I = Oxxxy(— E) is the invertible sheaf
of ideals defining the exceptional locus E. (Recall that E is a divisor in
(X x X)'.) The double point scheme Z(f) is defined to be the subscheme
of (X x X)' defined by the sheaf of ideals I7'J.

LemMA (1.1): 7 induces an isomorphism Z(f)— ES X Xy X — Ayx.
Proor: We recall that X Xy X =(f X f)"1(4y) C X X X. Thus, the
result follows because 7 induces an isomorphism (X X X) — E3 X X

X — Ax. Q.E.D.

It is well-known that there is a commutative diagram

P(Q2) — (X X X)'

Lk

X =2 xxXx,

where 8(x) =(x, x), 2% is the cotangent bundle, and j maps P(2%)
isomorphically onto E. Thus, for each closed point x € X, j induces a
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1:1 correspondence between 7 !(x, x) and the set of 1-dimensional
subspaces of the Zariski tangent space T(X),.

LEMMA (1.2): Let z € E. Then z € Z(f) if and only if z corresponds
to a 1-dimensional subspace of the kernel of the linear map
(df)x: T(X)x = T(Y )y, where (x, x) = m(2).

Proor: We have Ouxxxy:D Oxxxux 2 OxxQiOx,x. By choosing a
suitable generating set {t,, .. ., t,} for the maximal ideal mx, C Ox,, we
may assume that the maximal ideal mxxxy,. C Oixxxy,. is generated by
{1R¢t,...,1¢, 1, &, ..., &}, where & satisfies t Q1 -1Q ¢, =
EMR1-1QR¢t), i=2,...,r. Then I, is generated by t;,@1—-1& t,.

Consider the mapping f*: Oy —> Ox,.. Then I7'J, is generated by
the elements (F*(W)@1-1Q f*w)/(t;®1-1®t), as u runs
through Oyw. If f*(u)=ao+ aiti+- - -+ a,t,(mod m%,), then it is
easily verified that

(f*(u) ® 1-1 ®f*(ll))/(t| ® 1-1 ® tl) = al(mod m(XxX)"z)-

(See Lemma (2.1) below, also.)

In other words, I7'J, is the unit ideal if and only if ¢; occurs to the
first power in the expansion of some f*(u). This is equivalent to the
conclusion of the lemma. Q.E.D.

ExaMPLE (1.3): Let f: A2> A® be the map which sends (¢, t;) =
(41, tita, t3+ t3). The Jacobian matrix is:

(1 t, 0 )
0 t 2,+34/)°

Thus, f is ramified only at (0,0), and if char(k) # 2,3 at (0, —%). At a
ramified point, the tangent space map has rank = 1. Hence Z(f)N E
consists of either one or two points, depending on char(k). We write
A% x A? = Spec(k[s, s2]) X Spec(k[t;, t,]) = Spec k[sy, s2t1, t2], so that
the defining ideal of A is generated by s; — ¢, and s, — t,. After blowing
up 4, we work in an affine open set with coordinates s;, s, #> and &,
where s, —t; = £(s, — t5). The local equation of E is s, — ¢, =0, and the
defining ideal of Z(f) is generated by:

(s1—t)l(s2— ) = ¢
(5152— tit)l(s2—t) = s, + &5, and
(S3—8+ 53— ) (53— 1) = 53+ b+ 55+ sobh + 13,
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(Note that s;5,— tit, = s;(s2— 1) + (51— t))t;.) Thus, Z(f) is a smooth
curve. The scheme-theoretic intersection Z(f) N E has equations £ =
s1= 52— t,=2t+3t3=0. If char(k)#2,3, then Z(f) " E consists of
(0,0,0,0) and (0,0, —%, —3%), both with multiplicity 1. If char(k) =3,
then (0, 0, 0, 0) has multiplicity 1 and the other point moves away to
infinity. If char(k) = 2, then only (0, 0, 0, 0) is present, with multiplicity
2. Correspondingly, the ramification scheme S; is smooth if
char(k) # 2 but is not smooth if char(k)=2.

REMARK (1.4): When char(k) =2, the above map is the canonical
form for the pinch points arising from a generic projection of a
nonsingular surface to P?. This is the “missing case” in Kleiman’s
proof. It is a general fact that the equations defining Z(f) “look the
same whether or not char(k) = 2. This simple fact is what makes it
possible to give a proof of Theorem (0.2) that makes no reference to
the characteristic.

We now fix a nonsingular variety X CP" and an integer m such

that dim(X) <m < n. We recall from [16, Section 8] that there is a
dense open subset S CPN (where N =(m+ 1)(n +1)—1) and a mor-
phism @: X X §—P™ X S such that:
(i) A closed point s € S is an (m + 1)-tuple (¢, . . ., £,) of independent
linear forms in n + 1 variables (up to common scalar multiple) such
that L, N X =@, where L, is the linear subspace of P" given by
€0="'=(m=0~

@) If x=1(t,...,t,) €EX, then @(x, s)=(D,(x), s), where D,(x)=
oty .. s tn)ye ooy €m(to, ...y tn)).

In particular, & is projection from L,.

Let ®Xg®P: X X X X S—>P™ XP™ X S be the morphism which sends
(x1, X2, 8) = (Ds(x1), Ds(x2), 5). Let F C Oxxxyxs be the sheaf of ideals
that defines the subscheme ((®@ Xs®) o (7 X ids)) '(4p= X S), and let $
be the (invertible) sheaf of ideals that defines the subscheme E X S C
(X x X) x 8. Thus % D ¢ and the following makes sense.

DEeFINITION (1.5): The relative double-point scheme Zg(®) is the
subscheme of (X X X)' X S defined by the sheaf of ideals $~'#.

The reason for the terminology is the obvious one: Zs(®) is the
natural analogue, in the category of schemes over S, of the usual
double point scheme.

LEMMA (1.6): Every irreducible component of Zs(®) has codimen-
sion =m in (X X X)' X 8S.
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PrOOF: It is well known that Ap~ is a local complete intersection in
P™ x P™. This implies that the stalk £, is generated by m elements at
every point (z,s) €(X X X)' x S. Thus, it follows that $7'¢ is also
generated (locally) by m elements at each point of Zs(®). Together
with the Krull altitude theorem, this implies the conclusion of the
lemma.

PROPOSITION (1.7): Zs(®) N (X X X) x{s}) = Z(d,) x{s} for every
closed point s € S.

The verification is straightforward and elementary; details are left
to the reader. The result can also be obtained as a consequence of
known facts about the behavior of blowing up with respect to base
changes. (See [7, Section 3].)

ProrosITION (1.8): Zs(®) is nonsingular and of dimension =
dim(S)+2 - dim(X)—m. In fact, if p:Zs(®)—> (X X X)' is induced by
the projection (X X X)' X S—(X x X)', then p is surjective and p~'(z)
is nonsingular and of dimension = dim(S)— m for every z € (X X X)'.

No assumption on the embedding X C P" is needed in the proof of
Proposition (1.8). The smoothness of p~!(z) for z € E will be proved
in the next section. To prove that p~!(z) is smooth when z& E, we
begin by observing that 7(z)=(x,y)€EX XX —-A4 and choosing
homogeneous coordinates in P" such that x =(1,0,...,0) and y =
0,1,0,...,0). We may assume that &: X xXS—>P" xS sends
(tos - - s tyy S) > (£0(8), . . ., €n(t), 5), Wwhere €(t) =27 ayt;, i=0,...,m,
and a; are the homogeneous coordinates of s € P™*D+*h-1 Thep
p~(z)= U C V, where V C P™*Xn+D-1 congists of the points (a;) such
that the 2 X2 minors (i.e. subdeterminants) of the (m + 1) X2 sub-
matrix (a;)osismj=0,1 all vanish, and U consists of all s € V such that
L.,NX=@. Thus, UNSing(V)=@. (In fact, x&€L, or y&ZL, is
sufficient for this.) Since V has codimension m in P™+P"*D=1 this part
of the proof is complete.

For a dominant morphism q:T — S of nonsingular varieties, the
nonsmooth locus NS(q) consists of all t € T such that g '(q(t)) fails
to be smooth and of dimension = dim(T) —dim(S) at ¢. As noted in
[16, Sections 2 and 10], it can be described as the first order sin-
gularity S,(q), where v = dim(T) — dim(S) + 1, of the morphism g. (In
the definition of the first order singularities S; and S, we follow [11].
Thus, Si(q) consists of all closed points x € T where the tangent
space map (dq),:T(T),—> T(S)yx has rank =dim(T)—i, while
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Si(q) = Si(q) — Si+1(q) consists of all points where the rank is exactly
dim(T) —i.) In particular, the nonsmooth locus is closed in T. The
following result will be proved in the next section.

ProprosSITION (1.9): Let q:Zs(®)— S be induced by the projection
(X X X)xS8—>S, and assume that Ox./m%, is spanned by linear
coordinate functions for every closed point x € X. Then dim(NS(q) N
(E X% S))=dim(S)— 1.

ReEMARK (1.10): If g: T — S is an arbitrary dominant morphism of
nonsingular varieties, then every irreducible component of NS(q)
actually has dimension =dim(S)—1. (The proof uses the exact
sequence g * 25— Nr— NY%s—0 and standard properties of Fitting
ideals.)

2. The proof of Theorem (0.2)

We assume that the embedding X C P" satisfies the hypotheses of
Theorem (0.2). Since tx, Ntx, =@ when x#y, Theorem 7.6 of [16]
implies that Z(f)— E is smooth if f:X — P™ is a generic projection.
In fact, Lemma (1.1) implies that Z(f) — E = 3,(f), in the notation of
[16].

To complete the proof of Theorem (0.2), we must study Z(f) N E.
We observe that Propositions (1.7), (1.8), and (1.9) imply that all
points of Z(®,;) N E are smooth points of Z(®,), provided that s lies
in a suitable dense open subset of S. (Specifically, this open subset is
the complement of q(NS(q)), where NS(q) is the nonsmooth locus of
q.) Since there is a dominant morphism S— G(n,n—m—1), it is
enough to prove Propositions (1.8) and (1.9).

Let us fix a closed point x € X. We choose homogeneous coor-
dinates Ty,..., T, on P" such that x =(1,0,...,0) and tx, is the
subspace T,,;=---=T,=0, where r=dim(X). Thus, ¢,...,1t
generate the maximal ideal mx, C Ox,, and  Em%,., i=r+1,...,n.
(Here, t; = T;/T, along X.) We also fix a point z € E that lies above
(x,x). Then z corresponds to a line in tx, that contains x; after a
change in coordinates we may assume that this line is T, =---=T, =
0.

We have an inclusion Ox,® Ox, C A, where (A, m,) is the local ring
on (X x X)' at z. To further simplify the notation, we set t;=1X ¢
and s;=t,®1, i=1,...,n. Then m, is generated by {s;, t;,...,t,
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&, .., &}, where & =(s;i—t)/(si—1t). (Note that &,...,& must
vanish at z, because z corresponds to the line T, =---=Ty =0.)

LeEmMA Q.1): If vEm%,, then (v@1-1Qv)/(s;—t)E m%".
Moreover:
O (i—tsi—t)=¢, i=2,...,r,
(i) (st—tDl(si—t)=s+1,
(lll) (S]S,' - tlt,-)/(s, - tl) =§i = tj (mod mi),
forj=2,...,r, and
(iv) (sisi—tt)l(si—t) E m% when 2= i<j=r.

Proor: The first statement is proved by induction on d. If v = ab,
where a € my, and b € m%!, then

(ab@1-1Q ab)/(si— 1) =(aQ DI(BR 1-1Q b)/(s1— )]
+1R D@1 -1Q a)/(si—1)].

The expression inside the first pair of rectangular brackets lies in
m%2, by the inductive hypothesis. Moreover, 1®be€E
Ox, @ m%,! Cm4 ™" and similarly a® 1 € my.

The last two statements follow from the identities

(sis; — tit)/(sy — t) = (si(s; — ;) + t;(si — t:))/(s1— 1)
= S,'fi + t,g, QED

We also consider closed points s € S such that @,: X -P™ sends
(1, ty,... tL)=>(),..., (1)), where G=¢31,t¢,...,t,)=
ap+apti+---+apt, i=1,...,m, and G()=1+apnt;+ -+ agt,
Thus, we can regard the a;, (i, j) €{0,..., m}x{0,...,n}—{(0,0)}, as
representing coordinates on some affine open subset of PN, Given a
particular point s, in this affine open set, such that the point x =
(1,0,...,0) does not lie in the linear space L,, we may change
coordinates so that aq, . . ., dgn, @1o, . - ., Amo all vanish at s,. In fact, we
change coordinates in P" so that the hyperplane at infinity contains
L,, change coordinates in P™ so that &,(x)=(1,0,...,0)€P™, and
then change coordinates in P™*X**D)-1 a5 in Lemma 8.3 of [16]. In
other words, we may assume that so € W, where W is the intersection
of S with the linear subspace apy=:°*=dop, =aA1p="'""=ame=0 in
pem+Xn+D-1 " Hence, properties of Zg(®) which hold at a point of
{z} X W actually hold at all points of E X S.

For s € W, the projection @&,: X —>P™ sends (1,¢,...,t)~>
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(1, 6(),. .., t.(t)), where f(t)=apt;+---+apt,, i=1,...,m. Let
(B, mp) be the local ring on (X X X)' X W at (z, s). The local defining
ideal, in B, of Zg(®) is generated by the elements (€(1, sy, ..., s,)—
6Lt .., t)I(s1—t),i=1,...,m. Lemma (2.1) implies that

G, 51, .., 8) — G, 8y, . ., 8))(s1— t) = aj(mod maB).

(The ring homomorphism A— B comes from the projection (X X
X)X W—-(X xX).) Thus, for any s € W, the requirement that our
particular point z should lie in Z(®,)= Zg(®) N (X x{s}) forces
ap,..., an to vanish at s. In other words, the above congruences
imply that Zg(®) N ({z} X W) is nonsingular and has codimension m in
{z} X W. Together with Lemma (1.6) and its proof, this implies that
p(2)=Zg(®)N({z} X S) is nonsingular and has codimension m in
{z} % S. This proves Proposition (1.8).

We will now prove Proposition (1.9). We will use all of the notation
introduced above. Since Ox.,/m%, is spanned by linear coordinate
functions, we may also assume:

(a) tr+1 = t%(mOd m?’(,x)s

(b) t,..;i=tt(mod m%,), i=2,...r and

(c) the monomials 3, tit,, . . ., t;t, do not occur in the expansions of
the linear coordinate functions t,1,. . ., t, modulo m%,.

These assumptions and Lemma (2.1) lead to the following con-
gruences modulo m%B:

(G, s1,..,8)—G(L t, ..t —t)=an+ apbs+- - - + a,é,

+ai,(s;+ 1)

+ Qjriatat -0 o+ At
for i=1,...,m. The elements on the left sides of these congruences
generate the defining ideal, in B, of the relative double point scheme.
Thus, as before, the requirement that our particular point z should lie
in Z(®,) forces ayy, ..., a, to vanish at s. The additional requirement

that z should be a nonsmooth point of Z(®,) imposes the further
condition that the maximal minors of the m X (2r — 1) matrix

(Gi)1sismasjs2r

should all vanish at s. But the elements a; are all coordinate functions
on an affine space. Thus, the locus of common zeros of these maximal
minors has codimension=Q2r—1)—m +1=2r—m, and we have

dim(NS(q) N({z} x W)) =dim(W)—m — (2r—m)
= dim(W)-2r.
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Therefore, NS(q) N(E X S) has codimension =2r in E X S. Since
dim(E X S) =dim(S) + 2r — 1, this completes the proof of Proposition
(1.9), and also of Theorem (0.2).

REMARK (2.2): Our proof of Proposition (1.9) shows that ({z} X
S) N NS(q) has dimension = dim(S) —2r for every z € E. Moreover,
the proof of Theorem 7.6 of [16] implies that dim(({z} X S) N NS(q)) <
dim(S)—-2r—-1 if ze(X X X) —E. By Remark (1.10), we conclude
that dim(NS(gq)) = dim(S)— 1. In particular, one cannot rule out the
possibility that E X S contains an irreducible component of NS(q).

3. A different proof

In this section, we give a proof of Theorems (0.1) and (0.2) that uses
properties of group actions. The techniques are due to Kleiman.

Let H = G(n, 1) be the Grassmann variety that parameterizes lines
in P*. If X CP", then the map X X X — A - H (which sends (x, y) to
the line joining x and y) extends to a morphism ¢ : (X X X) > H. If L
is a linear subspace of codimension m + 1 in P", then we have the
(locally closed) Schubert subvariety S C H consisting of all lines
ACP" such that ANL#@ and AZ L. Then S is smooth. In fact, the
nonsmooth locus of the closure S is {A , ACLLIf LNX =@, then we
consider the projection from L, specifically f: X —P™. The following
well-known lemma gives the relationship between S and the double
point scheme Z(f).

LEMMA (3.1): With the notation as above, we have Z(f) = ¢~ (S).
We also consider the projective linear group G = Aut(P"). There is
a transitive group action G X H — H, sending (g, A) - gA = translate of
A by g. The following result is basically a special case of a theorem
proved by Kleiman.
PropoOSITION (3.2): Consider the diagram
GxS (X xX)

AN

where p is the projection to the first factor and q(g, A) = gA.
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() If v is the generic point of G, then p~\(y) Xg (X X X)' is either
empty or regular and of pure dimension =2r—m. (As above, r=
dim(X).)

Gi) If p~'(y) Xy (X X X)' is geometrically regular (i.e. smooth) over
k(y) = Og,, then there is a dense open subset U C G such that ¢'(gS)
is smooth and of pure dimension 2r—m (or else empty) for every
closed point g € U.

In fact, (i) is a special case of the theorem proved in section (2) of
[10]. To prove (ii), one begins by showing that g:GXS—H is a
smooth morphism (in any characteristic). Hence, the projection (G X
S) Xy (X X X) - (X x X) is smooth. It follows that (G X S) Xy (X X
X)' is smooth. If p:(GX S) Xy (X X X) —>G XS is the projection to
the first factor, then (p°p)™'(g)=p~'(g) Xy (X X X)' for every point
(closed or not) of G. Thus the hypothesis of (ii) says that the generic
fibre of pop is smooth. Therefore, (p °p)~!(g) is smooth for every
point g of some dense open subset U C G. This proves (ii).

The following theorem is the main result of this section. It clearly
implies Theorem (0.1) and Theorem (0.2).

THEOREM (3.3): Let G, H, S, and ¢ :(X X X) — H be as above. If
char(k) =0 or if the embedding X CP" satisfies the hypotheses of
Theorem (0.2), then there is a dense open subset U C G such that
¢ (gS) is smooth and either empty or of pure dimension 2r—m
(where r = dim(X)) for every closed point g € U.

Proor: If char(k) =0, the result follows immediately from Pro-
position (3.2) because regularity and geometric regularity are
equivalent in this case.

If the embedding of X in P" satisfies the hypotheses of Theorem
(0.2), we conclude as at the beginning of Section 2 that Z(f)—E is
smooth if f: X - P™ is a generic projection. Now, for any fixed A € H,
we have the (surjective) orbit map G X{A}—> H. Thus, we can use
Lemma (3.1) to conclude that ¢~ '(gS)— E is smooth for g in a dense
open subset of G.

We must also determine whether ¢ '(gS)NE is smooth. The
results of [15] and [16] imply that a generic projection f: X —P™ has
the following properties:

(1) Si(f) has pure codimension i(m —r+i) in X [or is empty] for
every i =1;

) Si(f) = Si(f) — Sx(f) has pure codimension m —r+1 in X [or is
empty] and is smooth if char(k) # 2. If char(k) =2, there are only
finitely many nonsmooth points.
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(3) If char(k) =2, r=2, and m =3, then the local homomorphism
at a point of S;(f) has a canonical form exactly like the morphism
studied in Example (1.3) above. (For a more precise statement, see
Theorem 3 of [15].)

Recall that S; and S, are defined as in [11]; see the discussion at the
end of Section 1.

(The assumptions on the embedding that were used in [16] are
stronger than the hypotheses of Theorem (0.2). However, the stronger
hypotheses were used only for verifying the smoothness of the higher
order singularity subschemes S{?. It is not hard to verify that the
techniques of [16] do indeed yield a proof of (2), under the hypo-
theses of Theorem (0.2).)

LEmMMA (3.4): The _structural map A :P(Q2%y)—>X induces an
isomorphism A (X — S(f) = Si(f).

PrOOF: If x € X — Sx(f), then there is an open neighborhood V of
x and a surjection Oy — Qy|y. Thus, A induces an isomorphism of
A7U(X = Sx(f)) and Im(A) N (X — Sx(f)). But the existence of a sur-
jection Ox,— 0%y, and standard properties of Fitting ideals imply
that Im(A) N (X — Sx(f)) = Si(f). Q.E.D.

Except in the case where char(k)=2, r=2, and m =3, Lemma
(3.4), the isomorphism Z(f) N E =P(2%,=), and property (2) above
imply that Z(f) N E is smooth except possibly along a closed subset
of dimension =2r —m —2. Since the local defining ideal of the sub-
scheme Z(f) C(X X X)' is generated by m elements at every point,
we conclude that Z(f) is smooth except possibly along a closed subset
of dimension =2r—m —2. In the remaining case (r=2, m=3,
char(k) = 2), one uses the canonical form of the local homomorphism
é’ps,,,(x)—)é“x,x at a point x € Si(f) to verify that Z(f) is smooth in this
case.

The results obtained so far imply that the generic translate W =
P (y) Xy (X X X)' is a regular scheme of pure dimension 2r —m and
that its nonsmooth locus has dimension =2r —m —2. If we can show
that the generic translate is smooth, then the proof will be complete,
by (ii) of Proposition (3.2). So assume that W is not smooth. Then
there exists a finite algebraic extension K of k(y) such that Wy =
Spec(K) Xspecu(yy W is not a regular scheme. In particular, the base
extension morphism Wy — W is not étale. However, the base exten-
sion morphism can fail to be étale only above the nonsmooth locus of
W, which has codimension =2 in W. Therefore the Zariski-Nagata
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theorem on purity of the branch locus [6, Exposé 8, Théoréme 3.4]
implies that W is smooth. (In fact, since Wx —» W is finite, the simpler
theorem of purity upstairs will suffice. See [2, Theorem 1 and Remark
21) Q.E.D.

4. Z(f) viewed as a scheme over X

We consider a morphism f:X — Y of nonsingular varieties over k
(algebraically closed, as usual). Let g:Z(f)—> X be the unique mor-
phism which makes the following diagram commutative.

(X X XY >3 Z(f)

,l lg

XxX — X

P2

The singularity subschemes S{”(f) C X are defined exactly as in [16,
Section 3]. In particular, the closed points of S{?(f) are all x €
X — S,(f) such that the local ring of f~'(f(X)) at x has length =q + 1.
The S{”(f) are a particular type of Thom-Boardman singularity.
There are close relationships between the singularity subschemes of g
and the singularity subschemes of f. These are described by
Theorems (4.3) and (4.5) below. We will also state a couple of elemen-
tary propositions about the fibres of g that show why we expected the
main results to be true. The first one is due to D. Laksov [12,
Proposition 21].

ProPOSITION (4.1): Let f be as above, and let m;: X Xy X — X be the
projection to the i-th factor, i =1,2. If x is a closed point of X, then
m induces isomorphisms mw;'(x)—Ax Sf(f(x))—{x} and g '(x)—

ES f7(f(x)) —{x}.

The fact that the two isomorphisms are equivalent is an immediate
consequence of Lemma (1.1).

CQROLLARY 4.2): Let z EZ_(f). If m(2)=(x,y)E X X X — A, then
zE€ Si(g) if and only if x€ Si(f), and z € S{(g) if and only if
x € S1(f).

We recall that 3x(f;q,0)=(SPFH X X)N(X Xy X)—A)C X X X.
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(See [16, Definition 1.1].) In particular, 3,(f; q,0) is an open sub-
scheme of the fibre product S{?(f) XyX. Corollary (4.2) says that
m:(X X X)->XxX induces a bijection {closed points of S{?(g)—
E} —>{closed points of 3,(f; q,0)}.

THEOREM (4.3): Let f:X—>Y be a morphism of nonsingular
varieties, and assume that Z(f) is smooth and of pure dimension =
2-dim(X)—dim(Y). Then w:(X X X) - X X X induces an isomor-
phism S{¥(g)— ES 3(f q,0).

PROOF: As before, let 7;: X Xy X — X be the projection to the i-th
factor. We must show that 77'(S{(f)) — A = S{?(m,) — A. As noted
above, these two subschemes of X Xy X have the same closed points.
We must show that their defining ideals coincide.

Let z€S{?(g)—E, and let (x',x)=m(z). Set (A, my)= Oysy,
(B, mg) = Ox,, and (B’, mp) = Ox,. Let C be the local ring on X XX
at (x’,x), and let R be the local ring on X Xy X at (x',x). Thus
B'®«B C C;in fact C is a localization of B’ ®, B. Let f*: A— B and
f*:A— B’ be induced by f;let #%: B’ R and 7% : B — R be induced
by m; and , respectively.

The ideal in B’ which corresponds to the subscheme S{(f) C X is
A,(P34), the highest nonunit Fitting ideal of the algebra of principal
parts P,4. On the other hand, the ideal in R which corresponds to
the subscheme S{”(m)C 3, is A,(Pgsz). The proof will thus be
complete if we can show that 7§(4,(P34)) - R = A,(P &5).

Because R is a localization of B’ ®4 B, Proposition 16.4.5 of [5]
implies that P%p=R®gs P34 (In forming this tensor product, we
use the left B’-module structure of P §,4.) Using this isomorphism and
Lemma 2.7 of [16], we obtain the desired equality of ideals. Q.E.D.

We will also study the intersection of the singularity subschemes of
g with the exceptional locus E C (X X X)'. The following result is an
easy consequence of Lemma (1.2).

PropPoOsSITION (4.4): Let z€Z(f)NE, and let x=g(z) so that
w(z)=(x,x) EA. If x € Si(f) for some i =2, then dimg '(x)NE =
i—1. In particular z€ Si_i(g). If x&€ Sy(f) and z¢& §2(g), then z €
M3-0S19(g).

If z€ Z(f) N E and g(z) € Sx(f), then we can have either z € Si(g)
or z€ Sy(g). I do not know any useful criterion (in terms of the
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singularities of f:X —Y) which distinguishes between these two
cases, even when Z is smooth. On the other hand, the following result
gives a very detailed description of what happens when g(z) £ Sy(f).

THEOREM (4.5): Let f:X—>Y be a morphism of nonsingular
varieties. Then g:Z — X induces isomorphisms

g (X -S(HHNESS(f) and
(S1(g) — S1*(g)) N E S S{*I(f) — S{*2(f)

forallg=1.

In particular, thege isomorphisms are valid when g =0 and_ q=1
Since SO(g) = Z — Sx(g) and S{’(g) = Si(g), we see that (Z — S;(g)) N
E3S Si(f) - SP(f) and (Si(g) — SP(g)) N ES SP(f) — SP(f).

ProoF: The fact that g induces the first isomorphism follows from
the isomorphism Z(f) N E =P(2y) (formula (V, 60) of [11]), Lemma
(3.4), and Proposition (4.4).

In proving that g induces the second isomorphism, we fix z€ ZNE
with z& M- S{?(g) U Sx(g). Let x = g(z). Proposition (4.4) implies
that x € Si(f). We consider the local rings (A, my) = Oy,,, (B, mg) =
Ox,, (C, mc) = Oxxxy.., and (R, mg) = Oz,. There are local homomor-
phisms f*: A—- B and g*:B—R induced by f: X—>Y and g: Z-> X
respectively. The ideal in B (respectively R) which corresponds to
the subscheme S{*'(f)C X (resp. S{?(g)C Z) is the Fitting ideal
Ag1(P ) (resp. Ay(P p))-

Let I C R be the (principal) ideal which corresponds to the sub-
scheme Z N E C Z. We will show that g*: B— R induces an isomor-
phism B/A,.(PHa)SRIT+A,(Pks). [In fact, T+A,(Pks)=1+
g¥( (P }';7,:)) - R] In view of the first isomorphism, this will imply that
(S12(g) — g7 '(S(f)) N ES S{*V(f). Since (S1(g)— S¥(g)NE and
g7 '(Sx(f)) are disjoint, this implies that g induces the second isomor-
phism.

Since x € Si(f), dim mg/(f*(m4)B + m%)=1. Thus, we can choose
minimal generating sets {uy,...,u,}Cmys and {t,,...,t,} C mg such
that f*(u;) =t fori=1,...,r—1and f*(u;) € m} for i = r. We recall
that P‘f;fk' = (B®: B)/£%"?, where £ is the kernel of the multiplication
map B®«B— B. We identify b € B with the element b® 1 EP"B,T,
and define df, :B—P3%, by setting dy,(b)=1Qb. Now, P is
freely generated as B-module by the monomials of degree =q+1 in
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Gy L, where &= d by (t) — .. Let oo: P — B be the B-linear map
such that ¢.(¢)=1 and @ (8... 25 =0 if (if,...,i)#(£0,...,0).
Then D9 = ¢,°d%}:B— B is a differential operator (by definition).
Lemma 3.7 and Proposition 3.10 of [16] imply:

@.5.1) DYt ... th) = (';) eyt

[If ¢>i,, we set (3) =0.]

4.5.2) A, (P Y4) is generated by
{Dﬁg?k(f*u;), 1=¢=qgq+land r=i=m).

(45.3) If b| = bz(mOd mﬁ), then Dg?k(bl) = Dg?k(bz)(mOd mﬁ"’).

We have BRyB CC, and (p,° m)*:B— C identifies B with the
subring k®y B C BQ,B. We denote 1X@¢; by t; and set 5; =t 1,
i=1,...,r Using standard facts about the blowing-up process, we
check that mc=(ty,.. ., t, sy, &,..., &), where si—t; =&(s1—t), i =
2,...,r. Furthermore, s;—t, generates the ideal I C C which cor-
responds to the subscheme E C(X X X). The subscheme ZC
(X x X) corresponds to I'J, where JCC is generated by
{Fu)@1-1Q f*w)|i=1,...,m}.  Since  f*u)=tw, i=
1,...,r—1, we have &£ €17, i=2,...,r. Hence, there is a com-
mutative diagram of local homomorphisms:

C—SRo=Cl(&,. ... £)C
(4.5.4) (pr‘rr)"] / l"o

where v and y, are residue class maps, and y = v o(p,° m)*. Clearly,
dim(Ro) =r+1, and mg,=(7,..., 7, )R, where 7, = v(t;) and o; =
v(s;). To simplify the notation, we set w = o, — 7;.

LEMMA (4.6): R, is a smooth B-algebra. In particular, P}O,B is free
of rank q + 1 as an Ry-module. The set {(dg,s(w) — w)' l Osi=gqlisa
minimal generating set.
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The verification of this lemma is standard, and we will omit it. For
€=0,...,q9, let Yy:Pgryp—> Ry be the Ry-linear map such that
!pf((d;dB(W) —w))=1 (resp. 0) if i = €) (resp. i# €). We will consider
the differential operators D¥)s = > d,s: Ry~ Ro. (In particular, D®
is the identity map.) We also have:

(461) DSQ/B(‘Y(b)Wi) — (;) ,y(b)wi—( for every beE B, and

(4.6.2) if ry= r(mod m%), then D¥)p(r1) = D¥)p(r)(mod m%;*).
In fact, to verify (4.6.1) we write:

drys(W') = (dRyB(W) — W) + W)’

= Zo (;) w“j(dqRO/B(W) - w).

and apply the definition of DS{,’,B. (Also, note that d;lgolg is B-linear.) As
for (4.6.2), it is a standard property of differential operators of order
=¢

LEMMA (4.7): The elements vo(D¥)p(v[(f*u; @ 1 — 1 @ f*u;)/(s1 — 1)),
where ¢=1,...,qand i=r,..., m, generate the ideal A,(P3s)C R.

LEMMA (4.8): If b € B, then
D%_))/B(V[(b® 1-1Q b)/(s1— t)]) = y(D¥"(b))(mod(a; — 71)Ro)
for€=0,...q.

In both lemmas, the notation is as in (4.5.4). We will prove Lemmas
(4.7) and (4.8) below, after using them to finish the proof of Theorem
(4.5). First of all, recall that DR)s is the identity map. Since
FP*u®1-1Q f*u)l(s;— t) EI"'J, we conclude from Lemma (4.8)
that g*(DB)(f*u;)) € vo(o1— t;)R. But wy(oy—t,)R is the ideal I =
vo(v(I)) which corresponds to the subscheme ENZC Z while
{g*(DY(f*u)) l r =i = m} generates the ideal in R which corresponds
to the subscheme g7'(S,(f)). [Note that D$\(f*u;) = 3(f*u;)/9t,.] Thus,
we recover the identity g7 (X — S;() NE =g (Si(f) NE.

The proof of Theorem (4.5) is similar. Thus, (4.5.2), Lemma (4.7)
and Lemma (4.8) imply that T+ A,(P&5) = I + g*(4,.1(P%4) - R As
noted above, this equality of ideals implies Theorem (4.5). Q.E.D.
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ProOOF OF LEMMA (4.7): As noted above, P?;O,B is freely generated
as Ro-module by {1,¢,...,¢%, where {=dgys(w)—w. Therefore,
R®r,P%ys is freely generated as R-module by {I®]1,
1®¢, ..., 1® ). Furthermore, there is a surjection A : R@Qg, P ks —
PR of R-algebras such that A(r@ dgys(ro)) = r - d gs(v(ry)). (See [5,
Proposition 16.4.20]; in forming this tensor product, we use the left
structure of Pgyp.) Thus, starting from elements v; ==/, r;(1® ¢') =
Sieri® ¢, i=1,..., N, which generate Ker(1) as an R-module, we
use the definition of Fitting ideals to show that {r,~,~,0§i =N and
0=j = q} generates A,(P %s).

The Proposition from [5] cited above also says that Ker(A) is
generated as an ideal in the R-algebra R®g, P;'zo/g by the elements
1®d§0,3(r0), where ry ranges through the ideal Ker(»y) C Ry. As an
R-module generating set we can therefore take

{1® diys([(F*u@1-1Q f*u)l(si—t))) | 0= €= qgand r=i=m}.

[Note that J is generated by the elements (f*u; @ 1 — 1 f*u;)/(s;—
t), where 1=i=m]Fori=1,..,r—1, v(Fu; @1 -1 f*u;)/(s; —
t))=v(&:)=0. Hence Ker(y) is generated by {v((f*u;Q1-
1R f*u)l(s1— 1) l r =i = m}.] Furthermore,

q—¢ q-¢

1Q ¢ - drys(r) =1® Zo Dro) - {4 = 3 v(Dr) ® £

for any r, € Ro. (In limiting the range of summation, note that /! =
0.) Applying this with ry= v((f*u; @ 1 -1 f*u;)/(s, — t))), we show
that A,(P g3) is generated by the elements listed in the conclusion of
Lemma (4.7). Q.E.D.

PrOOF OF LEMMA (4.8): We first consider the case where b is of
the form t¥ ...t For any i >0 we have the Taylor expansion

si—ti=3 () ti(sy— 1) = ZD D (t1)(s1— 1.

j=1

in C. We can divide by s, —¢; to get
i—1
(si—thlsi—t) = },; D5t (s1— 1.

Since o;=17; in Ry for i=2,...,r and o;— 7, = w (by definition), we
have
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(i...or—7 ... 7901 — 1) = [(c8 — 7)1 — )] - 7'22 .. Tr’
=[(ah — 7)o — T)y(t7 . . . 7).

All of this leads to the identity
. . i . ol G+, . ; .
(ol ...ob—ti. . tD)(o—m)=y(t7...t])" 2, y(D3py (1)) - w!
f=

i1

D i j
= 2) y(Dg (. . . th) - wi
=

in Ry, by (4.5.1). Referring to the commutative diagram (4.5.4), we see
that this can be written as:

i-1

V[(b®@1-1Q b)(s—t)] = 20 y(Dg (b)) - wi.

where b = tit. ..tk
Hence, (4.6.1) implies:

4.8.1) DRs(r(b®1-1Q b)/(si =)

i-1

=3 () votien - w,
where b = t';' ... t'. In particular, this gives:
482 D¥p(r(b®1-1Q b)/(si—t)]) = y(D¥ (b)) (mod(w)Ry)

whenever b is a monomial in ¢, ..., t.

Given an integer n = ¢+ 1, an arbitrary element b € B is congruent
modulo m}% to a k-linear combination of monomials in ¢,...,1%.
Therefore Lemma (2.1), (4.5.3), and (4.6.2) imply that we can
“replace” (4.8.1) by the congruence:

(4.8.3) D [(bQ1-1Q b)/(si — t)])
n—1 s R X
=3 (1) 705wy - whmod m;e-h
b=
for every b € B. Since this holds for every n >0, we find that the

congruence (4.8.2) holds for every b € B. Since w =o,— 7y, this is
equivalent to the conclusion of Lemma (4.8). Q.E.D.
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REMARK (4.9): It might seem surprising that we do not assume that
Z(f) is smooth in Theorem (4.5). In algebraic terms, we did not
assume that R = 0, in the diagram (4.5.4), is a smooth k-algebra. The
reason is that Ry is a smooth k-algebra (and even a smooth B-algebra),
and is possible to regard Pjjp as a quotient of the free R-module
R®R0PZOIB in calculating the Fitting ideal A,(P %35). Thus, there is no
reason to assume that P?q/k is a free R-module.

ExAMPLE (4.10). Let f:A’—> A% be a map of the form (t;, t;)—
(t1, o(t1, t))). Thus, ¢ =ae+ait,+---+a,ts, where a;,€k[t], i=
0,....,n. We write A?XA%?=Speck[s,syt,t). Let U=
Spec k[sy, 11, 1y, €], where & =(s;—t))/(s2—t;). Using the methods of
Example (1.3), we show that Z(f) is the closed subscheme of U
defined by the equations £ =0 and

* (e(s1, $2) — @(t1, 2))/(s1— 1) = 0.

Let V be the subvariety of U where £ =0. Then Z(f) is the sub-
scheme of V where (*) holds. Since s; = t, along V, it is easy to check
that Z(f) is defined as a subscheme of V by (s,, t1, t;) =0, where

W5, th, 1) = 2 ai(ty - (s3— (s, 1)
(**) o
= 2 D#Pp(ty, 1) - (s2— 1)\

<

Here, the DY¢ are divided partial derivatives with respect to t,. Thus
DY(a;(t)th) = (a;(t)ts7. Moreover, V =Spec k[s,, t, t2] = A' X A?,
and p:Z(f)— A? is induced by the projection A'X A2— A% We also
note that VNE is the subvariety of V where s,=1, Thus, the
projection induces an isomorphism VN ES A2

It is easily checked (see [16, Lemma 3.8]) that SP(f) is the sub-
scheme of A%= Spec k[t,, t,] defined by DVp = DP¢ = D®P¢ =0. On
the other hand, let B = k[t,t,], Ro=k[s2, t1,t;], and R =I'(Z(f),
0zy). Then PR)p is freely generated as an Ro-module by {(d}4(w) —
w): l i=0,1,2}, where w=s,—t,. There 1is a surjection
A :R®g, Pkys— Pk such that Ker(A) is the ideal in the R-algebra
R®gr, P%ys generated by

1® diysdr = V(DY) @ (drys(W) — W) + 1(DPY) ® (diys(w) — w)’.

(See [5, Proposition 16.4.20].) Here, v: Ry— R = R/(¥))R, is the resi-
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due class map, and 9% denotes the divided partial derivative with
respect to s, —t,. Thus, DO(h(t;, ty) - (s2— 1)) = (Yh(ty, t2) - (52— t2) 7.
The reader can use these facts to verify that the ideal 4,(P%4), which
defines S?(g) as a subscheme of Z(f) = Spec(R), is generated by
(@DY) and (D). Thus, SP(g) is the subscheme of V where
¥ =2V = PPy = 0. Furthermore, (**) implies

1
POy = ; iDYe(t), ) - (s~ t,)'!, and
(***) =

n=1 /=
9%y =3, (5) Dottt (51— 13
i=2

In describing S?(g) N E, we only need the initial terms. Thus, by
putting (**) and (***) together, we see that SP(g) N ES SP(f).
Similarly, S{?(g) N E S S{*V(f) for all ¢ =0. Since Sy(f) =, this is
equivalent to the conclusion of Theorem (4.5) for this particular type
of map.

5. Application to an enumerative question

As usual, f:X—>Y is a morphism of nonsingular projective
varieties; Z = Z(f) and g:Z— X are defined as in sections 1 and 4
respectively. Laksov and Fulton gave a formula for the rational
equivalence class of the double point cycle [My(f)] = psx7+[Z], where
[Z] is the cycle associated to Z. (See [12], [4], and [11, Chapter V].) In
[11, Chapter V], Kleiman also obtained a formula for the rational
equivalence class of the triple point cycle [Ms] = g [ M>(g)], under the
assumption that Z is smooth.

In this section, we obtain a formula for the rational equivalence
class of [S?(f)]. For simplicity, we assume that Z is smooth over k,
and we work with the rational equivalence rings #(X), #(Z), etc.
However, some generalization should be possible. (See the footnote
on p. 385 of [11].) The formalism here and in Section 6 is based on the
formalism of [11, Chapter V, Sections C and D], supplemented by
Lemma (5.1), Lemma (5.3), and Proposition (5.5).

If E and F are locally free sheaves, the formal difference E—F is
called a virtual bundle. Its total Chern class is defined to be c(E —
F) = c(E)s(F), where c(E)=1+c(E)+- - is the total Chern class
of E and s(F) is the total Segre class of F, i.e. the formal inverse of
the total Chern class: s(F) = c(F)™'. The component of c(E— F) in
Ai(X) is the i-th Chern class of E— F:
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¢(E~F)=c(E)+ ci.(E)s{(F)+ - - -+ si(F).

If E, F, and G are locally free sheaves, then it is clear that c(E -
G) = c(E — F)c(F — G). The rank of E — F is defined to be rank(E) —
rank(F). If L is an invertible sheaf on X, we set (E—F)® L =
ERQL-FRL.

LEMMA (5.1): Let the notation be as above. Then
d-—p+ )
W(E-POL=3 (1P ) 6 B - Py

for every p =0, where d = rank(E — F).

In this lemma, the case E =0 is a formula for s,(F& L), which
one proves by using the splitting principle and induction on rank(F).
After doing this, one proves the general case by using the splitting
principle and induction on rank(E).

Given f: X - Y as above, the virtual normal bundle of f is defined
to be v = vyyy = f*7ry — 7x, where 7x and 7y are the tangent bundles
on X and Y respectively. The following lemma is a special case of
Porteous’ formula. (See [9, Corollary 11].)

LEMMA (5.2): Let r =dim(X) and m = dim(Y). If Si(f) is empty or
of pure codimension m —r + 1 in X, then [Si(f)] = Cm—ra1(vy). If Sy(f) is
empty or of pure dimension 2(m—r+2) in X, then [S)f)]=
Cr—r+2( Vf)2 = Cm—r+1(¥) Cm—r+3(¥y).

LeEmMMA (5.3): Let w:(X X X) - X X X be obtained by blowing up

the diagonal, let E be the exceptional locus, and let p;: X X X - X be
projection to the i-th factor. Then

c(vy)=(+e) c(m*pirx)s(IQ m*pirx)

in 4((X X X)), where e = [E] and I = Oxxxy(—E) is the sheaf of ideals
defining the divisor E. Furthermore

c(Vpyn) = 1+ &) s(m*pTrx)c(m *pErx)s(UQ m*pEry).
Proor: The second formula follows from the first one because

C(V(xxxy/x) = C(W*P’;Tx —m¥rxxx)c(mFrynx — T(x><xy)
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= S(W*PTTX)C(Vw)o

To prove the first formula, we recall that there is a commutative
diagram

P(Q2Y) = E —> (X X X)'

”l l

X225 XxX

and use the following two exact sequences (See [14] and [22].)
(a) an exact sequence of locally free sheaves on E:

0> Opx(=1)—>p*rx > F >0

where Ogx(1) is the canonical quotient line bundle on E = P(2%).
(b) an exact sequence of sheaves on (X X X)':

0~ T(XxXy > 'TI'*TXxx 9]*9—)0.
From (b) we obtain
» c(vz) = c(jx&).

Since j: E— (X X X)' is an embedding, j. preserves exactness, so that
there is an exact sequence:

@) 0-jOgx (=)= jep*tx = jx F—0.

Furthermore, basic properties of blowing up imply that j,Ogx(—1) =
O:(E) fits into an exact sequence:

(©) 0 Oxxxy = Oxxxy(E) = Og(E)—0.
The last two exact sequences yield the formula
(i) c(j+F) = c(jxp*1x)s(O(E)) = (1 + &) 'c(jxp*7x).

To evaluate the last factor, we write p*1x = p*8*p¥rx = j*m*p%¥rx, so
that j.p*7x = Oc@ m*p%7x. This implies

(iii) c(ixp*7x) = c(m*p2rx)s(IQ m*p37x).
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The conclusion of the lemma follows directly from (i), (ii), and (iii).

LeEMMA (5.4), [11, formula (V, 64)]: Let f:X"— Y™ be a morphism
of nonsingular projective varieties, let Z=Z(f), and let 6:Z—
(X X X) be the inclusion map. If Z is smooth and of pure dimension
2r—m, then v,=IQR g*f*ry =0*UQ w*pif*ry), where g=
proemo8:Z->X.

As an immediate consequence of the last two lemmas, we obtain:

PrROPOSITION (5.5): Let the assumptions and notation be as in
Lemma (5.4). Then

c(vp) = 6¥((1+ &) 'c(m*pi7x — w*p¥rx)c(UQ m*p%vy))
in 4(Z), where e = [E] € A((X x X)) and I = Ox.xy(—E).

THEOREM (5.6): Let f:X'—> Y™ be a morphism of nonsingular
projective varieties, where r = m. Assume that Z(f) is empty or smooth
and of pure dimension 2r—m, that SP(f) is empty or of pure
codimension 2(m —r+1) in X, that 3,f;1,0) is empty or of pure
codimension 2m—r+1 in XXX and that Si(f) is of dimension
=3r—2m—i-2 for all i=2. Then the rational equivalence class of
SP(f) satisfies

m—r+l1

[S?)(f)] = cm—r+l(Vf)2 + 21 2i_‘cm—r+l+i(Vf)cm—r+l—i( Vf)-

REMARK: In the case k = C, this formula is due to F. Ronga [20, p.
33]). Thus the same formula holds in all characteristics, at least for
sufficiently generic maps. The proofs given by Ronga and by Lascoux
[13] depend on an iterative definition of S{(f) which is not the correct
definition in the case char(k) =2. (The point is that if char(k) =0 or
char(k) > g, then one can use the methods of [16] to check that
S{2(f) = Si(f"), where f': S U(f)> Y is the restriction of f.)

PROOF: Let g =p,omo0:Z-> X as before. We have assumed that
dim SP(f)=r-2(m—-r+1)=3r—2m —2 and that dim 3yf;1,0)=
2r—-2m—r+1)=3r—-2m —1. Thus, Theorem (4.3) and Theorem
(4.5) imply that all irreducible components of S;(g) N E (resp. Si(g))
have dimension=3r—2m —2 (resp. 3r—2m — 1) unless some irre-
ducible component of S;(g) N E is contained in g"(§,~(f)) N E for
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some i =2. However every irreducible component of S;(g) N E has
dimension =3r—2m —2=2dim(Z) — dim(X)—2 by [16, Proposition
2.8], while dim g7'(Si(f) N E) = 3r — 2m — 3 by Proposition 4.4 and our
assumption about dim S;(f). Therefore this last possibility is ruled out.
(Observe that our assumption about dim S;(f) holds if the irreducible
components of S;(f) have the minimum possible dimension, viz.
r—ilm—r+i).)

We conclude that the codimensions in Z of S;(g) N E and of Si(g)
are m-r+2=dim(X)-dim(Z)+2 and m-r+1=dim(X)-
dim(Z) + 1 respectively. Thus, Lemma (5.2) implies that [S;(g)]=
Cm—r+1(1v;) in H(Z). (Observe that dim(X) — dim(Z) = m — r.) Moreover,
S1(2) and E intersect properly. Another application of Theorem (4.5)
implies that

[SP(N) = gx([S1(®NO*[E]) = gx(Crm-r+1(v,) *[E)).

Hence, we can complete the proof by calculating the right hand side
of this equation.
Now [Elc(w*p¥rx — m*p¥rx) =[E] in A((X X X)'), so that Pro-
position (5.5) yields
c(v,)0*(e) = 0*(e(1 + &) 'c(IQ m*p%vy)).

Consider the diagram:

Py =E—s(XxX) —>Z

I b b

X XxX-"5X

Applying the projection formula to 6 and then to j, we obtain:

gx(c(¥)0*(e)) = prs740:6*(e(1 + &) ' c(IQ m*p%vy))
= put([Z]e(1+ €)' c(IQ m*p%v;))
= Pt x*(Z)1 + &) 'c(IRQ m*p3yy))
= pxj*((Z)1 + &) 'c(UQ 7*p3vyp)).

By [11, formula (V, 60)], Z N E =P(2y). This implies

*121= f;) Cnilp*fHTy)E,
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where ¢ = ¢1(Ogx(1)), or equivalently:
J*[Z] = cn((p*f* Ty )(1)).
All of this gives:
2+(c(1)0*(e)) = p+((1 = &) 'cn(p*f* Ty XD c(p* v (D)),
where F(1) means FQ Ogx(1). (Note, in particular, that j*(I)=
Oxe(1). Thus j*(e) = —£&) A similar computation yields the following

lemma.

LEMMA (5.6.1): Assume that Z is smooth and of pure dimension
2r—m. If iy, . . ., iy are positive integers, then

gx(ci(vg) . .. Ci,,(Vg)o*(e)) = P*(Cm((P*f*TY)(l))ail ... Giy),
where a; = c((p*v)(1) — Ogx(—1)).

The following lemmas will also be useful. In all of these lemmas,
the notation is as in the diagram (*).

LEMMA (5.6.2): If j=0 and & = ¢i(Ogx (1)), then
P*(Cm((P*f*TY)(l))fi) = Cm—rs14i(¥f).

LEMMA (5.6.3): If a, is defined as above, then

ki . .
palenl@*frra) =3 3 (" 77K i),

i=0j=0 J
for every k = 0.

We see immediately that Theorem (5.6) is a consequence of Lemma
(5.6.1) and Lemma (5.6.3). In particular, we take k=m—r+1 in
Lemma (5.6.3) and note that =i_,(‘7) =1 (resp. 2" if i =0 (resp.
i =1). Thus, it only remains. to prove the last two lemmas.

PROOF OF LEMMA (5.6.2): We consider the map p4: A (P(2%)—
A(X). It is well known that p,(£)=0 for i =r—2 while p4(£)=
Si-r+1(7x) for i=r—1. As a special case of Lemma (5.1) we have
cm((P*f*1v)(1)) = 2™ Cm-i(p*f*1v)E. Thus we can obtain the desired
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identity by multiplying by & and applying the projection formula.
Q.E.D.
PrOOF OF LEMMA (5.6.3): By definition, we have a;=
koo ci-a((p*vp)(1)) €. Furthermore,
LQin—k+r+j
ey =3 ("4

=0

) Ck—,\—j(P*Vf)fj

by Lemma (5.1), where n = m — r. These equations yield the identity

—k+A+j i
Q= (n k . ]) Crr-f(p*vp) €
j+rAsk ]
S (n—k+i ;
= 2 Z (n . l) Ck—i(P*Vf)'f'-
i=0 j=0 ]

To finish the proof, we multiply by c,((p*f*7y)(1)) and apply Lemma
(5.6.2) and the projection formula. Q.E.D.

If dim(Y)=dim(X), then the formula in Theorem (5.6) becomes
[SP(H] = c1(v)*+ cx(w). In particular, if dim(X)=r and Y =P, let h
be the class of a hyperplane in /(P") and let ¢;(X) and s;(X) denote
ci(7x) and si(7x) respectively. In this case:

6.7 [SP(N] = 3(r + DBr+2)f*(hH + 3(r + 1)sy(X)f*(h)
+ 51(X)* + 5:X),

where s,(X) = —c(X) and s:X) = ¢ci(X)*— c(X).

If X is a suitably embedded nonsingular surface and f: X >P%is a
generic projection, then SP(f) is a finite set of points. The number of
points is the degree of the cycle SP(f). Each point is counted with
multiplicity =1 if char(k) # 3. (To check this, use Theorem 4.1 of
[16].) If char(k) = 3, then each point is counted with a higher multi-
plicity, probably = 3. If char(k) #2, 3, then the points of SP(f) are
mapped to ordinary cusps of the branch curve f(S:(f)) CP%. Our
formula for the number of points in S?(f) agrees with Iversen’s
formula for the number of cusps of f(.S|(f)). (See [8, p. 968].

If dim(Y)=dim(X)+1, then the formula becomes [SP(f)]=
) + ei(vp)es(vp) + 2¢q(vp). If dim(X)=r and Y =P"*!, then we use
the same notation as above and obtain:

[SPEN = 3(r + D’(r + 2)f*(h*) + (r + D(r + 2Q2r + 3)s:((X)f*(h?)

(5.8 + G+ 2Gr+ 551 X2+ (r +23r + 4 s X))f*(h?)
+3(r + 2)(51(X) s X) + s3(X)f*(h)+ sAX)* + 5:(X)53(X) + 254 X),
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where sy(X) = —c(X)*+2c1(X)cAX) — c3(X) and
54X) = ci(X)* = 3e1(X) e X) + 2c1(X) c3(X) + (X ) — ci( X).

If X is a suitably embedded 4-dimensional variety and f: X —> P’ is
a generic projection, then SP(f) is a finite set of points. If char(k) # 3,
then each one occurs with multiplicity 1 in the cycle SP(f).

REMARKS (5.7),(5.8),(5.9): LetZ=Z(f)and g:Z — X beas above. If
g satisfies the hypotheses of Theorem (5.6), then we have a formula for
[SP(g)] in A(Z). If SP(g) also intersects E properly, then one can
conclude that [SP(f)] = g«([SP(g)10*(e)) (cf. Theorem (4.5)) and get a
formula for [S(f)] that is valid over a ground field of any characteristic.
Thus, if dim(Y) = m = r = dim(X), then dim(Z) = dim(X), and we have
[SP(N] = g4((c1(,)* + cx(1,))6*(e)) if the hypotheses are all satisfied.
This leads to:

[SPNO] = e’ + 3er(wpeavy) + 2¢3(2y),

which agrees with known formulas when char(k) =0. (See [13] or
[21]). However, when dim(Y) = dim(X) + 1, this procedure does not
always work! The difficulty seems to be related to the fact that S?(g)
and S?(g) N E may not have the correct dimension, even if SP(f) has
the correct dimension. Suppose, for example, that S,(f) is nonempty
and has the correct (i.e. minimum possible) dimension (=r—
2(m —r+2)) and that g7'(Sx(f)) N EZ Sx(g). Af m = r+1, the hypo-
thesis on S,(f) implies that r=6.) Proposition (4.4) implies that
dim(SP(@)NE)=3r—2m—3. If m=r+1, this is larger than the
correct dimension of this intersection (=4r —3m —3).

6. The stationary locus

As usual, we set Z = Z(f) and let g: Z — X be defined as in section
4. We define the stationary locus of f, denoted N, or Ny(f), to be the
subscheme g(Si(g))C X. (If f maps X birationally onto its image
X'=f(X)CY, the points of f(N,) are sometimes called stationary
points of X'. See [19, p. 1].) After establishing some basic local
properties of N,, we will give a formula for the rational equivalence
class [N,] of the cycle associated to N-.

First of all, if x and y are distinct points of X such that f(x) = f(y)
and x € Si(f), then Corollary (4.2) implies that y € N,(f).
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PROPOSITION (6.1): Let f: X —>Y be a morphism of nonsingular
varieties, let q =0, and let f':S(f)—=Y and g':S1”(g)— X be the
restrictions of f and of g:Z(f)— X respectively. If x is a closed point
of X, then there is an isomorphism g''(x) - ES f''(f(x)) — {x}.

PrOOE: Let 3 = 35(f; q,0). By definition, 3 is the inverse image of
Ay under the morphism S{?(f)XX —-A4-Y xY induced by fXxf.
More generally, let T be an arbitrary subscheme of X, let D be the
inverse image h~'(Ay), where h: TX X —Ax—>Y X Y is induced by
fXxf, and let p:D—> X be induced by projection of T X X to the
second factor. An easy modification of Laksov’s proof of [12, Pro-
position 21] shows that projection to the first factor induces an
isomorphism p~!(x)— f"~'(f(x)) — {x} where f'=f|r: T - Y. (Observe
that p~'(x) =(T x{x})) N D = h'"}(4y), where h' is the restriction of h
to T x{x}—{(x, x)}.) Applying this in the case T = S{”(f) and using
Theorem (4.3), we obtain the result. Q.E.D.

PROPOSITION (6.2): If Z = Z(f) is smooth, if g:Z— X is finite, and
if Z- g(Z) = M, is birational, then the points of N, are precisely the
pinch points of M.

Let W be a variety whose normalization is nonsingular. We define
a pinch point of W to be a point x € W such that one (or more) of the
branches of W at x is singular. In other words, Oy,,/P is not a regular
local ring for some minimal prime ideal P C éw,. Thus, Proposition
(6.2) is an immediate consequence of [15, Proposition 3].

The case where x& S{"*’(f) may be the most interesting case of
Proposition (6.1). In any event, one can consider an irreducible
component V of S{?(g) such that VZ E. Proposition (6.1) provides a
way to determine whether g’ maps V birationally onto its image.

THEOREM (6.3): Let f:X"—>Y™ be a morphism of nonsingular
projective varieties, and assume that Z = Z(f) is smooth and of pure
dimension 2r—m. If N = Nyxf) is empty or of pure codimension
2m—r)+1 in X, if dim Si(r)=3r-2m—i—1 for all i =2, and if
g2:Z — X maps Si(g) birationally onto its image, then

[NZ] = f*f*cm—rH(Vf) - 2'Cm—r(V]’)cm—r+1(Vj")

m-r
- 2:1 2 (V) Cmr+1+i(¥f)
i=

in A(X).
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PrROOF: As in the proof of Theorem (5.6) we show that every
irreducible component of S;(g) has dimension 3r—2m — 1. This im-
plies that Si(g), if nonempty, has the “correct” codimension in Z,
namely m —r+1=dim(X)—dim(Z) + 1. Thus, Lemma (5.2) implies
that [S1(g)] = ¢m-r+1(v,) and therefore [N2] = g4Cm—r+1(¥).

In evaluating this expression, we will use the methods and notation
of Section 5. First of all, (1+e)'=1—e(1+¢)™! so that

» Cm-rs1(Vg) = 0*Cprii(T*pi7x — THEpH1x + IQ TH*pF1y)

- Cm—r(Vg)O*(e)’
by Proposition (5.5). Now c¢;(I) = —e and ci(m*p%rx — n*p¥rx)e =0
for i=1. (Apply the projection formula to j:E—>(X X X) and
observe that j*m*p%F = p*F, ¢=1,2, for any coherent sheaf F on

X.) Therefore, Lemma (5.1) implies

Crn-ril(T*pitx — w*p¥7x + IQ w*pEuy)
= Cp-rei(m*pi1x — ¥ ¥1x + D% 1Y)

= Cn-rsl(T*p3f*1y — T*pF1x).
Together with (i), this gives:
() Cm-rr1(¥) = 0% Cmri(T*p3f* my — TFPYTx) — (1) 0% ().
By Lemma (5.6.1) and Lemma (5.6.3) we have:

(iit) &xCnr()0%(&) = 2, Vemrirsivp)emr-i(y)-

LEMMA (6.3.1): If a € A(X), then
pum([Z]m*pTa) = f*f(a) = acm—,(vy).
Proor: By [11, formula (V, 56)], we have
[21= 74 % P TAY] = 3, Cm-e0*f*7)E
Moreover, [11, formula (V, 78)] gives

P (¥ (f X f)*[Ayla*p¥(a)) = f*f(a),
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which explains the first term. As for the second term, we apply the
projection formula to j and then to p and obtain

P2xT % (]* (Z Cm—e(P*f*TY)fe_]> W*PT(G))
= b (2 cn-do* et rot@)

=0+ (3 p*cn- I
=1

E]

= P Cm-e(f*Tv)p(£Na

= m~r(vf) s a.

Q.E.D.
We now apply the projection formula to :Z—(X X X) and to
pam. This gives:
gx0*Cm_ri(m*pif¥ry — w¥p¥ry)
= puTx([Z]Cm—rsi(T*pEf*1y — T*pH7X))

m—r+1
=2 (1217 7P 3n eI m*ptsirn)

m—r+1

= 2 Cm—r+1—i(f*’TY)Pz*‘lT*([Z]W*PTS.'(TX))-

=

Thus, we can apply Lemma (6.3.1) to show that

m—r+1
g*O*cm—H-l("*pgf*TY - W*PTTX) = Z} Crm-ra1=-i(f*7y)f*fx5i(7x)

= Cm—r+1(¥)Cm— ().

Applying the projection formula (this time to f:X-Y) we can
replace this expression with:

(iV)g«0*Cmrrl(T*pEf*Ty — T*pE1y)

= f*f*cm—rﬂ(”f) - Cm—r(Vf)cm—rH(Vf)-

Putting (ii), (iii), and (iv) together, we obtain the desired formula.
Q.E.D.

When m =r + 1, Theorem (6.3) gives the formula
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[N2] = f*faca(vp) — 2ci(vp) ca(vy) — 2¢3(vy).

If Y=P"*! and h € 4(P™") is the class of a hyperplane, then

f(af*(h")) = deg(f«(a))h™*"!

for any a € #;(X). The degree is calculated in Z(P"*"). Thus f.(a) €
Ai(P™") and deg(f«(a)) is the degree of the zero-dimensional class
f(a)h™ € oA, ,(P™"). Thus, we obtain:

64 (N ={("5 %) deg fu[X1+(r+2) deg fulsi(X)

+deg fus:X) | ()

—3(r+ 1)(r+2)Q2r+3)f*(h* — 2(r +2)2r + 3)s(X)f*(h?)
=2(r + 2)(s1(X)* + 25A X))f*(h) — 2(s:1(X) 52(X) + 55(X)),

where the notation is as in (5.7) and (5.8).

When r =3, a generic map f: X —P* has finitely many stationary
points. o = degree [N,] is the number of these, counted with suitable
multiplicities. One could also express the number of stationary points
in terms of the elementary projective characters of f(X)C P*, defined
as in [19, p. 2]. This does not seem to have been done, but Roth has
studied relations between o and other projective characters [18,
Section 5] and gave a formula for the number of stationary points in
the case where f(X) is ruled by planes. (See [17].) We will now study
this case.

ExAMPLE (6.5): Let C be a nonsingular projective curve of genus g
and let X =P(F), where F is a locally free sheaf of rank 3 on C.
Suppose that f: X - P* maps X birationally onto f(X) C P* and sends
the fibres of the structural map ¢ : X = P(F)— C onto planes in P*.

If we arrange things as in [11, Chapter III, Section B], we may
assume that Oyc(1) = f*0Op«(1), where Oy (1) is the tautological quo-
tient line bundle of ¢*(F) on X =P(F). Then the basic structural
equation of the #(C)-algebra (X)) is

FH(R) = ef*(h?),
where e = ¢*c,(F). Moreover there is an exact sequence:

0-0x ~> o*(F*) Q 0(1) > vxic 0.
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[See [1, p. 11].) Since ¢:X - C is smooth, vy is a bundle and
c(X) = (- vy)c(vxic), where y = ¢*(K¢). Thus:

ca(X)=3f*h)—e—vy
cAX) =3f*(h?) — (2e + 3y)f*(h)
cx(X)==3yf*(h?.

Noting that deg f.(y) =2g —2, we obtain:
[N2] = 2d — 10+ 2(2g — 2))f*(h*) — 12yf*(h)
where d = deg f+[X]. Setting o = deg[N,], we obtain
o=2d>-10d+(2d-12)(2g—-2)
or equivalently
o=2d(a—d)—12(a—d)+2d,

where a =2g — 2+ 2d is the class of a plane section of X. This agrees
with Roth’s result [17, formula (12)].

REMARK (6.6): The methods of Sections 5 and 6 can be used to
verify the triple point formula given in [11, footnote on p. 389]. In
particular, Lemma (5.3) and Proposition (5.5) are useful. I have been
informed that Kleiman has independently obtained results similar to
Lemma (5.3) and Proposition (5.5). (His knowledge of the aforemen-
tioned triple point formula before he knew about my work would
seem to indisputably corroborate that information.) I understand that
Kleiman’s results will appear in a forthcoming work entitled ‘“Mul-
tiple point formulas”.
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