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Summary

Generalization of the remarkable commutation formulas on Kâhler

manifolds [9]. Definition of an adapted cohomology. Applications: the
expression of the fundamental form of a particular class of compact
locally conformal Kâhler manifolds; generalized semi-Kähler locally
conformal Kâhler manifolds are Kâhler ; etc.

It is known that the geometry and the topology of Kâhler manifolds
is strongly influenced by the existence of some remarkable operators
and commutation formulas on such a manifold. E.g., see [9,1,5] for a
discussion of such operators and formulas.

In this Note, we prove that the commutation formulas mentioned
above admit interesting generalizations to the case of locally con-
formal Kâhler (shortly, 1.c.K.) manifolds [4,7,8].
On another hand, we define and discuss the cohomology with

coefficients in the sheaf of germs of C°°-functions f such that, if f &#x3E; 0,
f -’g is a Kâhler metric. (Here, g is the given 1.c.K. metric of the
manifold.)
As a consequence of the above mentioned development, some

information about the I.c.K. manifolds will be derived. In particular,
we determine the expression of the fundamental form of a special
class of compact 1.c.K. manifolds, and we prove that every 1.c.K.
manifold which is generalized semi-Kähler is Kâhler.

* AMS (MOS) Classification Subjects (1970) : 53 C 55.

0010-437X/80/03/0287-13$00.20/0
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1. Definitions and known results

We recall [4,7] that an 1.c.K. manifold is a Hermitian manifold

M2n(n &#x3E; 1) with complex structure J and metric g, which has an open
covering {U03B1} endowed with differentiable functions O"a : U03B1~R such

that the local metrics e--g are Kâhler metrics. (In the whole paper,
differentiable means C°°.)

In [4,7], it is shown that the l.c.K. manifolds are characterized by

where f2 is the fundamental form of M and w is a closed Pfaff form

called the Lee form of M Locally, the Lee form is given by cv = dO"a.
Iff W is exact, we can take Ua = M, and then g is a globally conformal
Kâhler metric, i.e. M is Kàhler with respect to a metric conformal to

g.
The simplest interesting example of an 1.c.K. manifold is offered by

the Hopf manifolds [7].
Now, let M be an 1.c.K. manifold. Its Hermitian structure allows us

to define differential forms and operators of the type (p, q) and to
consider the following classical operators on forms:

Here, d = d’ + d" is the exterior differential with its decomposition
into terms of the type (1, 0) and (0, 1), 3, 8’, S", are the corresponding
co-differentials, à is the Laplacian of d, D is the Laplacian of d", e(~),
1(ç) are, respectively, exterior and interior multiplication by the form
ç, and L = e(03A9), 039B = i(03A9). We assume that the definition and the
properties of all of these operators (including * and C) are known, and
refer to [9,1,5] for the development of this subject.

Furthermore, let us recall that a p-form q on M is called a primitive
f orm if 039B~ = 0. The primitive p-forms satisfy a lot of important
identities [9] and among them:
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One can also prove the following very important result: every

p-form ~ on M has a unique decomposition of the form

where all of the qr are primitive forms of a corresponding degree.
For instance, since w is a 1-form, it is primitive and, by (1.3), we

have

By (1.1) and the definition of L, this yields

Formula (1.8) can be used as the definition of a Lee f orm on an
arbitrary almost Hermitian manifold.

2. Commutation formulas on 1.c.K. manifolds

In the case of a Kâhler manifold, a host of commutation formulas
of the operators (1.3) are available, and they have highly important
geometric consequences. It is our aim here to produce corresponding
commutation formulas in the I.c.K. case.

To do this, first, we introduce the operators

Next, we introduce the auxiliary operators

where p is the degree of the form acted on. à is an antiderivation of
differential forms and it is easy to see that

In the sequel, if A, B are operators of the degrees h, k, respectively,
their commutant is defined as
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and, in addition, we put 

PROPOSITION 2.1: The following commutation formulas hold on
every I.c.K. manifold :

PROOF: The first formula is known [9]. The second is obvious. The
third follows from the second by (2.1) and the fact that 039B = *-’L*,
which is a known relation between L and A.

In order to derive the two following formulas, we use component-
wise computatiôns [5]. With an obvious notation, we have

where the sign " denotes the absence of the respective index. 03B4::: is

the Kronecker symbol, and we have taken into account the general
identity

’Nhich holds because the Kronecker index is a determinant.

It follows
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and, in order to get the stated formulas, it remained to prove that

e(03B8) = e’.
To do this, let a be a (p, q)-form on M and consider the decomposition

of w into parts of the types (1,0) and (0,1),
gives corresponding decompositions

Then we get

which means

Furthermore, let us denote by B the vector field defined by
g(B,X) = w(X), and by A the vector field defined by 03A9(A,X) = w(X).
We shall be using the definition n(X, Y) = g(JX, Y), which differs in
sign from the definition used in [7]. One has then B = JA, and (2.6)
yields

Together with (2.8), this implies e( 8) = ec, Q.E.D.
Finally, the last formula (2.4) can be established by similar com-

ponentwise computations, and this ends the proof of Proposition 2.1.

PROPOSITION 2.2: The following relations hold on every l.c.K.

manifold:

PROOF: All of these formulas are easy consequences of the
definitions of the respective operators. The proof of the last two of
them also requires induction.

In the Kâhler case, the most important commutation formulas are
for [A,d] and [L,03B4]. The generalization of these formulas is given by

PROPOSITION 2.3: The following commutation formulas, where p is
the degree of the form acted on, hold on every l. c. K. manifold :
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PROOF: By taking into account the various relations exhibited until
now between the operators involved, all these relations follow easily
from the first one. Furthermore, the proof of the first relation is
similar to the proof of the corresponding Kàhlerian relation [9]. I.e.,
using (1.6), we see that it suffices to prove the required formula for
forms Lr~ (r ~ 0), where q is a primitive p-form. In this case,

Ln-p+1~ = 0 by (1.4), and this implies Ln-P+1d~ = 0. It follows that the
decomposition (1.6) of d~ is d~ = ~0 + L~1, where qo and qi are

primitive forms. Next, one computes [039B,d](Lr~) and - 03B4c(Lr) by
using (1.3) and (1.5), and one finds equal results. Q.E.D.

REMARK: There are two interesting alternate ways to prove Pro-
position 2.3. The first consists of proving the second formula (2.11)
over a neighbourhood where a conformal Kâhler metric is available.
This can be done by using the corresponding commutation formula
for the local conformal Kâhler metric.

The second way consists of generalizing the "geodesic coor-

dinates" [1, p.173]. From the existence of such coordinates in the

Kahlerian case, we easily derive that a Hermitian manifold M is
I.c.K. iff every point peM has an open neighbourhood endowed with
the local complex analytic coordinates zi such that zj (p ) = 0 and the
metric is of the form

where a &#x3E; 0 is a real constant and bh are complex constant numbers.
Then, since the required identity contains only the first derivatives

of the metric tensor, it suffices to prove it for C" at 0 and with the

metric given by (2.12) without the term 03C3 (2).
Now, the generalization of the other commutation formulas of [9] is

but a technical matter, and we shall stop here. However, we should
like to mention the following consequence (which requires a lengthy
computation):

Here, A is a first order operator, which vanishes if oi = 0, namely
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where we have written A such as to make clear its effect on the type
of forms.

Finally it is worth noting two additional commutation formulas:

where LB denotes the Lie derivative with respect to the vector field B
associated to w (which is a well known formula), and

which follows from (2.14) by using (2.1) and 3 = - *d*.

3. The adapted cohomology of an I.c.K. manifold

In this section, we shall consider another remarkable operator,
which leads to some new cohomology spaces of an 1.c.K. manifold.
We shall also make some comments on the cohomological significance
of the operator d.
As a matter of fact, this cohomology can be defined in a

more general setting. Namely, in this section, M will be a paracompact
m-dimensional differentiable manifold and ù) will be a closed 1-form

on M. Then, the operator to be considered is defined by

It is simple to see that d203C9 = 0, which shows that the differentiable
forms on M, together with the operator dû" define a cochain complex,
and we denote by Hp03C9M) (p = 0, 1, 2, ...) the corresponding
cohomology spaces. We are calling them the adapted cohomology
spaces of the pair (Mw).
The spaces Hp03C9(M) can also be obtained as the cohomology spaces

of M with coefficients in a sheaf. Namely, let us denote by F03C9 (M) the
sheaf of germs of differentiable functions f : M~R which are such
that

Then, it is easy to prove
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PROPOSITION 3.1: ( The adapted de Rham theorem). For every pair
(M,03C9) as introduced above, one has the isomorphisms

PROOF: First, we shall note that dw satisfies a Poincaré lemma.

Indeed, let a be a local form such that dwa = 0. Since w is closed and
the lemma has to be local, we may suppose

where b is a nonzero differentiable function. Then, dwa = 0 means
d(ba) = 0, whence a = dw(f31 b) for some local form f3. This is exactly
the requested result.
Then, if we denote by Ap(M) the sheaf of germs of differentiable

p-forms on M, we see that

is a fine resolution of F03C9(M), which proves the Proposition.
Moreover, it is obvious that cL and d are differential operators with

the same symbol, hence HW(M) are the cohomology spaces of an
elliptic complex, and, if M is a compact orientable Riemann manifold,
a corresponding theory of harmonic forms is available. (See, for
instance, [6] for a formulation of the main theorems regarding elliptic
complexes.)

In this case, we also get that Hw(M) are finite dimensional linear
spaces over the real field R, and we shall denote

Let us note the following properties of the sheaf F03C9(M). If U is an
open connected subset of M such that wl U is exact, then F03C9 (M)/U ~
R/ U (where R denotes the real constant sheaf), and, if w/ U is not

exact, the only section of F03C9(M) over U is 0. Indeed, in the first case,
(3.3) holds over U, and every section of F03C9(M)/U is of the form clb
with cER. In the second case, if f is a section over U, then either f
vanishes at least at one point uE U or w/ U is exact. But 03C9 is not exact
on U, and, on another hand, f(u) = 0 implies f ~ 0 on U, as shown by
the following reasoning: as above, f = c/b in a neighbourhood of u,
whence c = 0, i.e. f = 0; next, this fact can be propagated to any point
of U along a chain of consecutively intersecting similar neighbour-
hoods.
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In the case of an 1.c.K. manifold M, the spaces Hw(M) can be
defined for the Lee form 03C9 . of M. These will be called the adapted
cohomology spaces of the l.c.K. manifold. The sheaf F03C9(M), which
defines the adapted cohomology has now the following interpretation:
f &#x3E; 0 is a germ in 9;.(M) iff f -’g is the germ of a Kâhler metric on M.

At this point, we should like to make also some comments about the
cohomological significance of the operator à used in Section 2.

Let us consider again a pair (M,03C9), where M is a differentiable
manifold and w is a closed 1-form on M. Then, we can define the
operator a by (2.2). à defines a twisted cohomology of the differential
forms of M [3], which is given by

and is isomorphic [3] to the cohomology of the cochain complex tÎ (M)
consisting of the differential forms À on M satisfying

together with the operator d.
The complex Û(M) has an interesting subcomplex 03A903C9(M), namely,

the ideal generated by cv. On this subcomplex, d = d, which means
that it is also a subcomplex of the usual de Rham complex of M.
Hence, one has homomorphisms

We can easily construct a homomorphism

Namely, if u03B5Hp~(M) and u = [A], where A is a d-closed form, then
we put c(u) = [03C9 039B 03BB ], and this produces the homomorphism (3.9).
(Brackets denote cohomology classes.) .

The existence of c gives some relation between à and the real
cohomology of M

If 03C9 ~ 0 at every point of M, w = 0 defines a foliation fi of

codimension 1, and a usual sheaf-theoretic argument proves that
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where 0 is the sheaf of germs of the differentiable functions on M,
which are constant on the leaves of F. In this case, the homomor-

phisms a and b become, as well, significant for the topology of M.

4. Some applications of the commutation formulas

In this section, we come back to the l.c.K. manifolds M2", endowed
with the Lee form 03C9. The Lee form allows us to use the results of

Section 3. In addition, we also have the commutation formulas of
Section 2, and we should like to produce some applications.

PROPOSITION 4.1: Let M be a compact l.c.K. manifold with

b203C9 (M) = 0. Then : (a) there are 1-forms ’P on M such that the fun-
damental form 03A9 can be written as

(b) the form ~ satisfies the condition

(c) the global scalar product (~,03C9 03BF J) is nonzero.

PROOF: (a) We use the dw-cohomology on M, with its theory of
harmonic forms, which is available in this case. Obviously, f2 is

d03C9-closed, therefore we must have

where cp is some 1-form on M and H03C903A9 is dw-harmonic. But, from
Proposition 3.1 and because of the hypothesis b203C9(M) = 0, we have
Hwil = 0. This proves (4.1). The form ~ is determined up to a de-exact
1-form.

(b) From (4.1) we get easily

where, of course, exponents denote exterior powers. But, since an is
a volume element and M is compact, an cannot be exact, and we
must have (4.2).

(c) By applying ll to (4.1) and using the commutation formulas for
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[A,d] and [A,e], (2.11) and (2.4), we obtain ôcç + n03B5C~ + n = 0, whence,
by integrating over M;

where V is the volume of the manifold M This yields the conclusion
stated.

PROPOSITION 4.2: On every l.c.K. manifold, one has

where h = 0, 1, 2, ..., and the exponents of 12 denote exterior powers.

PROOF: First, using the operator 03B4 of Section 2, we prove in-

ductively that

Indeed, this is trivial for h = 0. Next, using (2.11), we have

and, since f2 is of the type (1, 1) and d-closed, this shows that (4.6) for
h - 1 implies (4.6) for h. Q.E.D.
Now, by (2.2), (4.6) yields

An easy induction procedure, based on the commutation formula
(2.4) for [E,L] gives

and, if we combine (4.7) and (4.8) we obtain exactly the required
formula (4.5).

REMARKS: (1) By taking h = n in (4.5), we get 03B4(03A9n) = 0, i.e., if M
is compact, an is harmonic.

(2) Using (1.1), (4.5) can be put into the following nice form
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(3) Since 52 = 0, (4.7) implies De(ah) = 0 and, for h = 1 , 60 = 0,
where 0 is given by (2.6).
The geometric content of Proposition 4.2 is pointed out by

COROLLARY 4.3: If M is l.c.K. and if for some h ~ 0, n we have
03B40(03A9h) = 0, then M is a Kâhler manifold. Particularly, any semi-Kiihler
I.c.K. manifold is Kâhler. (Moreover, if hO 1, the hypothesis can be
replaced by d(03A9h-1) = 0.)

PROOF: The alternate use of the two stated hypotheses follows by
(4.9). For h = 1, 5il = 0 implies by (4.5) 03C9 03BF J = 0, i.e. 03C9 = 0. This is

the semi-Kâhler case, and, in this case, the result fôllows also from
[2].
For h &#x3E; 1,03B4(03A9h) = 0 implies by (4.5) 03C9 039B 03A9h-1 = 0. But, if for

some point xEM, 03C9x ~ 0, we have

where 03BBx and 0398x are forms which, if expressed by means of a basis
whose first element is úJx, do not contain wx, and rank 0398x = 2n - 2.
Then, ù), A 03A9xh-1 ~ 0 since h ~ n, which contradicts w A f2’-’ = 0. This
contradiction implies w = 0, Q.E.D.

If 03B4(03A9h) = 0, h - 1, we shall say that M is a generalized semi-
Kâhler manifold.

REMARK: As a matter of fact, the hypotheses of Corollary 4.3 can
be weakened. Namely, since «,,f2 are real forms, it suffices to ask that
one of the following relations holds

Finally, we should like to note an easy consequence of formula
(2.15):

PROPOSITION 4.4: The Lee form w of a compact l. c. K. manifold M
is harmonic iff its corresponding vector field B is a volume preserving
infinitesimal transformation on M.

PROOF: From (2.15) we get

and, since * 1 is the volume element of M, the Proposition is proven.
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