COMPOSITIO MATHEMATICA

F. ACQUISTAPACE F. BROGLIA F. LAZZERI

Strata in the deformation of real isolated singularities are in general non contractible

Compositio Mathematica, tome 40, nº 3 (1980), p. 315-317 <http://www.numdam.org/item?id=CM_1980_40_3_315_0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 40, Fasc. 3, 1980, pag. 315–317 © 1980 Sijthoff & Noordhoff International Publishers – Alphen aan den Rijn Printed in the Netherlands

STRATA IN THE DEFORMATION OF REAL ISOLATED SINGULARITIES ARE IN GENERAL NON CONTRACTIBLE

F. Acquistapace, F. Broglia and F. Lazzeri*

Introduction

In [4] Looijenga answered positively to a conjecture of Thom on isolated singularities (see [5] page 58) in the case of real simple singularities. The complex form of this conjecture in the case of a simple singularity had been earlier verified (see for example [1] and [2]). There exist some reasons to believe that the conjecture over C is not true in general and in fact that for elliptic singularities the complement of the (complex) discriminant has a non vanishing second homotopy group (see [3] for an attempt to understand the meaning of this conjectured non-vanishing).

Here we give an example which shows that the conjecture over R is not true and in fact that a connected component of the complement of the real discriminant¹ for the singularity $x^4 + y^4$ has an infinite fundamental group. This supports, we believe, the idea that the second homotopy group of the complement of the complex discriminant of $x^4 + y^4$ is infinite too.

Consider the semiuniversal deformation of the elliptic singularity $x^4 + y^4$. We will construct a continuous family $\{F_{\theta}\}_{0 \le \theta \le \pi}$ of non singular real curves of the deformation with the following properties:

i)
$$F_0 = F_{\pi}$$

ii) the automorphism of F_0 , induced by the homotopy class of the loop $\theta \to F_{\theta}$, is non trivial.

* The authors are members of G.N.S.A.G.A. of C.N.R.

¹ We follow [4]: the "real discriminant" means the image of the real critical points of the deformation which is contained (generally strictly) in the real part of the complex discriminant.

0010-437X/80/03/0315-03\$00.20/0

This will show that there exists a non contractible connected component in the complement of the real discriminant.

Let F_0 be the curve

$$x^4 + y^4 - 2\eta x^2 + \epsilon = 0$$

with η , $\epsilon > 0$. One can easily see that for $0 < \epsilon < \eta^2$ this is a compact irreducible curve with two connected components which are separated by the line x = 0.

Let F_{θ} be the curve

$$x^4 + y^4 - 2\eta\varphi^2 + \epsilon = 0$$

where $\varphi = x \cos \theta + y \sin \theta$. Obviously $F_{\pi} = F_0$. Moreover for each θ , F_{θ} has the same properties as F_0 with respect to the line $\varphi = 0$, namely it consists of two connected components separated by the line $\varphi = 0$.

This will be shown, through an isotopy principle, by proving that each F_{θ} is non singular plus the remark that F_{θ} does not intersect $\varphi = 0$.

Since, as θ varies in $[0, \pi]$, clearly the halfplanes $\varphi > 0$ and $\varphi < 0$ interchange, the components of F_0 will do the same. It will follow that the connected component, in the complement of the (real) discriminant, containing F_0 has a non trivial fundamental group.

Proof that F_{θ} is non singular

A singular point $P = (x_0, y_0)$ for F_{θ} is a solution of

(+)
$$\begin{cases} x^4 + y^4 - 2\eta\varphi^2 + \epsilon = 0\\ x^3 - \eta\varphi\cos\theta = 0\\ y^3 - \eta\varphi\sin\theta = 0 \end{cases}$$

from where

$$x^4 + y^4 = \eta \varphi^2 = \epsilon.$$

One has to show that the system (+) has no solutions for η , ϵ sufficiently small.

Choose $\epsilon < \frac{1}{8}\eta^2$. On one hand: $(x^2 + y^2)^3 \ge x^6 + y^6 = (\eta\varphi\cos\theta)^2 + (\eta\varphi\sin\theta)^2 = \eta^2\varphi^2 = \eta\epsilon$ On the other: $(x^2 + y^2)^2 \le 2(x^4 + y^4) \le 2\epsilon$ Hence $(2\epsilon)^3 \ge (\eta\epsilon)^2$; implying $\epsilon \ge \frac{1}{8}\eta^2$. Contradiction.

Remark 1

Let Γ be the connected component of $S_{\rm R} - D_{\rm R}$ (same notations as in [4]) which contains the curves F_{θ} .

The loop γ we described before generates an infinite subgroup of $\pi_1(\Gamma, F_0)$. In fact, let G be this subgroup: one has a map $b: G \to B(2)$ (the braid group in two strings) induced by the map which to each curve F_{θ} associates the couple of its baricenters, and clearly γ goes to the generator of B(2).

Remark 2

The two components of F_0 induce linearly independent cycles in $H_1(\tilde{F}_0, \mathbb{Z})$, where \tilde{F}_0 denotes the complex fibre, as one easily verifies, for instance, by inspection of the induced ramified covering. It follows that the loop described before also induces a non trivial element in the monodromy of the complex deformations.

REFERENCES

- [1] E. BRIESKORN: Sur les groupes de tresses. Sém. Bourbaky 401, Nov. 1971.
- [2] P. DELIGNE: Les immeubles des groupes de tresses généralisés. Inventiones Math. 17 (1972) 273-302.
- [3] F. LAZZERI: "Sistemi de coniugi" (Preprint of Math. Inst. University of Pisa (1979) to appear in Boll. Un. Mat. Ital).
- [4] E. LOOIJENGA: "The discriminant of a real simple singularity" Compositio Math. 37 (1978) 51-62.
- [5] Proceedings of Symposia in Pure Mathematics, vol. XXVIII (1976): "Problems of present day mathematics".

(Oblatum 18-VII-1979 & 9-X-1979)

Istituto di Matematica "Leonida Tonelli" Università di Pisa •Via Buonarroti 2 I 56100 Pisa Italy