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0. Introduction

Let k be an algebraically closed field (of arbitrary characteristic),
and let f : X- Y be a morphism of nonsingular algebraic varieties
over k. Let 03C0 : (X  X)’ ~ X  X be obtained by blowing up the
diagonal 0394 C X x X, and let E = 03C0-1(0394) be the exceptional locus. We
define the double point scheme Z = Z(f) C (X x X)’ exactly as in [12,
Section 4] or [11, Chapter V, Section C]. (See Section 1 below.) In

particular, if z E (X x X)’ - E, then z E Z if and only if 03C0(z) = (x, y),
where f (x) = f ( y). (Recall that Tr induces an isomorphism (X x X)’ -
E  X  X - 0394.) On the other hand, the points of 03C0-1(x, x) are in 1 : 1

correspondence with the 1-dimensional subspaces of the Zariski

tangent space T(X)x. If Tr(z) = (x, x), then z E Z if and only if z

corresponds to a 1-dimensional subspace of the kernel of the linear
map T(X)x ~ T(Y)f(x).

Consider a projective embedding X C pn and a morphism f : X ~ Pm
(m a dim(X)) induced by projection from a linear subspace L C pn,
with codim(L) = m + 1 and L ~ X = 0. Kleiman proved the following
theorem in [11], using the techniques of [10].

THEOREM (0.1): If char(k) = 0 and L is in general position, then
Z(f ) is smooth over k. Moreover, every irreducible component of Z(f)
has dimension = 2 . dim(X) - m, or else Z(f) = 0.

To obtain similar results over a field of arbitrary characteristic we
have had to impose some conditions on the embedding X C pn. For a
closed point x E X, let tX,x C pn be the embedded tangent space at x. If
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b is a positive integer, we say that Ox,xlm’X,x is spanned by linear
coordinate functions if the following condition holds.

(*) If H is a hyperplane in pn such that x~ H and if pn - H is

identified with Spec k[T1, ..., Tn], then every element of Ox,xl m’X,x is a
linear combination of the residues of 1, Tl, ..., Tn.
The definition is independent of the choice of the hyperplane H Z x.

(See [16, Section 6].)

THEOREM (0.2): Let X be an (irreducible) nonsingular subvariety of
P". Assume that tX,x fl tX,y = 0 whenever x ~ y and that OX,x/m3X,x is

spanned b y linear coordinate functions for every x E X. If f : X ~ pm is
induced by projection from a linear subspace L C pn in general posi-
tion, then Z(f ) is smooth and of pure dimension = 2 . dim(X) - m, or
else Z(f) = 0.

The results of [16, Section 6] imply that every nonsingular pro-
jective variety has an embedding which satisfies the hypotheses of
Theorem (0.2). A relatively elementary proof of Theorem (0.2), using
the methods of [16], will be given in Section 2. In [11, Chapter V,
Section D], Kleiman sketched a proof of a result that is similar to

Theorem (0.2). In Section 3, 1 have worked out the details of that

proof. Thus, we obtain a second proof of Theorem (0.2).
If f : X ~ Y and Z = Z(f) are as before, let g : Z ~ X be induced by

P2 ~ 03C0, where p2: X  X ~ X is projection to the second factor. Sup-
pose that Xh X2, and X3 are distinct points of X such that f(x1) =
f(x2) = f(x3). If 03C0(z1) = (Xh X3) and 11’(Z2) = (X2, X3), then g(zi) = g(z2).
Thus, triple points of f induce double points of g. This observation is
the basis of the study of triple points in [ 11, Chapter V, Section D]. It
is also interesting to ask what happens for "limiting positions" of
triple points, where some or all of the points xl, x2, and X3 coincide.
This is the motivation for Section 4, 5, and 6 below.

If f is ramified at x and f (x) = f(x’) for some x’ ~ x, then we have a
stationary point of f. If 03C0(z) = (x, x’), then g is ramified at z by
Corollary (4.2) below. Our main local results about stationary points
are Theorem (4.3) and Proposition (6.2). Theorem (6.3) gives a for-
mula for the rational equivalence class of the stationary point cycle.

Finally, a point x E SB2)(f) - S(3)1(f) can be regarded as a "limiting
position of triple points" because the local ring at x on the fibre
f-1(f(x)) has length = 3. (The singularity subschemes SBq)(f) are

defined as in [16, Section 3].) These points give rise to ramified points
of g which lie on the exceptional locus E. In fact, g induces isomor-
phism
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for all q ~ 1, by Theorem (4.5). Theorem (5.6) gives a formula for the
rational equivalence class of the cycle associated to the subscheme
SB2)(f) C X. It is the same as the characteristic 0 formula. The proof,
however, works in all characteristics because it uses a formalism that
is based on Theorem (4.5). In order to be able to work in the rational
equivalence ring, we have restricted to the case where Z is smooth.
Thus, the result is valid for generic projections. It also seems likely
that one could work with the Chow homology theory of [3] and prove
a more general result.
Terminology and notation will be similar to what is used in [11] ad

[16].

1. The basic constructions

Let f : X ~ Y be a morphism of non-singular varieties, and let dx
and ày be the diagonals in X x X and Y x Y respectively. Then
dx C (f x f)-1(0394Y) so that E C ((f x f) 0 03C0)-1(0394Y), where 03C0: (X x X)’ ~
X x X is as in the introduction and E = 03C0-1(0394X). Therefore J C I,
where J is the sheaf of ideals in O(X x)’ defining the subscheme
((f x f) 03BF 03C0)-1(0394Y) C (X x X)’ and I = O(X X)’(-E) is the invertible sheaf
of ideals defining the exceptional locus E. (Recall that E is a divisor in
(X x X)’.) The double point scheme Z(f) is defined to be the subscheme
of (X x X)’ defined by the sheaf of ideals I-1J.

LEMMA (1.1): TT induces an isomorphism Z(f) - E  X X y X - à x.

PROOF: We recall that X YX ~ (f  f)-1(0394Y) ~ X  X. Thus, the
result follows because TT induces an isomorphism (X x X)’ - E X x
X - dx. Q.E.D.

It is well-known that there is a commutative diagram

where 8(x) = (x, x), 03A91X is the cotangent bundle, and j maps P(03A91 X)
isomorphically onto E. Thus, for each closed point x E X, j induces a
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1 : 1 correspondence between 1T-l(X, x) and the set of 1-dimensional
subspaces of the Zariski tangent space T(X)x.

LEMMA (1.2): Let z E E. Then z E Z(f) if and only if z corresponds
to a 1-dimensional subspace of the kernel of the linear map

(df)x : T(X)x ~ T(Y)f(x), where (x, x) = 1T(Z).

PROOF: We have O(X X)’,z ~ OX X,(x,x) ~ OX,x ~kOX,x. By choosing a
suitable generating set f tl, ..., tr} for the maximal ideal mx,x C OX,x, we
may assume that the maximal ideal m(X X)’,z C O(X X)’,z is generated by
{1 ~ tl, ..., 1 ~ t" tl 0 1, 03BE2,..., el, where 03BEi satisfies ti ~ 1 - 1 Q9 t; =

ei(t, ~ 1 - 1 ~ ti), i = 2,..., r. Then Iz is generated by tl Q9 1 - 1 ~ ti.
Consider the mapping f*: OY,f(x) ~ OX,x. Then I-llz is generated by

the elements (f *(u) Q9 1 10 f *(u»I(t, Q9 1- 1 ~ tl), as u runs

through OY,f(x). If f*(u) ~ ao + ait, + ··· + 03B1rtr(mod mlx), then it is

easily verified that

(See Lemma (2.1) below, also.)
In other words, I-IJz is the unit ideal if and only if tl occurs to the

first power in the expansion of some f *(u). This is equivalent to the
conclusion of the lemma. Q.E.D.

EXAMPLE (1.3): Let f : A2 ~ A3 be the map which sends (tl, t2) ~
(tl, t,t2, t2 2 + t2). The Jacobian matrix is:

Thus, f is ramified only at (0, 0), and if char(k) 0 2, 3 at (0, -2 . At a
ramified point, the tangent space map has rank = 1. Hence Zif) fl E
consists of either one or two points, depending on char(k). We write
1A2 x A2 = Spec(k[s,, S2]) x Spec(k[tl, t2]) = Spec k[sl, S2tl, t2], so that

the defining ideal of à is generated by si - ti and s2 - t2. After blowing
up à, we work in an affine open set with coordinates s1, s2, t2 and e,
where SI - tl = e(S2 - t2). The local equation of E is s2 - t2 = 0, and the
defining ideal of Z(f ) is generated by:
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(Note that SIS2 - tlt2 = s1(s2 - t2) + (s1 - t1)t2.) Thus, Z(f ) is a smooth

curve. The scheme-theoretic intersection Z(f) n E has equations e =
SI = S2 - t2 = 2t2 + 3t2 = 0. If char(k) 0 2, 3, then Z(f ) ~ E consists of
(o, 0, 0, 0) and (0, 0, -3, -3), both with multiplicity 1. If char(k) = 3,
then (0, 0, 0, 0) has multiplicity 1 and the other point moves away to
infinity. If char(k) = 2, then only (0, 0, 0, 0) is present, with multiplicity
2. Correspondingly, the ramification scheme Si is smooth if

char(k) 0 2 but is not smooth if char(k) = 2.

REMARK (1.4): When char(k) = 2, the above map is the canonical
form for the pinch points arising from a generic projection of a
nonsingular surface to p3 . This is the "missing case" in Kleiman’s
proof. It is a general fact that the equations defining Z(f) "look the
same whether or not char(k) = 2". This simple fact is what makes it
possible to give a proof of Theorem (0.2) that makes no reference to
the characteristic.

We now fix a nonsingular variety X C pn and an integer m such
that dim(X)  m  n. We recall from [16, Section 8] that there is a

dense open subset S C PN (where N = (m + 1)(n + 1) - 1) and a mor-
phism 03A6 : X  S ~ Pm  S such that:
(i) A closed point s E S is an (m + 1)-tuple (~0,..., ém) of independent
linear forms in n + 1 variables (up to common scalar multiple) such
that LS fl X = 0, where L, is the linear subspace of pn given by
~0 = ··· = ~m = 0·

(ii) If x = (t0,..., tn)~X, then 03A6(x, s) = (03A6s(x), s), where 03A6s(x) =
(~0(t0,..., tn),..., ~m(t0,..., tn))·

In particular, tPs is projection from L,.
Let 0 X s 0: X x X x S - Pm x pm x S be the morphism which sends

(xi, X2, s) ~ (03A6(x1), 0, (X2), s). Let j C O(X X)’ S be the sheaf of ideals
that defines the subscheme «0 S03A6) 03BF (ir x ids»-’(,àpm x S), and let 9
be the (invertible) sheaf of ideals that defines the subscheme E  S C

(X x X)’ x S. Thus 9 D J and the following makes sense.

DEFINITION (1.5): The relative double-point scheme Zs(O) is the
subscheme of (X x X)’ x S’ defined by the sheaf of ideals f-1f.
The reason for the terminology is the obvious one: Zs( tP) is the

natural analogue, in the category of schemes over S, of the usual
double point scheme.

LEMMA (1.6): Every irreducible component of Zs(O) has codimen-
sion Z m in (X x X)’ x S.
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PROOF: It is well known that 0394Pm is a local complete intersection in
Pm x Pm. This implies that the stalk f(z,s) is generated by m elements at
every point (z, s) E (X x X)’ x S. Thus, it follows that -0-’j is also

generated (locally) by m elements at each point of ZS(03A6). Together
with the Krull altitude theorem, this implies the conclusion of the
lemma.

PROPOSITION (1.7): zs(o) ~ ((X x X)’ x {s}) = Z(03A6s) x Isl for every
closed point s E S.

The verification is straightforward and elementary; details are left
to the reader. The result can also be obtained as a consequence of

known facts about the behavior of blowing up with respect to base
changes. (See [7, Section 3].)

PROPOSITION (1.8): ZS(O) is nonsingular and of dimension =

dim(S) + 2 - dim(X) - m. In fact, if p : Zs(O) - (X x X)’ is induced by
the projection (X x X)’ x S ~ (X x X)’, then p is surjective and p-’(z)
is nonsingular and of dimension = dim(S) - m for every z E (X x X)’.

No assumption on the embedding X C pn is needed in the proof of
Proposition (1.8). The smoothness of p-’(z) for z ~ E will be proved
in the next section. To prove that p-’(z) is smooth when z~E, we
begin by observing that 7r(z) = (x, y) E X  X - 0394 and choosing
homogeneous coordinates in pn such that x = (1, 0,..., 0) and y =
(0, 1, 0, ..., 0). We may assume that 03A6: X  S ~ Pm  S sends

(to,..., tn, s) ~ (~0(t),..., tm(t), s), where ~i(t) = 03A3nj=0 aijtj, i = 0,..., m,
and aij are the homogeneous coordinates of S E p(m+1)(n+1)-l. Then

p-1(z) ~ U C V, where V C p(m+l)(n+1)-l consists of the points (a;;) such
that the 2 x 2 minors (i.e. subdeterminants) of the (m + 1) x 2 sub-
matrix (aij)0~i~m,j=0,1 all vanish, and U consists of all s E V such that
Ls ~ X = Ø. Thus, U ~ Sing(V) = 0. (In fact, x~ Ls or y~ Ls is

sufficient for this.) Since V has codimension m in P(m+1)(n+1)-1, this part
of the proof is complete.
For a dominant morphism q : T ~ S of nonsingular varieties, the

nonsmooth locus NS(q) consists of all t E T such that q-1(q(t)) fails
to be smooth and of dimension = dim(T) - dim(S) at t. As noted in

[16, Sections 2 and 10], it can be described as the first order sin-

gularity Sv(q), where v = dim(T) - dim(S) + 1, of the morphism q. (In
the définition of the first order singularities Si and §i, we follow [11].
Thus, Si(q) consists of all closed points x E T where the tangent
space map (dq)x : T(T)x ~ T(S)q(x) has rank ~dim(T) - i, while
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Si(q) = Si(q) - Si+1(q) consists of all points where the rank is exactly
dim(T) - i.) In particular, the nonsmooth locus is closed in T. The

following result will be proved in the next section.

PROPOSITION (1.9): Let q : Zs(O) - S be induced by the projection
(X  X)’  S ~ S, and assume that OX,x/m3X,x is spanned by linear

coordinate functions for every closed point x E X. Then dim(NS(q) rl
(E x S»:-5 dim(S) - 1.

REMARK (1.10): If q : T - S is an arbitrary dominant morphism of
nonsingular varieties, then every irreducible component of NS(q)
actually has dimension ~dim(S) - 1. (The proof uses the exact

sequence q*03A91S~03A91T~03A91T/S~0 and standard properties of Fitting
ideals.)

2. The proof of Theorem (0.2)

We assume that the embedding X C pn satisfies the hypotheses of
Theorem (0.2). Since tX,x ~ tX,y = Ø when x ~ y, Theorem 7.6 of [16]
implies that Z(f ) - E is smooth if f : X ~ pm is a generic projection.
In fact, Lemma (1.1) implies that Z(f) - E ~ 03A32(f), in the notation of
[16].
To complete the proof of Theorem (0.2), we must study Z(f) ~ E.

We observe that Propositions (1.7), (1.8), and (1.9) imply that all

points of Z( lPs) ~ E are smooth points of Z(03A6s), provided that s lies
in a suitable dense open subset of S. (Specifically, this open subset is
the complement of q(NS(q)), where NS(q) is the nonsmooth locus of
q.) Since there is a dominant morphism S ~ G(n, n - m - 1), it is

enough to prove Propositions (1.8) and (1.9).
Let us fix a closed point x E X. We choose homogeneous coor-

dinates To, ..., T" on pn such that x = ( 1, 0, ..., 0) and tX,x is the

subspace Tr+1 = ··· = Tn = 0, where r = dim(X). Thus, t1,..., t,

generate the maximal ideal mX,x C Oxx, and t; E M2 XI x@ i = r + 1, ..., n.
(Here, t; = Ti/T0 along X.) We also fix a point z ~ E that lies above
(x, x). Then z corresponds to a line in tx,x that contains x; after a

change in coordinates we may assume that this line is T2 = ... = Tn =
0.

We have an inclusion Cxx 0 Oxx C A, where (A, mA) is the local ring
on (X x X)’ at z. To further simplify the notation, we set ti = 1 ~ ti
and si = ti ~ 1, i = 1,..., n. Then mA is generated by f sl, th..., tr,
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.., 03BEr}, where ei = (s; - ti)/(s1 - ti). (Note that e2,..., Çn must

vanish at z, because z corresponds to the line T2 = ... = TN = 0.)

LEMMA (2.1) : If v E m1,x, then (v ~ 1 - 1 ~ v)/(sl - tl) E m1-1.
Moreover:

(i) (si - t¡)/(SI - ti) ei, i = 2, ..., r,
(ii) (si - t2)1(SI _ tl) SI + t1,
(iii) (s1sj - t1tj)/(s1 - ti) sj --- (mod m2A),

f or j = 2, ..., r, and
(iv) (sisj - titj)/(s1 - tl) E m2A when 2 ~ i  j ~ r.

PROOF: The first statement is proved by induction on d. If v = ab,
where a E mX,x and b E md-1, then

The expression inside the first pair of rectangular brackets lies in

md-2A, by the inductive hypothesis. Moreover, 10 b E
OX,x ~ md-1X,x C m1-1 and similarly a ~ 1 E mA.
The last two statements follow from the identities

We also consider closed points s e S such that 03A6s : X ~ Pm sends
(1, tl, ..., tn) ~ (~0(t), ..., tm(t», where f;(t) = ~i(1, th ..., tn) =
ai0 + ai1t1 + ··· + aintn, i = 1,..., m, and ~0(t) = 1 + aol tl + ··· + aontn.
Thus, we can regard the aij, (i, j) e {0, ..., m} x {0,..., n} - {(0, 0)1, as
representing coordinates on some affine open subset of PN. Given a
particular point so in this affine open set, such that the point x =

(1, 0, ..., 0) does not lie in the linear space Lso, we may change
coordinates so that aol, ..., aon, a10,...., amo all vanish at so. In fact, we
change coordinates in pn so that the hyperplane at infinity contains
Lso, change coordinates in Pm so that 0,(x) = (1, 0, ..., 0) E pm, and
then change coordinates in p(m+l)(n+1)-l as in Lemma 8.3 of [16]. In
other words, we may assume that so E W, where W is the intersection
of S with the linear subspace ao, = ··· = aOn = a10 = ··· = amo = 0 in
P(m+1)(n+1)-1. Hence, properties of Zs(O) which hold at a point of
{z} x W actually hold at all points of E x S.

For s E W, the projection 03A6s : X ~ Pm sends (1, t1,..., tn)~



69

( 1 , fI ( t ), ..., f m ( 1 ) ) , where ~i(t) = ai1t1 + ··· + aintn, i = 1, ..., m. Let

(B, mB ) be the local ring on (X x X )’ x W at (z, s). The local defining
ideal, in B, of Zs(O) is generated by the elements (~i(1, s 1, ..., sn) -
~i(1, tl, ..., tn))/(s1 - tl), i = 1,..., m. Lemma (2.1) implies that

(~i(1, Si,..., Sn) - ~i(1, t1,..., In»/(SI - tl) ~ ai1(mod mAB).

(The ring homomorphism A-B comes from the projection (X x
X)’ x W ~ (X  X)’.) Thus, for any s E W, the requirement that our
particular point z should lie in Z(03A6s) ~ zs(o) ~ (X  {s}) forces

ai,,..., ami 1 to vanish at s. In other words, the above congruences
imply that ZS(03A6) n ({z} x W) is nonsingular and has codimension m in
{z} x W Together with Lemma (1.6) and its proof, this implies that
p-,(z) = zs(o) ~ ({z} x S) is nonsingular and has codimension m in
{z}  S. This proves Proposition (1.8).
We will now prove Proposition (1.9). We will use all of the notation

introduced above. Since OX,x/m3X,x is spanned by linear coordinate
functions, we may also assume:

(a) tr+1 ~ t2(mod m3X,x),
(b) tr+1 ~ t1ti(mod m3X,x), i = 2,..., r, and
(c) the monomials t i, t1t2,..., tit, do not occur in the expansions of

the linear coordinate functions t2r+1,..., tn modulo m3X,x.
These assumptions and Lemma (2.1) lead to the following con-

gruences modulo m2AB:

for i = 1, ..., m. The elements on the left sides of these congruences
generate the defining ideal, in B, of the relative double point scheme.
Thus, as before, the requirement that our particular point z should lie
in Z(03A6s) forces a11,..., am 1 to vanish at s. The additional requirement
that z should be a nonsmooth point of Z(O,) imposes the further
condition that the maximal minors of the m x (2r - 1) matrix

should all vanish at s. But the elements aij are all coordinate functions
on an affine space. Thus, the locus of common zeros of these maximal
minors has codimension = (2r - 1) - m + 1 = 2r - m, and we have
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Therefore, NS(q) fl (E x S) has codimension ~ 2r in E x S. Since

dim(E x S) = dim(S) + 2r - 1, this completes the proof of Proposition
(1.9), and also of Theorem (0.2).

REMARK (2.2): Our proof of Proposition (1.9) shows that ({z}
S) ~ NS(q) has dimension = dim(S) - 2r for every z E E. Moreover,
the proof of Theorem 7.6 of [16] implies that dim(({z} x S) ~ NS(q)) ~
dim(S) - 2r -1 if z E (X x X)’ - E. By Remark (1.10), we conclude
that dim(NS(q)) = dim(S) -1. In particular, one cannot rule out the
possibility that E x S contains an irreducible component of NS(q).

3. A différent proof

In this section, we give a proof of Theorems (0.1) and (0.2) that uses
properties of group actions. The techniques are due to Kleiman.

Let H = G(n, 1) be the Grassmann variety that parameterizes lines
in P". If X C pn, then the map X x X - 0394 ~ H (which sends (x, y) to
the line joining x and y) extends to a morphism ~ : (X x X)’ ~ H. If L
is a linear subspace of codimension m + 1 in pn, then we have the

(locally closed) Schubert subvariety S C H consisting of all lines

A C pn such that 03BB fl L ~ Ø and 03BB ~ L. Then S is smooth. In fact, the
nonsmooth locus of the closure S is fk A C LI. If L n X = 0, then we
consider the projection from L, specifically f : X - Pm. The following
well-known lemma gives the relationship between S and the double
point scheme Z(f ).

LEMMA (3.1): With the notation as above, we have Z(f) = cp-l(S).

We also consider the projective linear group G = Aut(P"). There is
a transitive group action G x H ~ H, sending (g, 03BB) ~ g03BB = translate of
03BB by g. The following result is basically a special case of a theorem
proved by Kleiman.

PROPOSITION (3.2): Consider the diagram

where p is the projection to the first factor and q(g, A) = gA.
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(i) If y is the generic point of G, then p-1(03B3) XH (X x X)’ is either

empty or regular and of pure dimension = 2r - m. (As above, r =

dim(X).)
(ii) If P-’(Y) xH (X X X)’ is geometrically regular (i.e. smooth) over

K(y) = OG,03B3, then there is a dense open subset U C G such that cp-l(gS)
is smooth and of pure dimension 2r - m (or else empty) for every
closed point g E U.

In fact, (i) is a special case of the theorem proved in section (2) of
[10]. To prove (ii), one begins by showing that q : G  S ~ H is a

smooth morphism (in any characteristic). Hence, the projection (G x
S) x H (X x X)’ ~ (X x X)’ is smooth. It follows that (G x S) x H (X x

X)’ is smooth. If p : (G x S) x H (X x X)’ ~ G x S is the projection to
the first factor, then (p 0 03C1)-1(g) ~ p-1(g) xH (X x X)’ for every point
(closed or not) of G. Thus the hypothesis of (ii) says that the generic
fibre of pop is smooth. Therefore, (p 0 p)-’(g) is smooth for every

point g of some dense open subset U C G. This proves (ii).
The following theorem is the main result of this section. It clearly

implies Theorem (0.1) and Theorem (0.2).

THEOREM (3.3): Let G, H, S, and ~ : (X  X)’ ~ H be as above. If
char(k) = 0 or if the embedding X C pn satisfies the hypotheses of
Theorem (0.2), then there is a dense open subset U C G such that

~-1(gS) is smooth and either empty or of pure dimension 2r - m

(where r = dim(X)) for every closed point g E U.

PROOF: If char(k) = 0, the result follows immediately from Pro-
position (3.2) because regularity and geometric regularity are

equivalent in this case.
If the embedding of X in pn satisfies the hypotheses of Theorem

(0.2), we conclude as at the beginning of Section 2 that Z(f) - E is
smooth if f : X ~ Pm is a generic projection. Now, for any fixed À E H,
we have the (surjective) orbit map G  {03BB} ~ H. Thus, we can use
Lemma (3.1) to conclude that cp-l(gS) - E is smooth for g in a dense
open subset of G.

We must also determine whether cp-l(gS) ~ E is smooth. The

results of [15] and [16] imply that a generic projection f : X ~ Pm has
the following properties:

(1) Si(f) has pure codimension i(m - r + i) in X [or is empty] for
every i ~ 1;

(2) Sl(f ) = Sl(f ) - S2(f) has pure codimension m - r + 1 in X [or is
empty] and is smooth if char(k) 0 2. If char(k) = 2, there are only
finitely many nonsmooth points.
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(3) If char(k) = 2, r = 2, and m = 3, then the local homomorphism
at a point of Sl(f ) has a canonical form exactly like the morphism
studied in Example (1.3) above. (For a more precise statement, see
Theorem 3 of [15].)
Recall that Si and Si are defined as in [11]; see the discussion at the
end of Section 1.

(The assumptions on the embedding that were used in [16] are

stronger than the hypotheses of Theorem (0.2). However, the stronger
hypotheses were used only for verifying the smoothness of the higher
order singularity subschemes S(q)1. It is not hard to verify that the
techniques of [16] do indeed yield a proof of (2), under the hypo-
theses of Theorem (0.2).)

LEMMA (3.4): The structural map 03BB : P(03A91X/Y) ~ X induces an

isomorphism k -’(X - S2(f))  S1(f).

PROOF: If x E X - ,S2(f ), then there is an open neighborhood V of
x and a surjection Ov ~ 03A91X/Y|V. Thus, À induces an isomorphism of
03BB-1(X - S2(f» and Im(A) fl (X - S2(f)). But the existence of a sur-
jection OX,x ~ 03A91X/Y,x and standard properties of Fitting ideals imply
that Im(03BB) rl (X - S2(f )) = Sl(f ). Q.E.D.

Except in the case where char(k) = 2, r = 2, and m = 3, Lemma
(3.4), the isomorphism Z(f) ~ E ~ P(03A91X/Pm), and property (2) above
imply that Z(f ) ~ E is smooth except possibly along a closed subset
of dimension ~ 2r - m - 2. Since the local defining ideal of the sub-
scheme Z(f) C (X x X)’ is generated by m elements at every point,
we conclude that Z(f ) is smooth except possibly along a closed subset
of dimension ~ 2r - m - 2. In the remaining case (r = 2, m = 3,
char(k) = 2), one uses the canonical form of the local homomorphism
OP3,03C0(x) ~ OX,x at a point x E Sl(f ) to verify that Z(f ) is smooth in this
case.

The results obtained so far imply that the generic translate W =
p-1(03B3) X H (X x X)’ is a regular scheme of pure dimension 2r - m and
that its nonsmooth locus has dimension ~2r - m - 2. If we can show
that the generic translate is smooth, then the proof will be complete,
by (ii) of Proposition (3.2). So assume that W is not smooth. Then
there exists a finite algebraic extension K of K(y) such that WK =

Spec(K) Spec(03BA(03B3)) W is not a regular scheme. In particular, the base
extension morphism WK - W is not étale. However, the base exten-
sion morphism can fail to be étale only above the nonsmooth locus of
W, which has codimension ~2 in W. Therefore the Zariski-Nagata
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theorem on purity of the branch locus [6, Exposé 8, Théorème 3.4]
implies that W is smooth. (In fact, since WK - W is finite, the simpler
theorem of purity upstairs will sufhce. See [2, Theorem 1 and Remark
2].) Q.E.D.

4. Z( f ) viewed as a scheme over X

We consider a morphism f : X - Y of nonsingular varieties over k
(algebraically closed, as usual). Let g : Z(f) ~ X be the unique mor-
phism which makes the following diagram commutative.

The singularity subschemes S(q)1(f) C X are defined exactly as in [16,
Section 3]. In particular, the closed points of S(q)1(f) are all x E

X - S2(f) such that the local ring of f-1(f(X)) at x has length a q + 1.
The S(q)1(f) are a particular type of Thom-Boardman singularity.
There are close relationships between the singularity subschemes of g
and the singularity subschemes of f. These are described by
Theorems (4.3) and (4.5) below. We will also state a couple of elemen-
tary propositions about the fibres of g that show why we expected the
main results to be true. The first one is due to D. Laksov [12,
Proposition 21].

PROPOSITION (4.1): Let f be as above, and let 03C0i : X YX ~ X be the

projection to the i-th factor, i = 1, 2. If x is a closed point of X, then
03C01 induces isomorphisms 03C0-12(x) - 0394X  f-1(f(x)) - {x} and g-1(x) -
E  f-1(f(x)) - {x}.

The fact that the two isomorphisms are equivalent is an immediate
consequence of Lemma (1.1).

COROLLARY (4.2): Let z E Z(f ). If 03C0(z) = (x, y) ~ X  X - 0394, then
z ~ Si(g) if and only if x ~ Si(f), and z E S(q)1(g) if and only if
x E S(q)1(f).

We recall that 03A32(f; q, 0) = (S(q)1(f)  X) ~ ((X YX) - 0394) ~ X  X.
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(See [16, Definition 1.1].) In particular, 03A32(f ; q, 0) is an open sub-

scheme of the fibre product S(q)1(f) YX. Corollary (4.2) says that
03C0 : (X  X)’ ~ X  X induces a bijection f closed points of S(q)1(g) -
E} ~ {closed points of 03A32(f ; q, 0)}.

THEOREM (4.3): Let f : X ~ Y be a morphism of nonsingular
varieties, and assume that Z(f ) is smooth and of pure dimension =
2 . dim(X) - dim( Y). Then 1T: (X x X)’ ~ X x X induces an isomor-
phism S(q)1 - E  03A32(f; q, 0).

PROOF: As before, let 1T;: X YX ~ X be the projection to the i-th
factor. We must show that 03C0-11(S(q)1(f)) - 0394 = S(q)1(03C02) - 0394. As noted
above, these two subschemes of X YX have the same closed points.
We must show that their defining ideals coincide.

Let z ~ S(q)1(g) - E, and let (x’, x) = 03C0(z). Set (A, mA) = OY,f(x),
(B, mB) = (ix,x, and (B’, mB,) = OX,x’. Let C be the local ring on X x X
at (x’, x), and let R be the local ring on X x y X at (x’, x). Thus

B’ 0k Bee; in fact C is a localization of B’~kB. Let f* : A ~ B and
f*’ : A ~ B’ be induced by f ; let 1Tt: B ’ - R and 03C0*2 : B ~ R be induced
by 1TI and 1T2 respectively.
The ideal in B’ which corresponds to the subscheme S(q)1(f) c X is

0394q(PqB’/A), the highest nonunit Fitting ideal of the algebra of principal
parts PqB’/A. On the other hand, the ideal in R which corresponds to
the subscheme S(q)1(03C02) ~ 03A32 is 0394q(PqR/B). The proof will thus be

complete if we can show that 03C0*1(0394q(PqB’/A)) · R = 0394q(PqR/B).
Because R is a localization of B’ ~A B, Proposition 16.4.5 of [5]

implies that PqR/B ~ R~B’ PqB’/A. (In forming this tensor product, we
use the left B’-module structure of PqB’/A.) Using this isomorphism and
Lemma 2.7 of [16], we obtain the desired equality of ideals. Q.E.D.

We will also study the intersection of the singularity subschemes of
g with the exceptional locus E C (X x X)’. The following result is an
easy consequence of Lemma (1.2).

PROPOSITION (4.4): Let z E Z(f ) fl E, and let x = g(z) so that

1T(Z) = (x, x) ~ 0394. If x E Si(f) f or some i ~ 2, then dim g-’(x) n E =
i - l. In particular z ~ Si-1(g). If x E S2(f ) and z~ S2(g), then z E
~~q=0 S(q)1(g).

If z E Z(f ) nE and g(z) E S2(f ), then we can have either z E Sl(g)
or z E S’2(g). 1 do not know any useful criterion (in terms of the
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singularities of f : X ~ Y) which distinguishes between these two
cases, even when Z is smooth. On the other hand, the following result

gives a very detailed description of what happens when g(z) ~ 52(f).

THEOREM (4.5) : Let f : X ~ Y be a morphism of nonsingular
varieties. Then g : Z ~ X induces isomorphisms

forall q ~ 1.

In particular, these isomorphisms are valid when q = 0 and q = 1.
Since SBO)(g) = Z - S2(g) and S(1)1(g) = Sl(g), we see that (Z - Sl(g)) ~
E  Sl(f) - S(2)1(f) and (Si(g) - S(2)1(g)) n E  S(2)1(f) - S(3)1(f).

PROOF: The fact that g induces the first isomorphism follows from
the isomorphism Z(f ) ~ E ~ P(03A91X/Y) (formula (V, 60) of [11]), Lemma
(3.4), and Proposition (4.4).

In proving that g induces the second isomorphism, we fix z E Z rl E
with z~ ~~q=1 S(q)1(g) ~ S2(g). Let x = g(z). Proposition (4.4) implies
that x E S1(f). We consider the local rings (A, mA) = (Jy,y, (B, mB) =
OX,x, (C, mc) = O(X X)’,z, and (R, mR) = OZ,z. There are local homomor-
phisms f* : A ~ B and g* : B ~ R induced by f : X ~ Y and g : Z ~ X
respectively. The ideal in B (respectively R) which corresponds to
the subscheme SBq+l)(f) C X (resp. SBq)(g) C Z) is the Fitting ideal

0394q+1(Pq+1B/A) (resp. 0394q(PqR/B)).
Let Ï C R be the (principal) ideal which corresponds to the sub-

scheme Z nEC Z. We will show that g* : B ~ R induces an isomor-
phism B/0394q+1(Pq+1B/A)  R/(I + 0394q(PqR/B)). [In fact, I + 0394q(PqR/B) = I +
g*(0394q+1(Pq+1B/A)) · R.] In view of the first isomorphism, this will imply that
(S(q)1(g) - g-1(S(f))) ~ E S(q)1(f). Since (S(q)1(g) - S(q+1)1(g)) ~ E and
g-’(S2(f )) are disjoint, this implies that g induces the second isomor-
phism.

Since x E S1(f ), dim mB/(f*(mA)B + m2B) = 1. Thus, we can choose
minimal generating sets {u1,..., um} C mA and {t1,..., tr} C mB such
that f*(ui) = ti+1 for i = l, ..., r - 1 and f*(ui) ~ m2B for i ~ r. We recall
that Pq+1B/k = (B~k B)/Jq+2, where J is the kernel of the multiplication
map B~k B ~ B. We identify b ~ B with the élément b~1 ~ Pq+1B/k,
and define dq+1B/k : B ~ Pq+1B/k by setting dq+1B/k(b) = 1~b. Now, Pq+1B/k is

freely generated as B-module by the monomials of degree ~ q + 1 in
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03BE1,..., 03BEr, where 03BEi = dq+1B/k(ti) - ti. Let ~~ : Pq+1B/k ~ B be the B-linear map
such that ~~(03BE~1) = 1 and ~~(03BEi11 ... 03BEirr) = 0 if (ii , ... , ir) ~ (~, 0,..., 0).
Then D(~) = ~~03BFdq+1B/k : B ~ B is a differential operator (by definition).
Lemma 3.7 and Proposition 3.10 of [16] imply:

[If ~ &#x3E; ii, we set (i1~) = 0.1

(4.5.3) If b 1 ~ b2(mod m B), then D(~)B/k(b1) ~ D(~)B/k(b2)(mod mn-~B).

We have B0kB C C, and (p2 03BF 03C0)* : B ~ C identifies B with the

subring k Q9k B C B Q9k B. We denote 1 Q9 ti by t; and set si = ti~ 1,
i = 1, ..., r. Using standard facts about the blowing-up process, we
check that mC = (tl, ..., tr, SI, 03BE2,..., er), where s; - t; = 03BEi(s1 - tl), i =

2,..., r. Furthermore, s, - t, generates the ideal I C C which cor-

responds to the subscheme E C (X x X)’. The subscheme Z C

(X x X)’ corresponds to I-1J, where J C C is generated by
{f*(ui) Q9 1 - 1 ~f*(ui) | i = 1,..., ml. Since f*(ui) = ti+1, i =

1,..., r -1, we have 03BEi ~ I-1J, i = 2, ..., r. Hence, there is a com-

mutative diagram of local homomorphisms:

where v and vo are residue class maps, and y = v 0 (P2 - IF)*. Clearly,
dim(Ro) = r + 1, and mRo = (03C41, ..., Tr, ul)Ro, where ri = v(ti) and 03C3i =

P(si). To simplify the notation, we set w = 03C31- 03C41.

LEMMA (4.6): Ro is a smooth B-algebra. In particular, PqR0/B is free
of rank q + 1 as an Ro-module. The set {(dqR0/B(w) - w)i | 0 ~ i ~ q} is a
minimal generating set.
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The vérification of this lemma is standard, and we will omit it. For
~ = 0, ..., q, let 03C8~ : PqR0/B ~ R0 be the R°-linear map such that

03C8~((dqR0/B(w) - w)i) = 1 (resp. 0) if i = é) (resp. i ~ é). We will consider
thé differential operators D(~)R0/B = 03C8~ 03BF dqR0/B : R0 ~ R0. (In particular, D(0)
is the identity map.) We also have:

(4.6.1) D(~)R0/B(03B3(b)wi) = (i) 03B3(b)wi-~ or every b E B, and
(4.6.2) if r1 ~ r2(mod mnR0), then D(~)R0/B(r1) ~ D(~)R0/B(r2)(mod mn-~R0).

In fact, to verify (4.6.1) we write:

and apply the definition of D(~)R0/B. (Also, note that dqR0/B is B-linear.) As
for (4.6.2), it is a standard property of differential operators of order
~ ~.

LEMMA (4.7): The elements v0(D(~)R0/B(v[(f*ui~1 - 1 (Df *ui)l(si - ti)]»,
where é= 1, ..., q and i = r, ..., m, generate the ideal 0394q(PqR/B) C R.

LEMMA (4.8): If b E B, then

for é= 0,..., q.

In both lemmas, the notation is as in (4.5.4). We will prove Lemmas
(4.7) and (4.8) below, after using them to finish the proof of Theorem
(4.5). First of all, recall that D(0)R0/B is the identity map. Since

(f*ui~1 - 1~f*ui)/(s1 - t1) ~ I-1J, we conclude from Lemma (4.8)
that g*(D(1)B/k(f*ui)) ~ v0(03C31- t1)R. But v0(03C31 - t1)R is the ideal I =
v0(v(I)) which corresponds to the subscheme E ~ Z ~ Z, while

{g*(D(1)B/k(f*ui)) | r ~ 1 Z m} generates the ideal in R which corresponds
to the subscheme g-’(Sl(f )). [Note that D(1)B/k(f*ui) = ~(f*ui)/~t1.] Thus,
we recover the identity g-1(X - S2(f)) ~ E = g-1(S1(f)) fl E.
The proof of Theorem (4.5) is similar. Thus, (4.5.2), Lemma (4.7)

and Lemma (4.8) imply that I + 0394q(PqR/B) = I + g*(0394q+1(Pq+1B/A)) · R. As
noted above, this equality of ideals implies Theorem (4.5). Q.E.D.
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PROOF oF LEMMA (4.7): As noted above, PqR0/B is freely generated
as Ro-module by {1, 03BE, ..., 03BEq}, where 03BE = dqR0/B(w) - w. Therefore,
R~R0 PqR0/B is freely generated as R-module by {1 ~ 1,
1 ~ 03BE, ..., 10 03BEq}. Furthermore, there is a surjection A : R ~R0 PqR0/B ~
PqR/B of R-algebras such that 03BB(r~dqR0/B(r0)) = r . dqR/B(v(r0)). (See [5,
Proposition 16.4.20]; in forming this tensor product, we use the left
structure of PqR0/B.) Thus, starting from elements vi = 03A3qj=0 rij(1 0 03BEj) =
03A3qj=0 rij ~ 03BEj, i = 1,..., N, which generate Ker(A) as an R-module, we
use the définition of Fitting ideals to show that {rij | 0 ~ i ~ N and
0 ~ j ~ q} generates 0394q(PqR/B).
The Proposition from [5] cited above also says that Ker(A) is

generated as an ideal in the R-algebra R~R0 PqR0/B by the elements
1 ~ dqR0/B(r0), where ro ranges through the ideal Ker(vo) C Ro. As an
R-module generating set we can therefore take

{1 ~ 03BE~dqR0/B(v[(f*ui~ 1 - 1~f*ui/(s1 -

[Note that J is generated by the elements (f*ui~1 - 1~f*ui)/(s1-
t1), where 1 ~ i ~ m.] For i = 1,..., r - 1, v((f*ui ~ 1 - 1 ~ f*ui)/(s1 -
t1)) = v(03BEi+1) = 0. Hence Ker(vo) is generated by {v((f*ui ~ 1 -
1 ~ f*ui)/(s1 - t1)) | r ~ i ~ m}.] Furthermore,

for any ro E Ro. (In limiting the range of summation, note that 03BEq+1 =
0.) Applying this with ro = v((f*ui ~ 1 -1 ~ f*ui)/(s1 - t1)), we show
that 0394q(PqR/B) is generated by the elements listed in the conclusion of
Lemma (4.7). Q.E.D.

PROOF oF LEMMA (4.8): We first consider the case where b is of

the form ti1 ... tirr. For any i &#x3E; 0 we have the Taylor expansion

in C. We can divide by s, - t, to get

Since 03C3i = Ti in Ro for i = 2,..., r and 03C31 - Tl = w (by definition), we
have
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All of this leads to the identity

in Ro, by (4.5.1). Referring to the commutative diagram (4.5.4), we see
that this can be written as:

where b = t il ... tirr.
Hence, (4.6.1) implies:

where = tt ... tt. In particular, this gives:

whenever b is a monomial in tl, ..., t,.
Given an integer n -- e + 1, an arbitrary element b E B is congruent

modulo mnB to a k-linear combination of monomials in tl, ..., tr.
Therefore Lemma (2.1), (4.5.3), and (4.6.2) imply that we can

"replace" (4.8.1) by the congruence:

for every b E B. Since this holds for every n &#x3E; 0, we find that the
congruence (4.8.2) holds for every b E B. Since w = 03C31 - 03C41, this is

equivalent to the conclusion of Lemma (4.8). Q.E.D.
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REMARK (4.9): It might seem surprising that we do not assume that
Z(f ) is smooth in Theorem (4.5). In algebraic terms, we did not
assume that R = Cz,,, in the diagram (4.5.4), is a smooth k-algebra. The
reason is that Ro is a smooth k-algebra (and even a smooth B-algebra),
and is possible to regard PqR/B as a quotient of the free R-module
R~R0 PqR0/B in calculating the Fitting ideal 0394q(PqR/B). Thus, there is no
reason to assume that P ljk is a free R-module.

EXAMPLE (4.10). Let f : A2 ~ A2 be a map of the form (tl, t2)
(tl, cp(tl, t2)). Thus, ~ = ao + alt2 + ... + antn2, where ai E k[t1], i =

0,..., n. We write A2  A2 = Spec k[sl, S2, tl, t2l. Let U =

Spec k[S2, tl, t2, el, where e = (Sl - tl)/(s2 - t2). Using the methods of
Example (1.3), we show that Z(f ) is the closed subscheme of U

defined by the equations e = 0 and

Let V be the subvariety of U where e = 0. Then Z(f) is the sub-
scheme of V where (*) holds. Since si = ti along V, it is easy to check
that Z(f ) is defined as a subscheme of V by 03C8(s2, tl, t2) = 0, where

Here, the D(j)~ are divided partial derivatives with respect to t2. Thus
D(j)(ai(t1)ti2) = (ij)ai(t1)ti-12. Moreover, V = Spec k[s2, t1, t2] = lA x A2,
and p : Z(f) ~ A2 is induced by the projection A1  A2 ~ A2. We also
note that V n E is the subvariety of V where S2 = t2. Thus, the
projection induces an isomorphism V ~ E  A2.

It is easily checked (see [16, Lemma 3.8]) that S(3)1(f) is the sub-

scheme of 1A2 = Spec k[t1, t2] defined by D(l)cp = D(2)q; = D(3)~ = 0. On
the other hand, let B = k[t1, t2], R0 = k[s2, t1, t2], and R = 0393(Z(f),
OZ(f)). Then P(2)R0/B is freely generated as an Ro-module by {(d2B/A(w) -
w)i | 1 i = 0, 1, 2}, where w = S2 - t2. There is a surjection
03BB : R~R0 ~ P2R/B such that Ker(A) is the ideal in the R-algebra
R~R0 P2R0/B generated by

(See [5, Proposition 16.4.20].) Here, v : Ro - R = R0/(03C8)R0 is the resi-
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due class map, and D(j) denotes the divided partial derivative with
respect to s2 - t2. Thus, 1-5è(j)(h(tl, t2) (s2 - t2)i) = (j)h(tl’ t2) · (s2 - t2)i -
The reader can use these facts to verify that the ideal 03942(P2B/A), which
defines SB2)(g) as a subscheme of Z(f ) = Spec(R), is generated by
v(D(1)03C8) and v(D(2)03C8). Thus, SB2)(g) is the subscheme of V where

03C8 = D(1)03C8 = D(2)03C8 = 0. Furthermore, (**) implies

In describing SB2)(g) ~ E, we only need the initial terms. Thus, by
putting (**) and (***) together, we see that SB2)(g) ~ E  S(3)1(f).
Similarly, S(q)1(g) rl E  S(q+1)1(f) for all q a 0. Since S2(f) = 0, this is

equivalent to the conclusion of Theorem (4.5) for this particular type
of map.

5. Application to an enumerative question

As usual, f : X ~ Y is a morphism of nonsingular projective
varieties; Z = Z(f) and g : Z ~ X are defined as in sections 1 and 4

respectively. Laksov and Fulton gave a formula for the rational

equivalence class of the double point cycle [M2(f)] = p2*03C0*[Z], where
[Z] is the cycle associated to Z. (See [12], [4], and [11, Chapter V].) In
[11, Chapter V], Kleiman also obtained a formula for the rational
equivalence class of the triple point cycle [M3] = g*[M2(g)], under the
assumption that Z is smooth.

In this section, we obtain a formula for the rational equivalence
class of [SB2)(f)]. For simplicity, we assume that Z is smooth over k,
and we work with the rational equivalence rings A(X), A(Z), etc.
However, some generalization should be possible. (See the footnote
on p. 385 of [11].) The formalism here and in Section 6 is based on the
formalism of [11, Chapter V, Sections C and D], supplemented by
Lemma (5.1), Lemma (5.3), and Proposition (5.5).

If E and F are locally free sheaves, the formal difference E - F is
called a virtual bundle. Its total Chem class is defined to be c(E -
F) = c(E)s(F), where c(E) = 1 + cl(E) + ... is the total Chern class
of E and s(F) is the total Segre class of F, i.e. the formal inverse of
the total Chern class: s(F) = c(F)-’. The component of c(E - F) in
Ai(X) is the i-th Chem class of E - F:
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If E, F, and G are locally free sheaves, then it is clear that c(E -
G) = c(E - F)c(F - G). The rank of E - F is defined to be rank(E) -
rank(F). If L is an invertible sheaf on X, we set (E - F) 0 L =
E0L-F0L.

LEMMA (5.1) : Let the notation be as above. Then

for every p a 0, where d = rank(E - F).

In this lemma, the case E = 0 is a formula for sp(F~L), which
one proves by using the splitting principle and induction on rank(F).
After doing this, one proves the general case by using the splitting
principle and induction on rank(E).
Given f : X - Y as above, the virtual normal bundle of f is defined

to be Pf = vX/Y = f*03C4Y - 03C4X, where Tx and Ty are the tangent bundles
on X and Y respectively. The following lemma is a special case of
Porteous’ formula. (See [9, Corollary 11].)

LEMMA (5.2): Let r = dim(X) and m = dim( Y). If S1(f) is empty or
of pure codimension m - r + 1 in X, then [S1(f)] = cm-r+1(vf)· If S2(f) is
empty or of pure dimension 2(m - r + 2) in X, then [S2(f)] =

Cm-r+2(vf)2 - Cm-r+1(vf)cm-r+3(vf).

LEMMA (5.3): Let 03C0 : (X  X)’ ~ X  X be obtained by blowing up
the diagonal, let E be the exceptional locus, and let pi: X x X ~ X be
projection to the i-th factor. Then

in A((X x X)’), where e = [E] and I = O(X X)’(-E) is the sheaf of ideals
defining the divisor E. Furthermore

PROOF: The second formula follows from the first one because
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To prove the first formula, we recall that there is a commutative

diagram

and use the following two exact sequences (See [14] and [22].)
(a) an exact sequence of locally free sheaves on E:

where OE/X(1) is the canonical quotient line bundle on E ~ P(03A91X).
(b) an exact sequence of sheaves on (X x X)’:

From (b) we obtain

Since j : E - (X x X)’ is an embedding, j* preserves exactness, so that
there is an exact sequence:

Furthermore, basic properties of blowing up imply that j*OE/X(-1) =
(JE(E) fits into an exact sequence:

The last two exact sequences yield the formula

To evaluate the last factor, we write p*TX = 03C1*03B4*p*203C4X = i*03C0*p*203C4x, so
that j*p*Tx = (JEQ!) 1T*p!TX. This implies
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The conclusion of the lemma follows directly from (i), (ii), and (iii).

LEMMA (5.4), [11, formula (V, 64)]: Let f : X’ ~ Y"’ be a morphism
of nonsingular projective varieties, let Z = Z(f), and let 03B8 : Z ~

(X x X)’ be the inclusion map. If Z is smooth and of pure dimension
2r - m, then v03B8 = I ~ g*f*03C4Y = 03B8*(I~ 03C0*p*2f*03C4Y), where g =

P2 03BF 03C0 03BF 03B8 : Z ~ X.

As an immediate consequence of the last two lemmas, we obtain:

PROPOSITION (5.5) : Let the assumptions and notation be as in

Lemma (5.4). Then

in A(Z), where e = [E] E A((X x X)’) and I = O(X X)’(-E).

THEOREM (5.6) : Let f : Xr ~ Y’ be a morphism of nonsingular
projective varieties, where r ~ m. Assume that Z(f) is empty or smooth
and of pure dimension 2r - m, that SB2)(f) is empty or of pure
codimension 2(m - r + 1) in X, that 03A32(f ; l, 0) is empty or of pure
codimension 2m - r + 1 in X x X and that S¡(f) is of dimension
-3r - 2m - i - 2 for all i ~ 2. Then the rational equivalence class of
SB2)(f) satisfies

REMARK: In the case k = C, this formula is due to F. Ronga [20, p.
33]. Thus the same formula holds in all characteristics, at least for

sufficiently generic maps. The proofs given by Ronga and by Lascoux
[13] depend on an iterative definition of SB2)(f) which is not the correct
definition in the case char(k) = 2. (The point is that if char(k) = 0 or
char(k) &#x3E; q, then one can use the methods of [16] to check that

S(q)1(f) ~ Sl(f’), where f’ : SBq-1)(f) ~ Y is the restriction of f.)

PROOF: Let g = p2 03BF 03C0 03BF 03B8 : Z ~ X as before. We have assumed that
dim S(2)1(f) = r - 2(m - r + 1) = 3r - 2m - 2 and that dim £2(f; 1, 0) =
2r - (2m - r + 1) = 3r - 2m - 1. Thus, Theorem (4.3) and Theorem

(4.5) imply that all irreducible components of Si(g) ~ E (resp. S1(g))
have dimension = 3r - 2m - 2 (resp. 3r - 2m - 1) unless some irre-

ducible component of S1(g) ~ E is contained in g-1(Si(f)) fl E for
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some i ~ 2. However every irreducible component of Sl(g) ~ E has
dimension ~3r - 2m - 2 = 2 dim(Z) - dim(X) - 2 by [16, Proposition
2.8], while dim g-1(S;(f ) fl E) ~ 3r - 2m - 3 by Proposition 4.4 and our
assumption about dim S¡(f). Therefore this last possibility is ruled out.
(Observe that our assumption about dim Si(f) holds if the irreducible
components of Si(f) have the minimum possible dimension, viz.

r-i(m-r+i).)
We conclude that the codimensions in Z of Sl(g) fl E and of Sl(g)

are m - r + 2 = dim(X) - dim(Z) + 2 and m - r + 1 = dim(X) -
dim(Z) + 1 respectively. Thus, Lemma (5.2) implies that [S1(g)] =
cm-r+1(vg) in d(Z). (Observe that dim(X) - dim(Z) = m - r.) Moreover,
S1(g) and E intersect properly. Another application of Theorem (4.5)
implies that

Hence, we can complete the proof by calculating the right hand side
of this equation.
Now [E]c(03C0*p*203C4x - 03C0*p*103C4x) = [E] in A((X x X)’), so that Pro-

position (5.5) yields

Consider the diagram:

Applying the projection formula to 0 and then to j, we obtain:

By [ 11, formula (V, 60)], z ~ E ~ P(03A91X/Y). This implies
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where e = c1(OE/X(1)), or equivalently:

All of this gives:

where F(1) means Fo OE/X(1). (Note, in particular, that j*(I) =
OXIE(l). Thus j*(e) = -e.) A similar computation yields the following
lemma.

LEMMA (5.6.1): Assume that Z is smooth and of pure dimension
2r - m. If il, ..., id are positive integers, then

where

The following lemmas will also be useful. In all of these lemmas,
the notation is as in the diagram (*).

LEMMA (5.6.2): If j a 0 and e = c1(OE/X(1)), then

LEMMA (5.6.3): If ak is defined as above, then

for every k ~ 0.

We see immediately that Theorem (5.6) is a consequence of Lemma
(5.6.1) and Lemma (5.6.3). In particular, we take k = m - r + 1 in

Lemma (5.6.3) and note that 1’=o 1 (resp. 2i-’) if i = 0 (resp.
i ~ 1). Thus, it only remains- to prove the last two lemmas.

PROOF OF LEMMA (5.6.2): We consider the map 03C1*: A(P(03A91X)) ~
A(X). It is well known that p*(§’) = 0 for i ~ r - 2 while p*(ei) =
si-r+1(03C4X) for i ~ r - 1. As a special case of Lemma (5.1) we have
cm((03C1*f*03C4Y)(1)) = 03A3mi=0 cm-i(03C1*f*03C4Y)03BEi. Thus we can obtain the desired
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identity by multiplying by 03BEj and applying the projection formula.
Q.E.D.

PROOF OF LEMMA (5.6.3): By definition, we have ak =

03A3k03BB=0 ck-03BB((03C1*vf)(1)) 03BE03BB. Furthermore,

by Lemma (5.1), where n = m - r. These equations yield the identity

To finish the proof, we multiply by cm((03C1*f*03C4Y)(1)) and apply Lemma
(5.6.2) and the projection formula. Q.E.D.

If dim( Y) = dim(X), then the formula in Theorem (5.6) becomes
[SB2)(f)] = c1(vf)2 + c2(vf). In particular, if dim(X) = r and Y = P’, let h
be the class of a hyperplane in A(Pr) and let ci(X) and si(X) denote
c¡( TX) and s¡( Tx) respectively. In this case:

where s1(X ) =-c1(X) and s2(X) = CI(X)2 - c2(X).
If X is a suitably embedded nonsingular surface and f : X ~ p2 is a

generic projection, then SB2)(f) is a finite set of points. The number of
points is the degree of the cycle SB2)(f). Each point is counted with
multiplicity =1 if char(k) 0 3. (To check this, use Theorem 4.1 of
[16].) If char(k) = 3, then each point is counted with a higher multi-
plicity, probably = 3. If char(k) 0 2, 3, then the points of SB2)(f) are
mapped to ordinary cusps of the branch curve f(Sl(f» C p2. Our
formula for the number of points in SB2)(f) agrees with Iversen’s
formula for the number of cusps of f(Sl(f». (See [8, p. 968].

If dim(Y) = dim(X) + 1, then the f ormula becomes [S(2)1(f)] =

c2(vf)2 + c1(vf)c3(vf) + 2c4(vf). If dim(X) = r and Y =pr+l, then we use
the same notation as above and obtain:
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where s3(X) = - c1(X)3 + 2Ct(X)C2(X) - C3(X) and
S4(X) = c1(X)4 - 3c1(X)2c2(X) + 2c1(X)c3(X) + c2(X)2 - c4(X)·

If X is a suitably embedded 4-dimensional variety and f : X ~ p5 is
a generic projection, then S(2)1(f) is a finite set of points. If char(k) ~ 3,
then each one occurs with multiplicity 1 in the cycle S(2)1(f).

REMARKS (5.7), (5.8), (5.9) : Let Z = Z(f) and g : Z ~ X be as above. If
g satisfies the hypotheses of Theorem (5.6), then we have a formula for
[S(2)1(g)] in A(Z). If S(2)1(g) also intersects E properly, then one can
conclude that [S(3)1(f)] = g*([S(2)1(g)]03B8*(e)) (cf. Theorem (4.5)) and get a
formula for [S(3)1(f)] that is valid over a ground field of any characteristic.
Thus, if dim( Y) = m = r = dim(X), then dim(Z) = dim(X), and we have
[S(3)1(f)] = g*((c1(vg)2 + c2(vg))03B8*(e)) if the hypotheses are all satisfied.
This leads to:

which agrees with known formulas when char(k) = 0. (See [13] or
[21]). However, when dim(Y) ~ dim(X) + 1, this procedure does not
always work! The difficulty seems to be related to the fact that S(2)1(g)
and S(2)1(g) ~ E may not have the correct dimension, even if SB3)(f) has
the correct dimension. Suppose, for example, that S2(f ) is nonempty
and has the correct (i.e. minimum possible) dimension (= r -
2(m - r + 2)) and that g-1(S2(f )) ~ E~ S2(g). (If m = r + 1, the hypo-
thesis on S2(f ) implies that r -- 6.) Proposition (4.4) implies that

dim(SB2)(g) fl E) = 3 r - 2m - 3. If m ~ r + 1, this is larger than the
correct dimension of this intersection (= 4r - 3m - 3).

6. The stationary locus

As usual, we set Z = Z(f) and let g : Z - X be defined as in section
4. We define the stationary locus of f, denoted N2 or N2(f), to be the
subscheme g(S1(g)) C X. (If f maps X birationally onto its image
X’ = f(X) C Y, the points of f(N2) are sometimes called stationary
points of X’. See [19, p. 1].) After establishing some basic local

properties of N2, we will give a formula for the rational equivalence
class [N2] of the cycle associated to N2.

First of all, if x and y are distinct points of X such that f(x) = f(y)
and x E Sl(f ), then Corollary (4.2) implies that y E N2(f ).
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PROPOSITION (6.1): Let f : X ~ Y be a morphism of nonsingular
varieties, let q ? 0, and let f’ : SBq)(f) - Y and g’ : S(q)1(g) - X be the
restrictions of f and of g : Z(f) ~ X respectively. If x is a closed point
of X, then there is an isomorphism g’-’(x) - E  f ’-’(f(x» - {x}.

PROOF: Let 1 = 03942(f; q, 0). By definition, 1 is the inverse image of
ày under the morphism SBq)(f) x X - 0394 ~ Y x Y induced by f x f.
More generally, let T be an arbitrary subscheme of X, let D be the
inverse image h-1(0394Y), where h : T x X - àx - Y x Y is induced by
f x f, and let p : D ~ X be induced by projection of T x X to the
second factor. An easy modification of Laksov’s proof of [12, Pro-
position 21] shows that projection to the first factor induces an

isomorphism p-1(x) ~ f ’-’(f(x» - {x} where f’ = fIT: T - Y. (Observe
that p-1(x) = (T x {x}) ~ D = h’-1(0394Y), where h’ is the restriction of h
to T x {x} - {(x, x)}.) Applying this in the case T = SBq)(f) and using
Theorem (4.3), we obtain the result. Q.E.D.

PROPOSITION (6.2): If Z = Z(f ) is smooth, if g : Z ~ X is finite, and
if Z ~ g(Z) = M2 is birational, then the points of N2 are precisely the
pinch points of M2.

Let W be a variety whose normalization is nonsingular. We define
a pinch point of W to be a point x E W such that one (or more) of the
branches of W at x is singular. In other words, à*xlP is not a regular
local ring for some minimal prime ideal P C W,x. Thus, Proposition
(6.2) is an immediate consequence of [15, Proposition 3].
The case where xe S(q+1)1(f) may be the most interesting case of

Proposition (6.1). In any event, one can consider an irreducible

component V of S(q)1(g) such that VfL E. Proposition (6.1) provides a
way to determine whether g’ maps V birationally onto its image.

THEOREM (6.3): Let f : Xr ~ Ym be a morphism of nonsingular
projective varieties, and assume that Z = Z(f) is smooth and of pure
dimension 2r - m. If N = N2(f) is empty or of pure codimension
2(m - r) + 1 in X, if dim Si(r) ~ 3r - 2m - i - 1 for ail i a 2, and if
g : Z ~ X maps Sl(g) birationally onto its image, then

in A(X).
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PROOF: As in the proof of Theorem (5.6) we show that every
irreducible component of S1(g) has dimension 3r - 2m - 1. This im-

plies that Sl(g), if nonempty, has the "correct" codimension in Z,
namely m - r + 1 = dim(X) - dim(Z) + 1. Thus, Lemma (5.2) implies
that [Sl(g)] = Cm-r+l(Vg) and therefore [N2] = g*Cm-r+l(Vg).

In evaluating this expression, we will use the methods and notation
of Section 5. First of all, (1 + e)-’ = 1- e(1 + e)-’ so that

by Proposition (5.5). Now c1(I) = - e and ci(03C0*p*203C4X - 03C0*p*03C4X)e = 0
for i ~ 1. (Apply the projection formula to j:E ~ (X  X)’ and

observe that j*03C0*p*~F = 03C1*F, ~ = l, 2, for any coherent sheaf F on
X.) Therefore, Lemma (5.1) implies

Together with (i), this gives:

By Lemma (5.6.1) and Lemma (5.6.3) we have:

LEMMA (6.3.1): If a ~ A(X), then

PROOF: By [11, formula (V, 56)], we have

Moreover, [11, formula (V, 78)] gives
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which explains the first term. As for the second term, we apply the
projection formula to j and then to p and obtain

We now apply the projection formula to 03B8 : Z ~ (X  X)’ and to
P2’Tr. This gives:

Thus, we can apply Lemma (6.3.1) to show that

Applying the projection formula (this time to f : X ~ Y) we can
replace this expression with:

Putting (ii), (iii), and (iv) together, we obtain the desired formula.
Q.E.D.

When m = r + 1, Theorem (6.3) gives the formula
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If Y = Pr+1 and h E A(Pr+1) is the class of a hyperplane, then

for any a ~ Ai(X). The degree is calculated in A(Pr+1). Thus f *(a) E
Ai+1(Pr+1) and deg(f *(a)) is the degree of the zero-dimensional class
f*(a)hr-i E Ar+1(Pr+1). Thus, we obtain:

where the notation is as in (5.7) and (5.8).
When r = 3, a generic map f : X ~ P4 has finitely many stationary

points. u = degree [N2] is the number of these, counted with suitable
multiplicities. One could also express the number of stationary points
in terms of the elementary projective characters of f(X) C p4, defined
as in [19, p. 2]. This does not seem to have been done, but Roth has
studied relations between a and other projective characters [18,
Section 5] and gave a formula for the number of stationary points in
the case where f(X) is ruled by planes. (See [17].) We will now study
this case.

EXAMPLE (6.5): Let C be a nonsingular projective curve of genus g
and let X = P(F), where F is a locally free sheaf of rank 3 on C.
Suppose that f : X - Pl maps X birationally onto f(X) C p4 and sends
the fibres of the structural map cp: X = P(F) ~ C onto planes in P4.

If we arrange things as in [11, Chapter III, Section B], we may
assume that OXlc(l) == f*Op4(l), where OXlc(l) is the tautological quo-
tient line bundle of cp*(F) on X = P(F). Then the basic structural
equation of the A(C)-algebra A(X) is

where e = cp*cl(F). Moreover there is an exact sequence:
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[See [1, p. 11].) Since ~ : X ~ C is smooth, vxlc is a bundle and

c(X) = (1- y)c(vx/c), where y = ~*(Kc). Thus:

Noting that deg f*(03B3) = 2g - 2, we obtain:

where d = deg f*[X]. Setting o- = deg[N2], we obtain

or equivalently

where a = 2g - 2 + 2d is the class of a plane section of X. This agrees
with Roth’s result [17, formula (12)].

REMARK (6.6): The methods of Sections 5 and 6 can be used to
verify the triple point formula given in [11, footnote on p. 389]. In
particular, Lemma (5.3) and Proposition (5.5) are useful. 1 have been
informed that Kleiman has independently obtained results similar to
Lemma (5.3) and Proposition (5.5). (His knowledge of the aforemen-
tioned triple point formula before he knew about my work would
seem to indisputably corroborate that information.) 1 understand that
Kleiman’s results will appear in a forthcoming work entitled "Mul-
tiple point formulas".
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