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Introduction

Let k be a global field of characteristic p &#x3E; 0, 00 a fixed place and d
a positive integer. The purpose of this paper is to define, and begin to
study, characteristic p "holomorphic" modular forms for (k, 00, d). In
particular, we define holomorphic Eisenstein series. As our functions
have characteristic p values, our theory is distinct from the ones

developed by Weil, Harder and Langlands.
To accomplish this, we use the general framework of Drinfeld [2].

In this paper various rigid analytic spaces (in the sense of [13]-[17]
and [19]) and moduli spaces associated to "elliptic modules" were
introduced. These spaces act in a fashion similar to the classical
Poincaré halfplane and moduli of elliptic curves. It is on these spaces
that our theory is developed.

Section 1 introduces the basic concepts, i.e. elliptic modules,
modular forms etc. As some of our proof s of results contained in [2]
are sketched, the reader can refer there for more information. The
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ideas from that paper will be indicated by a "[2]". Our main result is
the existence of various q-expansions in the case d = 2. We shall then
see that, with interesting variations, much of the classical SL(2, Z)
theory goes through. For instance 1-forms correspond to forms of
weight 2 with double zeros at each cusp.

Section 2 introduces the Eisenstein series. We show these come
from algebraically defined modular forms over k. Further, we show
these series give all necessary information for defining an elliptic
module "analytically". In the case d = 2, we compute the q-expan-
sions. In the case d = 1, we prove a rationality statement for certain
"zeta-values". This result is similar to the one classically proven at
the positive integers for the Riemann zeta function.
At this point, for simplicity of calculation, we let k be the rational

field Fq ( T ), and 00 the place associated to 1/T One expects,
however, that the results will be true in great generality.

Section 3, then, defines the Hecke operators. It is shown that
various spaces of modular forms are stable under these operators.
The effect on q-expansions is also shown. If f is an eigenfunction for
all the Hecke operators we introduce Lf, the corresponding L-series.

Section 4 gives a computation of the genera of the moduli curves.
By previous theorems, one can then compute dimensions of spaces of
forms of weight ~2 by the Riemann-Roch theorem. In particular we
see trivially the existence of many forms of weight ~2. However, as
classical, the dimension of weight one forms is not given by the
Riemann-Roch theorem. Thus, the exact dimensions would be very
interesting.

Section 4 also presents some evidence for a conjecture involving
subgroups of the Jacobian generated by cusps.
We hope that the study of these forms will add not only to our

knowledge of function fields but also to our understanding of modular
forms in general.
As this paper is a version of the author’s Harvard Thesis, he thanks

his advisor B. Mazur. He also thanks the N.S.F.

1. Basic concepts

Elliptic modules
Let q = pn, with p a rational prime. We fix a smooth, projective,

geometrically connected curve C over FQ and a point 00. We let A be
the affine ring of C - oo and k the function field of C. Thus, A is a
Dedekind domain with finite class group. Its unit group is F*q. If v is
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any place of k, we denote by Ilv the normalized valuation and by kv
the associated local field. The letter I will always denote an ideal of A
and we let A[I-1] be the affine ring of Spec(A) - V(I). The symbol D
will denote the end of a proof.

Let S be an A-scheme with a line bundle L.

DEFINITION 1.1: We denote the ring of Fq-linear endomorphisms of L
by EndFq(L).

PROPOSITION 1.2: Let F be the qth power map ; F : z ~ zq. Then

En&#x26;q(L) is the ring of polynomials

under composition. ~

REMARK 1.3: Since (aF)(bF) = ab qF2, EndFq (L) is not in general
commutative.
Let d E N+.

DEFINITION 1.4, [2]: An elliptic module E of rank d over S is a pair
(L, 4» consisting of an S-line bundle L and an Fq-homomorphism
0: A ~ EndFq(L) so that:

(1) if the cardinality of AI(a) is q"‘, then

(2) the section 0,,,d(a) is nowhere zero.

CONVENTION: If L is the trivial bundle, we shall denote E by (~).
Further, when the meaning is obvious, we shall sometimes call an
elliptic module a "module".

EXAMPLE 1.5: Let A = Fq[T] and S = spec(K) where K is a field.
Then a rank d elliptic module is determined by

where ci E K and cd ~ 0.
Let B, = (L;, Oi) i = 1, 2 be two elliptic modules over S.
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DEFINITION 1.6, [2]: A homomorphism from El to E2 is an element
P E HomFq(L1, L2) such that P~1 = ~2P.
Note that P has a form similar to that given in 1.2.

REMARKS 1.7: (1) Taking the form of P into account, non-zero
homomorphisms can be seen only to occur between modules of the
same rank. Further, the elements of F*q act as automorphisms. If (~)
is a module over a ring R and a E R * then aF° gives an isomorphism
(~) ~ ((03B1F0)~(03B1F0)-1). We denote ((03B1F0)~(03B1F0)-1) by (03B1~03B1-1).

(2) Under the above definitions elliptic modules over S form a
category.

Fix E = (L, (~) of rank d over S. Via ~, A acts on T(S, L).

DEFINITION 1.8, [2]: Let EI = f fl ker ~(i)| 1 ~ I}.

PROPOSITION 1.9, [2]: The set E, is a finite flat A-invariant group
scheme. It is étale away from the fiber over V(I).

PROOF: The results are obvious for principal ideals. In général, we
can find an ideal J, prime to I, so that J - I = (f ). Thus, the result can
be seen in general. D

DEFINITION 1.10, [2]: A level I structure is a homomorphism
03C8: (I-1/A)d ~ 0393(S, L) so that for every M in V(I), EM, as a divisor,
coïncides with the sum of divisors tP(a), a E (M-’IA)d.

REMARK 1.11: Away from V(I ) a level I structure is the same as
an isomorphism

Now let #(V(I)) &#x3E; 1.

THEOREM 1.12, [2]: The functor given by isomorphism classes of
elliptic modules, E = (L, ~), of rank d together with a level I structure
is representable by a scheme M1.

PROOF: Let Jl, J2 be two distinct maximal ideals in V(I ). Over
A[J-1i], i = l, 2, the level structure gives rise to a canonical trivializa-
tion of the underlying line bundle L. Let {x1,..., xj} by Fq-algebra
generators of A. Thus, over A[J-1i], i = 1, 2, we can de scribe (~) up to
isomorphism by giving functions,
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subject to the elliptic module conditions and the level structure. Then

patch. ~

REMARKS 1.13: (1) Over A[I-1], the functor in the theorem is

always representable by a scheme Mf. The proof is the same.
(2) The scheme M1 is affine and of finite type over Fq. Whenever

no confusion will result, we shall denote by M1 either the scheme or
its affine algebra.
Fix now an A-algebra R. If g : S’ - S is an A-morphism and E = (L, 4»

is a module over S, we define the pullback g*(E) by pulling back the line
bundle and its sections.

DEFINITION 1.14: Let jEZ. A modular form over R of rank d,
weight j is a rule, F, which to each elliptic module E = (L, 4», of rank
d defined over an R-scheme S assigns a section

subject to the following conditions:

(1) let S’ g S be an R-map, then F(g*(E)) = g*(F(E)),
(2) suppose over S’ there is a nowhere-zero section 8 of g*(L).

Then the element

depends only on the isomorphism class of (E, 16).

REMARKS 1.15: (1) A modular form F of level I, weight j is defined
in exactly the same manner except it is a rule on pairs (E, 03C8), with ip a
level 1 structure.

(2) By part 2 of Definition 1.14, the weight of a nontrivial form
without level must be divisible by q - 1.

EXAMPLES 1.16: (1) Let a E A. Then Oi (a) is a form of weight
qi - 1. If A = Fq[T], then ~(T) is nowhere zero. It is analogous to
the classical 0394.

(2) Let 03C8 be a level I structure and 0 ~ 03B1 E (I-1/A)d. Then 03C8(03B1) is a
form of weight -1, level I. Over A[I-’] we can invert to get a form of
weight 1, level I.

DEFINITION 1.17: Let Hd be the graded ring of forms of rank d
over A. Let H 1 be the graded ring of forms of rank d, level I over A.
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THEOREM 1.18 : The scheme Spec(Hd) represents isomorphism
classes of pairs (E, w), where E = (L, 4» is a module of rank d and W
is a nowhere-zero section of L. The scheme Spec(H1) represents
isomorphism classes of triples (E, úJ, «J¡), where ip is a level I structure.

PROOF: As we now have trivializations, the proof of represen-
tability goes as before. One then notes that elliptic modules are

defined by modular f orms to conclude the proof. D

COROLLARY 1.19: The rings Hd, H1 are finitely generated Fq-
algebras. ~

REMARKS 1.20: (1) The natural map Spec(HdI) ~ MdI is a principal
Gm-bundle.

(2) To give (ù amounts to giving a nowhere zero relative differential
on L.

The computations of Drinfeld give the following result for M1. The
general proof is immediate.

THEOREM 1.21, [2]: (1) The rings H1, Hd, and M1 are regular
FQ-algebras of dimensions d + 1, d + 1, and d respectively.

(2) As A-algebras they are flat and, away from V(I), smooth. Their
relative dimensions are d, d and d - 1 respectively.

(3) If 11 J the corresponding maps of moduli spaces are finite and
flat. ~

Analytic description of elliptic modules
Let [K : k~]  00, and let KS denote the separable closure of K.

DEFINITION 1.22, [2]: A K-lattice is a discrete, finitely generated
A-submodule of Ks which is Gal(KSI K) stable. Its rank is that of the
underlying projective module. Its type is the isomorphism class of the
underlying projective module. We shall use the word lattice to mean
K-lattice for some K.

DEFINITION 1.23, [2]: Let NI, N2 be two K-lattices of rank d. Then
a morphism from NI to N2 is an element a of K so that aN, C N2.

THEOREM 1.24, [2]: The category of elliptic modules of rank d over
K is equivalent to the category of K-lattices of rank d.

PROOF: (Sketch). Let N be a rank d K-lattice. We define
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As N is discrete, eN is entire.
As the characteristic is finite, we can write N = U Ni, with Ni a

finite group. Therefore, eN = limi{eNi}, with

As eN; is a polynomial whose zeroes form an additive group, it is an
additive polynomial, i.e. eNi(z + y) = eNi(z) + eNi(y). Therefore, eN is

additive and even Fq-linear. Finally, the derivative eN(z) is identically
1.

On points, eN gives an isomorphism k~/N ~ k~. Thus, via eN, JL
inherits a new A-module structure, 0. By definition, for a E A

Now,

have the same divisors and derivative. As the analysis is nonar-

chimedean, they are identical. Therefore,

The rank of 0 is now seen to be d. As N is a K-lattice, (.0) is an

elliptic module defined over K, i.e., has coefficients in K.
Similarly, a morphism of lattices gives rise to a morphism of elliptic

modules. To go the other way, let 0 be an elliptic module defined
over K. From the above one knows that the associated lattice

function, eN, (if it exists) is of the form

Let a E A be a non-unit. From eN(az) = ~(03B1)(eN(z)), one finds the ci by
induction. From this eN is seen to be entire. One then shows the difficult
fact that
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f or all a E A. Let N be the kernel of eN. It is now not too difficult to

see N is a K-lattice of rank d.

A similar argument holds for morphisms of elliptic modules. ~

COROLLARY 1.25 : If N corresponds to (~) then aN, for a E k*~,
corresponds to (03B1~03B1-1). r-1

PROPOSITION 1.26: There is a one to one correspondence between
the following sets:

(1) isomorphism classes (E, 1lJ), where E = (~) is a K-elliptic
module of rank d and 1lJ E K*. (03C9 is a nowhere-zero section of lÀ over
K).

(2) the set of K-lattices of rank d.
This correspondence is given by (~) goes to the lattice of (03C9-1~03C9). ~

The next result we prove for later use.

PROPOSITION 1.27 : The function eN gives an isomorphism
NBA1~A1 as rigid analytic spaces.

PROOF: As N acts by translations, only a finite group stabilizes any
bounded disc around the origin. The quotient space is defined by
dividing each disc by its stabilizer and patching. As N is fixed point free
the quotient space is smooth.
We know eN is identically 1. Thus, eN is everywhere étale. By using

Newton polygons, one can see that any bounded disc in the image of eN
is covered by some other bounded disc. Thus the result follows from the
main theorem of [13]. D

Group actions

DEFINITION 1.28, [2]: We define

Let Af = Â Q9 k be the finite adeles.

PROPOSITION 1.29, [2]: (1) There is a left action of GL(d, Af)lk*
on Md.
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PROOF: (1) The scheme Md represents elliptic modules, E = (L, 4»,
or rank d with a map 03C8: (k/A)d ~ 0393(L) such that qi is a level structure
when restricted to (I-’IA)d for all I with #(V(I)) &#x3E; 1. The elements in

GL(d, A) just act on the level structure.
Now let g E GL(d, Af ) have coefficients in Â. As a map on

its kernel is finite. As in the analytic case, but taking into account
multiplicities, we can divide the universal module by the image of this
subgroup under 03C8. As the elements in A act trivially we get the
associated action of all of GL(d, Af)ld*.

(2) This is a consequence of the normality of the schemes M1,
1.21.3 and Zariski’s Main Theorem. D

DEFINITION 1.30: We let Md = GL(d, Â)BMd.

PROPOSITION 1.31: The scheme Md is flat and of finite type over A.
It is normal and has normal generic fiber. D

EXAMPLE 1.32: Let A = Fq[T] on d = 2. We define

Then M2 ~ Spec(A[j]). Indeed the map M2 ~ Spec(A[j]) can be seen
to be proper by the valuative criterion. Further, up to isomorphism j
describes the module. Indeed, if j~ 0 we can set ~2(T) = 1. The map
is then seen to be birational. The result follows from Zariski’s Main

Theorem.

Analytic description of the moduli spaces

DEFINITION 1.33 (03A9d is defined in [2]): We let

n d = {x E Pd-1(k~) | 1 x is not contained in any
hyperplane defined over k~}.

Wd = {x ~Ad(k~)| x is not contained in any hyperplane
defined over k~}.
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Both spaces have a natural GL(d, K~) action on them.

Let {Ci}, i = 1, ..., d, be fractional ideals over A and Y = ~i Ci.

PROPOSITION 1.34: If x = (xi, xd) E Wd, then Nx = Yi xici is a

lattice. Conversely, any lattice of type Y arises in this fashion. ~

Drinfeld shows the following theorem for 03A9d. The extension to Wd
is immediate.

THEOREM 1.35, [2]: (1) The spaces 03A9d, Wd are admissible (in the
sense of [14], [15]) open subsets of pd-l, Ad respectively. They are
smooth.

(2) The right action of GL(d, k~) on these spaces is consistent with
this rigid structure.

(3) If r C GL(d, k~) is discrete, then the quotients 0393B03A9d, rB Wd exist
as rigid analytic spaces.

(4) The rigid space 03A92 is geometrically connected. ~
Note that the map Wd ~ f2d is the restriction of an algebraic map and so
is rigid.

DEFINITION 1.36, [2]: Consider GL(d, Af ) as a discrete set. Then
we set

Let Pic’(A) be the isomorphism classes of projective rank d
A-modules.

PROPOSITION 1.37: (1) We have an isomorphism

(2) We have an isomorphism

PROOF: Standard, (see [6]). 0

DEFINITION 1.38: We call the images of 03A9d, Wd, in the above



13

decompositions, the components. Any function on a component is

called a component function.

REMARKS 1.38: (1) Let Y = ~di=1Ci and x E W d as in proposition
1.34. Via the construction (Y, x)~Nx, the right action of GL(Y) is

(x, g)~x · (gt)-1. A similar statement is true for 03A9d. Let  be the

A-dual of Y. Notice that ge GL().
(2) One can check that Ul has fixed-point free action. Thus the

map

is étale. Consequently, UIBd is smooth.
Let X by any k~ scheme. If X is quasi-projective, then X has a natural

rigid analytic structure. We denote this by Xan.
The above discussion and the analytic theory of elliptic modules

makes it clear that there are maps

Drinf eld shows the f ollowing theorem f or Mf The general proof is
similar.

THEOREM 1.39, [2]: The above maps are isomorphisms of rigid
analytic spaces. D

COROLLARY 1.40: Let F be a modular form of rank d, level I,
weight j defined over K, with [K : k~]  00. Then F gives rise to a rigid
analytic function f on UlB Wd defined over K. On each component we
have f(cx) = c-’f (x) for all x E Wd and c E it.

PROOF: This follows from the above and proposition 1.26. D

REMARK 1.41: Since the map MdI~ k ~ Md~ k is finite Galois,
Theorem 1.39, Corollary 1.40, and 1.43 descend to the case of the full
modular group GL(d, Â).

DEFINITION 1.42: We let ry = GL( Y) and
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From now on we view 03A9d as sitting in A’-’. In the usual fashion,
the f of Corollary 1.40 restricts to a f unction on 03A9d. Indeed, we have
the following description of f.

PROPOSITION 1.43: Let f be as in Corollary 1.40. We restrict f to 03A9d

by sending x E f2d to (x, 1) E Wd. Let E Fy(I) and let gt = (G bg 
c d)

We fix G to be the upper left (d - 1) x (d - 1) minor and d to be a
scalar. Finally, using dot product notation, we have

REMARK 1.44: Any rigid function satisf ying the above transfor-
mation property is called an analytic modular form of level I, weight j,
type Y. In order to see when such an f comes from an algebraic F we
need cuspidal conditions. These we will give in the rank two cases
in 1.79.

MÎ and Tate uniformization
We describe here the analog of the p-adic elliptic curve theory of

Tate. Along the way, we describe the scheme M’.
Let R be a fixed complete d.v.r. over A, (ir) its maximal ideal and

K the fraction field. Let E = (~) be an elliptic module over k of rank d.

DEFINITION 1.45, [2]: We say E has stable reduction if there exists
c E K such that the following holds:

(1) the module (c~c-1) has coefficients in R,
(2) the reduction modulo (ir) is an elliptic module of rank :5d.
We say B has good reduction if the rank remains constant.

REMARK 1.46: Let #(V(I)) &#x3E; 1. One can show that every module
with level I structure has stable reduction. If we work over A[I-’],
then the result is true for any I. Therefore, in the rank one case, a
level structure implies good reduction.
We can now sketch the proof of the following basic theorem.

THEOREM 1.47, ([2], [4]): The ring M’ is the ring of integers of the
maximal abelian extension of k split totally at 00. The action of the
ideles is that of class field theory.

PROOF: We know from 1.46 that the map M1I ~ Spec(A) is proper.
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It is therefore integral. The scheme M1l is normal, by 1.21. At each finite
place, by the explicit group action, one can identify the Frobenius. From
this and the analytic theory we see M’ is connected and splits totally at
00. Finally, as the map is unramified outside of V(I). Class Field Theory
finishes the proof. D

REMARKS 1.48: (1) There is a subtlety in the construction that

needs to be understood. The universal module over MI does not have
the smallest field of definition possible for a rank one elliptic module.
It has merely the smallest field of definition for a rank one module
with level I structure. If (I, J) = 1, the modules over MI and M1J are
different. This is in distinction to the classical case of cyclotomic
fields.

(2) In a similar fashion, one can show the existence of a map
M) - M) with geometrically connected fibers.

DEFINITION 1.49, [2]: A ~-lattice N over K is a finitely generated
pro jective A submodule of Ks, (A-action via 0), so that the following
hold:

(1) the group N is Gal(K’/K) stable,
(2) in any ball there are only finitely elements of N.

The rank of N is its rank as an A-module.

PROPOSITION 1.50, [2]: The isomorphism classes of K-elliptic
modules of rank d + dl with the stable reduction are in one to one

correspondence with the isomorphism classes ((~), N), where (~) is a
rank d K-elliptic module with good reduction and N a rank dl
~-lattice.

PROOF: Given «4», N) we form the function

As before, we construct an elliptic module. By using division points,
we see the rank is d + dl.
The reverse direction is accomplished by formally showing the

existence of 0 and eN. Then eN is shown to be entire and we let N be
its kernel. 0

Let M be a prime dividing 7 and J an arbitrary ideal. Over

M1I[M-1], we have the universal module (~) with trivial bundle. For
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any ring R, let R((q)) be the finite-tailed Laurent series. It will be

always obvious whether q is a number or function.

DEFINITION 1.51: Let T(I, J, M) be the elliptic module over

(M1I~ k)((q)) associated to «4», ~(IJ)(1/q)) by the proposition.

These modules are called the Tate objects. The reader will find it

helpf ul to keep the corresponding construction for elliptic curves in
mind.

PROPOSITION 1.52: The module, T(I, J, M), may be extended to a
family over M1I[M-1]((q)). It has nowhere-zero section "1" and a

natural level I structure 03C8.

PROOF: The fact that T(I, J, M) may be extended to such a family
follows from the universality of proposition 1.50. The existence of (P
follows from the fact (~) has level structure and that our lattice is of
the form ~(I)(~(J)(1/q)). 0

REMARKS 1.53: (1) To give the equations for T(I, J, M) amounts to
computing various q-expansions of Eisenstein series. We shall des-
cribe this in 2.16.

(2) For the case of no level, one has similar constructions generic-
ally. The problem is to find elliptic modules with small fields of

definition. However, in the case of Fq[T] = A we can be very specific.
Let Oc, for C ~F*q, be the module given by ~03BE(T) = TF0 + 03BEF. Then, Oc
defines a family over A. If J is any ideal, we can form the Tate

object, T(03BE, J), associated to (4),) and 1. This object will have

coefhcients in Fq[T]((q)) and nowhere-zero section "1 ".
Let F be an arbitrary modular form of level I, weight j defined over

a ring H.

DEFINITION 1.54: We call F(T(I,J,M),"1",03C8)~H~
(M1I[M-1]((q)), the q-expansion of F at the "cusp" (I, J, M). We
say F is holomorphic at the cusp if the expansion contains no
negative terms. We say F is holomorphic, if it is holomorphic at each
cusp.
Via the Tate objects, one can compactify the modular curves to get

a scheme M2I proper over spec(A) with the same regularity conditions
as M2 . At each cusp we can choose a section of the universal bundle,
Lu, with nonzero reduction. Indeed, by the Tate construction of the cusp
we need only take a nonzero section of level M for (~). Thus, we can
extend Lu to Lu over MÎ. A holomorphic F is the same as a section of
(LU)-~j.
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DEFINITION 1.55 : We set w = (Lu)-’.

PROPOSITION 1.56: The line bundle w has positive degree.

PROOF: The reciprical of any nontrivial section of level I extends
to a section of w. D

COROLLARY 1.57: These are no everywhere holomorphic forms of
negative degree. ~

COROLLARY 1.58: The graded ring of holomorphic forms of level I,
over A, is finitely generated. D

Analytic description of the cusps
By the Tate theory, the cusps are sections over M1I[I-1]. Thus, they

are rational over koo. We shall show in 1.78 that analytically these
correspond to equivalence classes of pl(k) under various groups.

THEOREM 1.59: Let D be a Dedekind domain, K its field of frac-
tions and Y a rank d ~ 2 projective D-module. Then,

is in one to one correspondence with the ideal class group of D.

PROOF: Let Y = 611=1 Ci and  = ~di=1 C-1i be the dual module.
Any x = (xi,..., xd) E Kd gives rise to a map :  ~ K, by

As before, the lef t action of GL() on Je gives rise to a right action of
GL( Y) on Kd.
For x E pd-l(K), let [xl, ..., xd] be homogeneous coordinates. We

map x to the ideal class of

By the above, this class is invariant of the GL(Y) action. Since any ideal
can be generated by at most two elements, it is easy to see this map is
surjective.
Now, if x,, X2 E P’-’(K) map to the same class, we may assume they
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map to the same ideal H. As H is projective, the map splits, i.e.

But, then Yl = Y2 by the theory of projective modules. Thus x, is

equivalent to X2 under GL( Y). ~

Now let Y = C1~C2 be of rank 2. We have End( Y) is matrices

with a, d E D, b e C2’Ci and c E C1IC2. The group GL(Y) consists of
those elements of invertible determinant.

For any ideal I of D, we let U(I) be the image of the units of D in
D/I. Let "-" denote reduction mod I.

PROPOSITION 1.60: Let x = [xi, x2], w = [wl, W2] E P’(K). Then x is
equivalent to w under Fy(I) iff the following hold : 

are(1) the fractional ideals x1C-11 + x2C-12 and w1C-11 + w2C-12 are

isomorphic,
(2) by using scalars, fix (Xl, X2), (w¡, W2) so that (1) is an equality.

Let H be this fractional ideal. Then there is a u E U(I) so that (91, X2)
and u(w1, w2) are equal as functions from /I ~ H/IH.

PROOF: By the theory of projective modules, the image of the map
GL(Y) ~ GL(Y/IY) consists of all those elements whose determinant
is in U(I). Let S be this subgroup.
We can assume our equivalence class under GL( Y) contains 00=

[1, 0]. Let 0393~ be its stabilizer. Thus,

Then, rooBGL(Y)lry(I) = FooBS. This translates to the theorem. D

EXAMPLE 1.61: Let D = A = F[T]. We pick (XI, X2), (Wh W2) E

A~A so that xl is prime to x2 and wi is prime to W2. Then x = [xi, X2]
is equivalent to w = [Wl, W2] iff

(XI, x2) --- 03BE(w1, W2)(mod I),
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Some geometry
For x E Ad-1(k~), let lixll be its max norm under the canonical

extension of ||~. Let Bd be the boundary of f2’.

DEFINITION 1.62: Let x E 03A9d be a geometric point. We define

LEMMA 1.63 : Suppose /Ix - Y11  d(x), then d(x) = d(y). E

PROPOSITION 1.64: Let x = (xl, ..., Xd-1) E nd and c El R. Then we
have d(x) ~ c iff for all z = (zl, ..., zd) in k:

PROOF: Suppose d(x) ? c. Pick z with zj~ 0 for some j  d and let

f or i  d, Izil. be the maximum. We put

Define r = (rl, ..., rd-l) by rn = xn, n 0 i, and

Now, r satisfies the equation with (b1,..., 1, ..., bd) and so belongs to
Bd. Further llx - rll = lxi - ri|~. As d(x) ? c, lxi - ri|~ ? c. To finish

multiply by Iz¡ 100.
For the converse, let r = (r1,..., rd-1)~Bd. Then r satisfies an

equation of the form

Thus lbl(x, - r) +... + bd-1(xd-, - rd-1)|~ = Ibix, +... + bd|~. By hypo-
thesis, the last number is ~c Max1id-1{|bi|~}. But the first is

~ Max1~i~d-1{|bi|~|xi - ri|~}. Thus, for some i, |xi - ri|~ ~ c. D

Put q = #(~/(03C0~)), where 0. is the maximal compact at infinity and
(03C0~) its maximal ideal.

PROPOSITION 1.65: Let Icil be a collection of rational numbers,
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ci+, &#x3E; ci and ci ~ ~ as 1 - 00. Let

Then the cover of nd by f Uil is admissible.

PROOF: To see that the subsets are admissible, we may assume we
are in the unit polydisc. Let 1 ~ q-v-ii ~ q 1n. Further, let R be a finite

q-n1 net for the compact subset H of (k~)d given by

{z ||zi|~ ~ 1 all i, with equality for some j  d}.

For each r E H, define a function

By proposition 1.64 and the fact llxll ~ 1, we see that ui ~ (unit
polydiscl is the inverse image of the annulus of smaller radius q-ci1
under IIrER Îr·
To see the cover is admissible, let B be any Tate algebra and

cp: Max(B) ~ 03A9d a morphism. We need to see that the image of cp is

contained in Ui for some i. Again, we may suppose that the image is
contained in the unit polydisc. For r E H, let

Thus, g is continuous, never_ zero on a compact set and so is bounded
below. D

In a similar fashion, one can show the following propositions.

PROPOSITION 1.66: For each x in 03A9d there is a b E B d with Ux - bU
= d(x). D

PROPOSITION 1.67: The set {x | d(x ) = qc1}, c E Q, is an admissible
open of nd. D

The group k* acts on the above subsets by d(ax) = |a|~d(x).
Whether any two distinct equivalence classes are isomorphic is un-

known.
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Stabilizers of cusps
Let Y = CI (B C2 be a rank two projective A-module.

LEMMA 1.68: Let a E 0393Y(J), then det(a ) = 1.

PROOF: One knows det(a ) is a unit in A. As the units inject into
AII, for any I ~ A, we see det(a ) = 1. D

Let b E P1(k). Pick pb E SL(2, k) so that pb(b) = 00.

PROPOSITION 1.69: Let Tb ~ 0393Y(I) be the stabilizer of b. Then,
03C100393b03C1-1b is the group of translations by some fractional ideal Cb.

PROOF: Let g E 03C1b0393b03C1-1b. One has g(~) = ~ and so g has eigenvalues
in A. As these eigenvalues are units they must be 1, and so our group acts
as translations by Cb. One then checks that Cb is a fractional ideal. D

REMARK 1.70: By the techniques of the proof of theorem 1.59 it is
not difficult to find the isomorphism class of Cb. Further, in a natural
way, Cb = IJb, where Jb depends only on b and pb.

PROPOSITION 1.71: Let a = a c E GL(2, k~) and z E f2’. Then,b d

for any y E B2 with cy + d ~ 0,

|det(03B1)|~|z - y 1. = |03B1(z) - a (y)|~|cz + d 1.1 cy + d |~.

PROOF: We have,

Take determinants and norms. ~

PROPOSITION 1.72 : Let Y = CI Et) C2 be a rank 2 projective
module and let

with c ~ 0. Then there is a number r E R independent of a so that
d(z) &#x3E; r implies d(03B1(z))  r.
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PROOF: By standard arguments, k~/C is compact for any fractional
ideal C. Further, there is a number m ~ R so that for all z E koo there
exists a E C with iz - a 1.  m.

Now choo se m for the case C = A and let d(z) &#x3E; Max{m, 2}. Pick
y’ E A so that |z - y’|~ = d(z) and cy’ + d ~ 0. By proposition 1.71,

But,

Therefore,

Finally |cy’ + dl. is bounded below. The proposition now follows
easily. D

COROLLARY 1.73: There is an i so that the stabilizer of Ui (as
defined in proposition 1.65) under 03C1b0393b03C1-1b is the group of translations
b y Cb. ~

DEFINITION 1.74: We define

and qb = 1/eb.

LEMMA 1.75: (1) By logarithmic differentiation, qb(z)=03A303B1~Cb
(z + a)-’.

(2) As d(z) ~ ~, qb ~ 0 uniformly. D

We can now prove the following basic result.

THEOREM 1.76: At the cusp b, qb is an analytic uniformizer.

PROOF: Since k~/Cb is compact, eb is bounded above on k~. Con-

sequently, qb has a punctured disc around the origin in its image.
Now choose m for Cb as in the proof of 1.72. We want to see that

for all N &#x3E; 0, the image of d(z) &#x3E; N contains a punctured disc around
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the origin. To see this let N &#x3E; m and let d(z)  N. Then there is a

y E Cb so that 1 z - y 1.  N. As eb is invariant under translations by CB
and as it is entire, the image of d(z)  N is bounded. The statement

for qb follows.

By 1.73 we have the existence of an NI so that only translations
stabilize d(z) &#x3E; NI. As we know from 1.27 that CbBA1 ~ A1 via eb, the
result follows. D

Let f be an analytic modular form of level I, weight j, type Y.
If

then

determines an analytic germ 03A3~n=-~ anqn~. by the theorem.

DEFINITION 1.77: We call the series 03A3~n=-~ anqn~ the analytic q-

expansion at b of f.
As 03A92 is connected, a component modular form is determined by its

expansion at one cusp.

Connection with the algebraic definition
Let 0 E k*~. We call the function, 03B2qb = qb/03B2, the 0-normalized

uniformizer. Similarly, we call I an03B2n03B2qnb, the,8-normalized expansion
of f.
Now choose Q so that Nb = (3Cb gives rise to the universal module

(0) of level I defined over M1I[M-1], as in 1.51. Twisting by pb takes
C1z + C2, z EE f2’, into lattices of the form C1z + C2. Thus, Cb =
IC;’C2. Finally, via eN6, the family of modules,

can be considered over k~((03B2qb)).

PROPOSITION 1.78: The above family has coefficients in

M1l[M-1]((03B2qb)). Via the map q ~ 03B2qb, this family is isomorphic to a Tate
object T(I, J, M) for some J. Further, any Tate object arises in this
fashion.
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PROOF: The only difficult part is the last. This however, follows
from 1.59. D

By G.A.G.A. we now have the following basic theorem.

THEOREM 1.79: (1) An analytically defined modular form f of
weight j level I comes from an algebraic F iff at each cusp the

expansion is finite-tailed. In this case at the cusp b = (I, J, M), the

03B2-normalized expansion of f, as above, and the q-expansion of F, via
Tate objects, are the same.

(2) If at the cusps there are no negative terms, then f comes from a
section of 03C9~j.

(3) The spaces of analytic modular forms, holomorphic at the

cusps, are finite dimensional. D

Our purpose here is to characterize the forms of weight 2, level I.

THEOREM 1.80: Let il be the bundle of 1-forms on M2I~ k. Then,

(ù ~2 ~ il (2 cusps).

PROOF: Let a E 0393Y(I) C SL(Y). If a (z) = (az + b )/(cz + d), then an
easy calculation shows that

Thus, dz is an equivariant nowhere zero section of 03C9-~2 ~03A91, con-
sidered as analytic sheaf.

Let b be a cusp. One has dqb = d(e-1b) = -1q2bdz. Thus, dz extends
to give the required isomorphism. D

COROLLARY 1.81: The degree of ú) on r y (I)Bll 2 is g + 1- N, where g
is the genus and N the number of inequivalent cusps. D

REMARKS 1.82: (1) In a similar fashion one sees the derivative of a
form of weight pn is a form of weight pn + 2.

(2) Presumably there is a deformation theoretic proof of the

theorem that would extend the result to A[I-1].

DEFINITION 1.83: Let f be a holomorphic form of level I, weight j,
type Y. We say f is double-cuspidal iff at each cusp the zeroth and first
term of its expansion vanish.
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PROPOSITION 1.84: The dimension of double-cusp forms of weight
two, level I is the genus of ry(I)Bil2. D

As one can show the existence of a map M2I ~ M1I with geometrically
connected fibers, all the components have the same genus.

The full group
For the full modular group GL( Y) the theory has one important

variant. At a cusp the stabilizer is of the form Cz + Cb where 03BE ~ F*q.

DEFINITION 1.85: We let eb be ecb, gb = eb’ and qb = g(q-1)b.
One then sees that qb is an analytic uniformizer at b, etc.

2. Eisenstein series

Let [K : k~]  oo, N a K-lattice of rank d and j E N+.

DEFINITION 2.1: (1) We define

(2) Let 03A8 be a level I structure; 03A8:(I-1/A)dI-1N/N. If 0 ~ x ~
(I-1/A)d then we define

Note that if (q - 1) X j then Ejd is identically 0. It is also obvious that
Eign = (Eà)P", etc.

EXAMPLE 2.2: Let d = 2 and Y = Ci ~ C2. Then for all z E fl2,

We now fix a Y = ~di=1 Ci. Given x E Wd we have the lattice Nx of
1.34. Further, by using I -’ Y/ Y, it is easy to equip the Nx with
continuously varying level structure. Thus, we can think of Ed, and
Ei(X,1) as functions on W d.
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THEOREM 2.3: The functions Ejd, Ej(x,I) are rigid analytic on Wd.

PROOF: We show the corresponding functions on nd are rigid
analytic. For this, we use the covering luil of 1.65. But, 1.64 makes it
clear the series converge uniformly on U;. D

COROLLARY 2.4: The functions Ed, Ej(x,I) are analytic modular forms
for TY, 0393Y(I) respectively. 0

Algebraic definition of Eisenstein series
In this section we show how the Eisenstein series arise from

algebraic forms defined over k.

LEMMA 2.5: Let N be a lattice, and eN the corresponding function.
Let eN(z) = z + 03A3~i=1ci(N)zql. Then ci is an algebraic form of weight
(qi - 1) defined over k.

PROOF: Given an elliptic module (0) defined over a field containing
k, we know how (Proof of 1.24) to construct the corresponding
function eN. The coefficients ci(N) are thus constructed via the ~i(a)
for a E A. The weight follows trivially once we view ci as a lattice

function. D

PROPOSITION 2.6: The functions Ejd arise from an algebraic modu-
lar form defined over k.

PROOF: Let qN = eN By logarithmic differentiation, qN =

1,,IEN (z + lX )-1. We expand (z + 03B1)-1 in its Laurent series about the

origin by use of the geometric series. One sees the Laurent

coefficients of the sum are Eisenstein series. The proposition follows
by synthetic division on qN and from 2.5 upon comparing
coefficients. D

PROPOSITION 2.7: Let 03A8 be the level structure of the universal
module of rank d, level I. Let 0 ~ x E (I-1/A)d. Then the k-modular
form P(X)-I equals E1(x,I) over k~. The form EI(x,1) is never-zero on Wd.

PROOF: Let N be a lattice and 0 ~ a E I-1N/N. Note that eN(a) is a
point of order I. We have
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PROPOSITION 2.8: The forms Ei arise from algebraic forms defined
over k. 

(x,I)

PROOF: Let a, N be as above. Then

Further,

Upon comparing Taylor coefficients at the origin, the result follows
from 2.5 and 2.7. D

PROPOSITION 2.9: We have Ej(x,I) = (E1(x,I)j for j = pri, 1 ~ i ~ q.

PROOF: This follows from the expression for (E1(x,I))j given in the
proof of 2.8. D

The next result should be viewed as a result of "zeta-values".

THEOREM 2.10: (1) Let I C A be a non-zero ideal. Then there is a
7r ~ k*~ so that for all i divisible by (q - 1), ’TT-i 03A30~03B1~I 03B1-i is algebraic.

(2) Let x E k but not I. Then there is a 7r ~ k*~ so that for all i,
Ir-’ 2aEI (a + x)-i is algebraic.

PROOF: It follows from 1.47 that there exists a ir such that I - ir

gives rise to an elliptic module with algebraic coefficients. The results
follow from 2.6 and 2.9. D

REMARK 2.11: For Fq[T], 2.10.1 (and much more) was proven by
Carlitz in 1935 (see [3]).

VARIANTS 2.12: Let J C A be a non-zero ideal and N a lattice. We

define



28

As J runs through Pic1(A), these functions are conjugate under Galois
action. Similar constructions exist for level I.

Expression of the forms ~i(a) in terms of the Ejd
Our purpose here is to show how to compute the forms ~i(a) in

terms of Eisenstein series. Thus, analytically, these series provide all
the data needed to define elliptic modules.

Let N be a rank d lattice and eN(z) = 03A3 03B1izql. As, e’N(z) is identic-
ally 1, eN has a composition inverse logN(z) = z + 03A3i~1 03B2izql. Set 03B20 = 1.

Let z/eN(z) = 03A3 03B3jzj.
The following lemma is due to Carlitz, (see [3], 2.3.4).

LEMMA 2.13: If j = qh - qi, then 03B3j = 03B2qih-i. D

Now let (~) be the module associated to N and a E A. Further, let
~(a) = aF0 + 03A3mi=1~i(a)Fi.

LEMMA 2.14: For a E A, a logN(z) = logN(~(a)(z)).

PROOF: We know eN(az) = ~(a)(eN(z)). Thus az = logN(~(a)eN(z)),
and so, a logN(z) = logN(~(a)(z)). D

PROPOSITION 2.15: For a E A,

PROOF: We use 2.14 to find the 6i in terms of the 4)i(a). D

THEOREM 2.16: The forms ~i(a) are polynomials, with coefficients
in k, in the Ejd.

PROOF: This follows by induction from 2.13, 2.15 and the fact the

y; are Eisenstein series.

q-expansions (d = 2)

We present here the q-expansions for the rank 2 Eisenstein series.
Our purpose is to give the calculation and then the analysis of the
coefficients. The "additive harmonic analysis" to be used here is

based on forms of Newton’s rules for expanding power sums of roots
of polynomials and the next proposition.
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PROPOSITION 2.17: Let N be a K-lattice and h E N+. Further let

(h(Z) = 03A303B1~N (z + a)-b. Then there is a monic polynomial Ph E K[x], of
degree h, so that Ph(qN(z)) = 03BEh(z). Further, Ph (0) = 0 and its

coefficients are F,-polynomials in the Taylor coefficients of eN.

PROOF: Let w be another indeterminate. As a function of w,

eN(w) - eN(z) = eN(w - z) = (w - z)03A0(1 - (w - z)/a). Taking logarith-
mic derivatives w.r.t. w, we find

03A3 (w - (z + 03B1))-1 = (eN(w)- eN (z))-1 = -qN(1 - eN(w)qN)-1.

Now, expand both sides about w = 0 and compare coefficients. ~

COROLLARY OF PROOF 2.18: If N gives rise to a module defined
over a field F, then Ph E F[x]. ~

Let Y = Cl EB C2 and y = (yo, Yt)E Y. Further, we let I be a non-
zero ideal of A which may be A itself. For now, put

Finally, let qoo(z) = 03A303B1~IC2C-11 (z + a )-’. In the next theorem, we give the
qm-computation for E(z). As Y and I may vary, we see this com-
putation is completely general.

THEOREM 2.19: The Eisenstein series are holomorphic at the cusps.

PROOF: It is enough to compute for general Y at 00. Let

D = 03A3 c-j2.
O;tc2-a2(IC2)

Then D is the constant term which appears iff al = 0. Now let c1 ~ 0.
Then

We let {xc1i}be a set of representatives of C21(c,IC2C-’), and Pj = li., r;x;
be as in 2.17 for I = N. Thus,
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Now, q~(z + ailci + xf’lci) = (e~(z) + e~(a1/c1 + xc1i/c1))-1 = q~(z)(1 +
e~(a1/c1 + xc1i/c1)(q~(z))-1. Therefore we can compute the expansion of
qi~(z + allcl + xjtlcl) as a function of qoo. Summing over cl finishes the
proof. D

Thus, we have the expansion E(z) = 03A3 anqn~.

REMARK 2.20: In the case I = A, a = 0, the above computation is in
terms of the gm of 1.85. However, as only powers of g~ divisible by
(q - 1) can occur, the answer is in terms of the q~ of 1.85.

PROPOSITION 2.21: For each an, there are only finitely many ci that
contribute a nonzero term. This term can be calculated via the rank

one module (0) associated to e~.

PROOF: Fix an i :5 j. We see that the expansion 03A3 bnqn~ of qi~(z +
ailc, + xf’lci) involves power sums of the roots of ~(c1)(x) - em(ai) = 0.
For each n the power is independent of ci. Thus, we can compute via
Newton. The key point is that as |c1|~ ~ ~, the gap between the two
highest nonzero coefficients of 0(ci) tends to infinity also. Thus, by
Newton, for |c1|~ ~ 0, ci contributes 0. D

LEMMA 2.22: Let 8 be a normalizing factor and (03C8) the module
associated to 03B2IC2C-11. Then the 8 -normalized expansion may be
calculated via (111) and its division points.

PROOF: One checks that via normalization the Pj corresponding to
ICI’C2 goes to the Pj corresponding to M = 03B2IC-11C2. Further, one
checks that the power sum of roots of ~(c1) - e~(a1) is taken to the
corresponding sum of roots of 03A8(c1) - eM(03B2a1). D

This completes the calculation. By choosingb properly, we see the
expansions reflect the fact that the Eisenstein series are defined over
k. As a very non-obvious result we have the following:

THEOREM 2.23: Let A = Fq[T], and E an Eisenstein series for
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GL(2, A). We normalize the expansion so as to compute via the

modules (Oc) of 1.53.2. Then the coefficients belong to k and have
bounded denominators.

PROOF: The corresponding Tate object is defined over A((q)) (D k.
Thus all algebraic k-modular forms have bounded denominators in
their expansions at T(03BE, J). 0

Finally, by 2.16, one is now able (in theory) to compute the equations
for the Tate objects.

3. Hecke operators

For simplicity of calculation, from now on we let A = Fq[T]. Thus
we can drop the subscripts denoting the type of the lattice.
We define here the Hecke operators for a component form f on 03A92,

with or without level. For the full group GL(2, A), we shall see that
the Eisenstein series are eigenfunctions for the Hecke operators.
Further, we shall see the space of cusp forms is stable. In the case of

level, the spaces of Eisenstein series, cusp forms, and double cusp
forms will be seen to be stable.

The full group
The situation here is similar to that of ([11], pp. 98-104), "tensored

with A".

Let N be a rank two lattice and I an ideal. Let NId N be another
rank two lattice and H C A a proper ideal.

DEFINITION 3.1: We say N is of index H is N’ 1 if N1/N ~
J.1IA ~ J2’/A with JI, J2 ideals and H = J1J2.

DEFINITION 3.2: As a formal sum, we define TH (N) = 1 Ni over all
Ni containing N of index H.

PROPOSITION 3.3: (1) If H, J are relatively prime then THTJ = THj.
(2) If P is a prime, then Tpi = Tpi-,Tp = (Tp)’.

PROOF: (1) is obvious. To see (2) we perform the standard cal-
culation and we see the multiplicities are ~0(q), and so in A. D

CONVENTION: If I is an ideal, i will be its unique monic generator.
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In general, lower case letters will denote monic polynomials if they
denote elements of A. We denote the degree of i by D(i ).

Let F on W2 be a form of weight (q - 1)r = j for GL(2, A). Let f be
the corresponding function on 03A92, which we assume holomorphic at
the cusp 00. Thus, f(z) = 2n?o anqn~, with qx = g(.q-’l.

DEFINITION 3.4: For H C A, N C W2, we define THF(N) =
L F(Ni).

LEMMA 3.5: Let N = Aw1 + Aw2. Any lattice containing N, with
index H, has a unique basis of the form,

with ad = h and D(B)  D(d). 0

REMARK 3.6: In terms of f, definition 3.4 becomes

THEOREM 3.7: We have THf(z) is a form of weight j f or GL(2, A) and
is holomorphic at infinity. If f is a cusp form then so is T ¡J.

PROOF: Everything follows once we know the expansion for THf.
We compute the expansion in terms of goo and, as usual, only powers
divisible by q - 1 can occur. The computation is the next two lemmas.

LEMMA 3.8: Let 0 ~ a E A and let ai , ... , an be representatives of
A/(a). Then g~(az) = 1/a La, (g~(z) - e~(03B1i/a)g2~ + ···).

PROOF: By now, this is standard. D

LEMMA 3.9: The sum 03A3D(B)D(d) q~(az + B/d)" may be computed in
terms o f q~(az) b y Newton’s formula.

PROOF: Let (~) be the module associated to e~. Then, as d varies,
qoo( az + B/d) runs over the reciprocal roots of ~(d)(x) = e~(az). Let
~(d) = 03A3mn=0 anxq". Then by easy algebra the reciprocal roots satisfy the
equation,



33

We can now use Newton. D

It is easy to see that the computations above commute with

normalization.

The case of level 1

Let g = (B g) E SL(2, A) and f a modular form of level I weight
j on 03A92. Here we only work with inhomogeneous f.

For d E A prime to I, we let Rd be any element in SL(2, A)

congruent to (d 0 - 1 ) (I ). These exist for general reasons, as in 1.60.0 d

PROPOSITION 3.11: The map f H f |Rd is a representation of (A/I)*
on the space of forms of weight j, level I and holomorphic at the
cusps. D

REMARK 3.12: If I is a product of distinct primes, then, as

(#(AI)*1q) = 1, this representation decomposes according to characters.
In general, it is not known whether this is true.

Let H be an ideal prime to 1.

DEFINITION 3.13: We set T’Hf =

Again, one sees that if H, J are prime to I then THTI = THJ.

THEOREM 3.14: If f is holomorphic, cuspidal or double cuspidal,
then the same is true for THf .

PROOF: In general, the map f ~ f | Rd takes the expansion of f at
one cusp to that of another. Then, via a computation totally similar to
that of 3.7 and a close inspection of Newton’s rules, the theorem
follows. D
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Behavior of Eisenstein series under the Hecke operators
Since the proof of the theorem here is completely similar to that of

the classical case, (see [10], pp. IV-32 to IV-36), we shall merely quote
it. Note that we know directly the existence of Eisenstein series of
weights 1 and 2, whereas classically this is a delicate problem.

Let I C A be an ideal possibly equal to A.

DEFINITION 3.15: For proper I, we let E(j, I) be the space

generated over kx by Eisenstein series of level I, weight j. For I = A

we let E(j, A) = {k~ · Ej2}.

THEOREM 3.16: (1) Let 03C3(I) be the number of inequivalent cusps.
Then, in the natural fashion, E(j, I) ~ kl(I), for proper 1.

(2) If J | I, then E(j, J) ~ E(j, J) ~
(3) The space E(j, I ) is stable under the Hecke operators. D

EXAMPLE 3.17: Let Ej2 be a nonzero Eisenstein series for the full
group. One has easily (see [11], p. 104) that TIEj2 = ij for all I.

L-Series

Let f be a form for the full group and suppose f is an eigenfunction for
all Hecke operators, i.e. THf = c(H)f all H. Let c(h) = c(H).

DEFINITION 3.18: We define, as a formal sum,

VARIANT 3.19: If f is a form of level I and an eigenfunction for all
Ti, J prime to I, we let

EXAMPLE 3.20: We have LE2 = 03A3n~Anj-s. One sees easily that in
the k~ topology LEi converges for s &#x3E; 0, s E Z.

CONJECTURE 3.21: For all eigenforms f, Lf converges for s E Z,
s » 0.1

’ In a forthcoming paper, to appear in Inventiones, we show how to define these

typefunctions on a continuous space, where they can have analytic continuation and
interpolation at finite primes.
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4. Computations and examples

Our first goal is to give a formula for the genus of F, for all
proper I ~ Fq[T]. Since we know from 1.32 that M2 is a curve of
genus zero, we can use Hurwitz’s formula.

LEMMA 4.1: (1) The order of PGL(2, Fq[T])/0393(I) is

(2) The number of inequivalent cusps is

PROOF: These are standard coset computations. D

LEMMA 4.2: There is only one elliptic point for GL(2, A). At each

point of r(I)Bil2 above it, the isotropy group has order q + 1. The

ramification is tame.

PROOF: Up to isomorphism, the rank two module given by 0 (T)
TF° - F2 is the only one with extra automorphisms. Its automorphism
group has order q2 - 1. The usual number is q - 1. D

Let q~ = g(q-1)~ be the standard uniformizer at the cusp at 00. Let b
be a cusp for 0393(I) and qb the uniformizer. Although the ramification
is wild we still have:

LEMMA 4.3: The order of zero of dq~/dqb is q" - 2, where a =

D(i ) + 1.

PROOF: Express goo in terms of qb. Then use Newton to find the

order of zero of goo and the order of zero of dg~/dqb. D

THEOREM 4.4: The genus g of 0393(I)B03A92 is
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PROOF: This follows from Hurwitz’s formula. 0

COROLLARY 4.5: We have

PROOF: This follows from 1.81, 4.1.2, and 4.4. D

COROLLARY 4.6: (1) For j &#x3E; 1, 03C9~j has degree &#x3E; 2g + 1.
(2) The graded ring of k’-holomorphic forms is generated by the

forms of weight 1, 2 and 3.

PROOF: (1) is obvious. (2) is a consequence of (1) and the results of
[25]. D

Let DC(j, I) (resp. C(j, I)) be the double-cusp forms (resp. cusp
forms) of weight j, level I.

COROLLARY 4.7: (1) We have dim DC(2, 1) = g. If j &#x3E; 2 then

dim DC(j, I) = [(j - 1)q3D(i) - q2D(i)+1 - q2D(i)](q2 - 1)-1

(2) If j ~ 2, then

PROOF: This is now a consequence of the Riemann-Roch

Theorem. D

For the forms of weight one, we can only show the following
theorem.

THEOREM 4.8: We have T(M1I, 03C9) = DC(1, I)~ 03BE(1, 1).

PROOF: We know 03BE(1, I) has dimension equal to the number of
inequivalent cusps. Thus, the theorem follows from Riemann-Roch
and duality. D



37

The construction of a nonzero element in DC(1, 1) would be very
interesting.

Finally, we know E’ has its divisor supported on the cusps. Let
(x,I) &#x3E;

b1, b2 be two cusps for F(I).

CONJECTURE 4.9: There is a modular function f, formed out of

weight one Eisenstein series, so that

for some n E N.

EXAMPLE 4.10: Let q = 2, 1 = (T 2). Then, M1 is a curve of genus 5.
Hère we may take n = 16 = 24. As a (special?) corollary, the Jacobian
has a nonzero point of order 2.
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