Compositio Mathematica

Ruishi Kuwabara
 On isospectral deformations of riemannian metrics

Compositio Mathematica, tome 40, no 3 (1980), p. 319-324
http://www.numdam.org/item?id=CM_1980_40_3_319_0
© Foundation Compositio Mathematica, 1980, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON ISOSPECTRAL DEFORMATIONS OF RIEMANNIAN METRICS

Ruishi Kuwabara

1. Introduction

Let M be an n-dimensional compact orientable C^{∞} manifold, and g be a C^{∞} Riemannian metric on M. It is known that the LaplaceBeltrami operator $\Delta_{g}=-g^{i j} \nabla_{i} \nabla_{j}$ acting on C^{∞} functions on M has an infinite sequence of eigenvalues (denoted by $\operatorname{Spec}(M, g)$)

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots \uparrow+\infty
$$

each eigenvalue being repeated as many as its multiplicity.
Consider the following problem [1, p. 233]: Let $g(t)(-\epsilon<t<\epsilon, \epsilon>$ 0) be a 1-parameter C^{∞} deformation of a Riemannian metric on M. Then, is there a deformation $g(t)$ such that $\operatorname{Spec}(M, g(t))=$ $\operatorname{Spec}(M, g(0))$ for every t ? Such a deformation is called an isospectral deformation.

First, we give some definitions to state the results of this article. The deformation $g(t)$ is called trivial if for each t there is a diffeomorphism $\eta(t)$ such that $g(t)=\eta(t) * g(0)$ (the pull-back of $g(0)$ by $\eta(t)$). For a deformation $g(t)$ the symmetric covariant 2-tensor $h \equiv g^{\prime}(0)$ is called the infinitesimal deformation (i-deformation, for short) [2]. By Berger-Ebin [3] h is decomposed as

$$
h=\tilde{h}+L_{X} g(0)
$$

where $\nabla^{i} \tilde{h}_{i j}=0(\nabla$ being the connection induced by $g(0))$ and L_{X} is the Lie derivative with respect to X. The i-deformation h is called trivial if $\tilde{h}=0$.

The main result of this article is the following.

Theorem A: There is no non-trivial isospectral i-deformation of a metric of flat torus.

Remark: Concerning the isospectral deformation of a metric of constant curvature, we can easily get the following: There is no non-trivial isospectral deformation of a metric of constant curvature K if $2 \leq \operatorname{dim} M \leq 5$, or $\operatorname{dim} M=6$ and $K>0$. This result is obtained by combining the results of spectral geometry [1], [4] and those concerning the non-deformability of a metric of constant curvature, the latter being directly derived from the results of Berger-Ebin [3], Mostow [5] and Koiso [2]. (See Tanaka [6], for the case $\operatorname{dim} M=2$ and $K<0$.) In the case of flat metrics Sunada [7] showed that there are only finitely many isometry classes of flat manifolds with a given spectrum.

The author wishes to thank Professor M. Ikeda for carefully reading the manuscript and offering valuable comments. Thanks are also due to Mr. N. Koiso, Osaka University, for helpful discussions.

2. Proof of Theorem A

The main part of the proof is to study the variation of the coefficients of Minakshisundaram's expansion:

$$
\sum_{k=0}^{\infty} \exp \left(-\lambda_{k} s\right) \underset{s \rightarrow+0}{\sim}\left(\frac{1}{4 \pi s}\right)^{n / 2} \sum_{j=0}^{\infty} a_{j} s^{j}
$$

If $g(t)$ is an isospectral deformation, the coefficients $a_{j}(t)$ must be constants.

For a Riemannian metric g on $M, \mathrm{~d} V(g), R_{j k m}^{i}, R_{i j}$ and τ denote the volume element, the curvature tensor, the Ricci tensor and the scalar curvature, respectively. The coefficients $a_{j}(j=0,1,2)$ are given by

$$
\begin{gathered}
a_{0}=\operatorname{vol}(M, g)=\int_{M} \mathrm{~d} V(g), \quad a_{1}=\frac{1}{6} \int_{M} \tau \mathrm{~d} V(g), \\
a_{2}=\frac{1}{360} \int_{M}\left(2|R|^{2}-2|\rho|^{2}+5 \tau^{2}\right) \mathrm{d} V(g),
\end{gathered}
$$

where $|R|^{2}=R_{i j k m} R^{i j k m}$ and $|\rho|^{2}=R_{i j} R^{i j}$.
Let $g(t)$ be a deformation and $h(t) \equiv g^{\prime}(t)$ the i-deformation of $g(t)$
at t. Let $a_{j}(t)$ be the Minakshisundaram's coefficients for ($M, g(t)$). Then the following formulas are obtained by straightforward calculation.

$$
\begin{gather*}
a_{0}^{\prime}(t)=\frac{1}{2} \int_{M} h_{s}^{s} \mathrm{~d} V(g(t)), \tag{2.1}\\
a_{1}^{\prime}(t)=\frac{1}{6} \int_{M}\left(\frac{1}{2} \tau h_{s}^{s}-R_{i j} h^{i j}\right) \mathrm{d} V(g(t)), \tag{2.2}\\
a_{2}^{\prime}(t)=\frac{1}{360} \int_{M}\left[12\left(\nabla_{j} \nabla_{i} \tau\right) h^{j i}-6\left(\nabla_{k} \nabla^{k} R_{j i}\right) h^{j i}+8 R_{j k} R_{i}^{k} h^{j i}\right. \tag{2.3}\\
-4 R_{k j m i} R^{k m} h^{j i}-4 R_{j k m s} R_{i}^{k m s} h^{j i}+9(\Delta \tau) h_{s}^{s} \\
\left.-10 \tau R_{j i} h^{i i}+|R|^{2} h_{s}^{s}-|\rho|^{2} h_{s}^{s}+\frac{5}{2} \tau^{2} h_{s}^{s}\right] \mathrm{d} V(g(t)) .
\end{gather*}
$$

Let $\left(M, g_{0}\right)$ be a flat manifold. Then we have
Lemma 2.1: If $g(t)$ is an isospectral deformation with $g(0)=g_{0}$, and $\nabla^{i} h_{i j}=0$ holds at $t=0$, then

$$
\begin{equation*}
h_{s}^{s}=0, \quad \nabla_{k} h_{j i}=0 \tag{2.4a,b}
\end{equation*}
$$

hold at $t=0$.
Proof: Starting from (2.3), we have by tedious calculation,

$$
\begin{equation*}
a_{2}^{\prime \prime}(0)=\frac{1}{120} \int_{M}\left[\left(\nabla_{k} \nabla^{k} h^{j i}\right)\left(\nabla_{m} \nabla^{m} h_{j i}\right)+3\left(\Delta h_{s}^{s}\right)^{2}\right] \mathrm{d} V\left(g_{0}\right) \tag{2.5}
\end{equation*}
$$

(Note that $\nabla^{i} h_{i j}=0$ and $R_{j k m}^{i}=0$ at $t=0$.) From (2.1) and (2.5), $a_{0}^{\prime}(0)=a_{2}^{\prime \prime}(0)=0$ holds if and only if (2.4a, b) hold good.
Q.E.D.

Lemma 2.2: Let $g(t)$ be as in Lemma 2.1. Then

$$
\begin{equation*}
\int_{M} h_{i j} \phi\left(\nabla^{i} \nabla^{j} \phi\right) \mathrm{d} V\left(g_{0}\right)=0 \tag{2.6}
\end{equation*}
$$

holds for each eigenfunction ϕ of $\Delta_{g(0)}$.
Proof: For the eigenvalue $\lambda_{k}(t)$ of $\Delta_{g(t)}$, the following was obtained by Berger [8]:

$$
\begin{equation*}
\lambda_{k}^{\prime}(0)=\int_{M}\left[h_{i j} \phi\left(\nabla^{i} \nabla^{j} \phi\right)+\left(\nabla^{i} h_{i j}-\frac{1}{2} \nabla_{j} h_{s}^{s}\right) \phi\left(\nabla^{j} \phi\right)\right] \mathrm{d} V\left(g_{0}\right) \tag{2.7}
\end{equation*}
$$

where ϕ is the eigenfunction for $\lambda_{k}(0)$. Therefore, (2.6) follows from (2.4).
Q.E.D.

Now, let us prove Theorem A. Let $\left(M, g_{0}\right)$ be a flat torus given by R^{n} / L, where L is a lattice, i.e., a discrete abelian subgroup of the group of Euclidean motions in R^{n}. Let L^{*} denote the dual lattice, consisting of all $x \in R^{n}$ such that $(x, y)=\sum_{i=1}^{n} x^{i} y^{i}$ is an integer for all $y \in L$. Then the sets of eigenfunctions and eigenvalues are given by $\left\{\phi_{x}(y)=\cos 2 \pi(x, y), \psi_{x}(y)=\sin 2 \pi(x, y) ; x \in L^{*}\right\}$ and $\left\{4 \pi^{2}(x, x) ; x \in\right.$ $\left.L^{*}\right\}$, respectively. Recalling (2.4b), we see that $h_{i j}$ are constants in the coordinates induced from R^{n}. Therefore, from (2.6) we have

$$
4 \pi^{2} h_{i j} x^{i} x^{j} \int_{R^{n} / L}\{\cos 2 \pi(x, y)\}^{2} \mathrm{~d} y=0, \quad x \in L^{*}
$$

hence $h_{i j} x^{i} x^{j}=(h x, x)=0$ for $x \in L^{*}$. This leads to $h=0$, because the set $\left\{x /\|x\| ; x \in L^{*}\right\}$ is obviously dense in $\left\{x \in R^{n} ;\|x\|=1\right\}$.
Q.E.D.

3. Conformal deformations

In this section we restrict our study to the conformal deformation,

$$
\begin{equation*}
g(t)=\mathrm{e}^{2 \rho(t)} g_{0}, \quad \text { with } \rho(0) \equiv 0 \tag{3.1}
\end{equation*}
$$

Set $\sigma(t)=\rho^{\prime}(t)$, and straightforward calculation gives
(3.2) $a_{11}^{\prime \prime}(t)=\frac{1}{3}(n-1)(n-2) \int_{M} \sigma \Delta \sigma \mathrm{~d} V(g(t))+\frac{1}{6}(n-2)^{2} \int_{M} \tau \sigma^{2} \mathrm{~d} V(g(t))$

$$
+\frac{1}{6}(n-2) \int_{M} \tau \frac{\partial \sigma}{\partial t} \mathrm{~d} V(g(t))
$$

Lemma 3.1: Assume that $\left(M, g_{0}\right)$ has a constant scalar curvature. If $g(t)$ is a volume-preserving deformation, we have
(3.3) $a_{1}^{\prime \prime}(0)=\frac{1}{3}(n-1)(n-2) \int_{M} \sigma \Delta \sigma \mathrm{~d} V\left(g_{0}\right)-\frac{1}{3}(n-2) \tau \int_{M} \sigma^{2} \mathrm{~d} V\left(g_{0}\right)$.

Proof: It is easy to see that $a_{0}^{\prime \prime}(0)=0$ is written as

$$
\int_{M} \frac{\partial \sigma}{\partial t} \mathrm{~d} V\left(g_{0}\right)+n \int_{M} \sigma^{2} \mathrm{~d} V\left(g_{0}\right)=0
$$

By this equation and $\tau=$ const., (3.2) is led to (3.3).
Q.E.D.

From now on, we assume $n=\operatorname{dim} M>2$.
By virtue of the above lemma we have the following theorem.

Theorem B: Let $\left(M, g_{0}\right)$ have a constant scalar curvature and λ_{1} be the non-zero first eigenvalue of $\Delta_{g(0)}$. If

$$
\begin{equation*}
\lambda_{1}>\frac{\tau}{n-1} \tag{3.4}
\end{equation*}
$$

holds, there is no conformal isospectral deformation of g_{0}.

Proof: Let $g(t)$ be a conformal isospectral deformation of g_{0}. Since $a_{0}^{\prime}(0)=0$, we have $\int_{M} \sigma \mathrm{~d} V\left(g_{0}\right)=0$. Therefore,

$$
\int_{M} \sigma \Delta \sigma \mathrm{~d} V\left(g_{0}\right) \geq \lambda_{1} \int_{M} \sigma^{2} \mathrm{~d} V\left(g_{0}\right)
$$

holds (see [1, p. 186], for example). Accordingly, if (3.4) holds, we have $a_{1}^{\prime \prime}(0)>0$ unless $\sigma=0$, i.e., $h=0$.
Q.E.D.

The condition (3.4) is obviously satisfied if $\tau \leq 0$. Further, as shown by Obata [9], it is also satisfied for an Einstein space not isometric with a sphere. In the case of a sphere, $\lambda_{1}=\tau /(n-1)$, hence $a_{1}^{\prime \prime}(0) \geq 0$ holds. The equality holds only when σ is the eigenfunction for λ_{1}, which is equivalent to $\nabla_{i} \nabla_{j} \sigma+\{\tau / n(n-1)\} \sigma g_{i j}=0$ (see [9]). Therefore,

$$
h_{i j}=2 \sigma g_{i j}=-\frac{2 n(n-1)}{\tau} \nabla_{i} \nabla_{j} \sigma .
$$

Thus h is trivial.
As a consequence we have the following theorem.
Theorem C: Suppose (M, g_{0}) is an Einstein space, or a space of non-positive constant scalar curvature. Then there is no non-trivial conformal isospectral i-deformation of g_{0}.

Remark: In the case of $\operatorname{dim} M=2$, it follows from the GaussBonnet formula that the coefficient $a_{1}(t)$ is invariant.

REFERENCES

[1] M. Berger, P. Gauduchon and E. Mazet: Le spectre d'une variété riemannienne. Lecture Notes in Mathematics 194. Springer Verlag, 1971.
[2] N. KoIsO: Non-deformability of Einstein metrics, Osaka J. Math. 15 (1978) 419-433.
[3] M. Berger and D. Ebin: Some decompositions of the space of symmetric tensors on a Riemannian manifold. J. Diff. Geom. 3 (1969) 379-392.
[4] S. TANNO: Eigenvalues of the Laplacian of Riemannian manifolds. Tôhoku Math. Journ. 25 (1973) 391-403.
[5] G.D. Mostow: Strong rigidity of locally symmetric spaces. Princeton, 1973.
[6] S. Tanaka: Selberg's trace formula and spectrum. Osaka J. Math. 3 (1966) 205-216.
[7] T. Sunada: Spectrum of a compact flat manifold (preprint).
[8] M. BERGER: Sur les premières valeurs propres des variétés riemanniennes. Compositio Math. 26 (1973) 129-149.
[9] M. Obata: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14 (1962) 333-340.
(Oblatum 21-III-1978 \& 12-XII-1978)
Department of Applied Mathematics and Physics
Faculty of Engineering
Kyoto University
Kyoto 606, Japan

