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Introduction

This paper, as promised in the introduction to [1(c)], contains an

identity which is valid for any reductive group G over Q, and 
which

generalizes the Selberg trace formula for anisotropic G. 
We have

already shown that a certain sum of distributions on O(A)I, indexed

by équivalence classes in G(Q), equals the intégral of the function

The main task of this paper is to show that the integral may be taken

inside the sum over x. There does not seem to be any easy way to 
do

this. We are forced to proceed indirectly by first defining and studying

a truncation operator AT on functions on G(G)BG(A)’.
Recall that k x T(X@ f) was obtained by modifying the function

Kx(x, x). We shall apply the results of § 1 to the function

*Partially supported by NSF Grant MCS77-0918.
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obtained from Kx(x, y) by truncating in each variable separately, and
setting x = y. It will turn out that the function

is integrable. Then in §2, our main chapter, we shall show that for T

sufficiently regular,

converges absolutely. We shall also show that for each X, the integral
over G(Q)BG(A)’ equals 0. If we set J;(f) equal to

the identity associated to G is then

We should note that the distributions J’ and Ir are not in general
invariant. Moreover, they depend on a choice of maximal compact
subgroup and minimal parabolic subgroup. However, it should be

possible to modify each of the distributions so that they are invariant
and independent of these choices, and so that the identity still holds.
We hope to do this in a future paper.
Both formulas for J X ( f ) are likely to be useful. The integral on the

right is particularly suited to evaluating Ir on the function obtained
by subtracting f from a conjugate of itself by a given element in
O(A)I. It can also be used to show that Ir (f) is a polynomial function
in T. We shall not discuss these questions here. On the other hand,
the intégral on the left can be calculated explicitly if the class X is

unramified. We do this in §4. The result follows from a formula,
announced by Langlands in [4(a)], for the inner product of two
truncated Eisenstein series. It was by examining Langlands’ method
for truncating Eisenstein series that 1 was led to the definition of the
operator A T.
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1. A truncation operator

Let G be a reductive algebraic group defined over 0. We adopt the
definitions and notation of [I(c)]. In particular, K is a maximal

compact subgroup of G(A) and Po is a fixed minimal parabolic
subgroup of G defined over 0. Again we shall use the term ’parabolic
subgroup’ for a parabolic subgroup P of G, defined over Q, which
contains Po. We would like to prove that the terms on the right hand
side of the identity given in Proposition 5.3 of [1(c)] are integrable
functions of x. To this end, we shall introduce a truncation operator
for functions on G(Q)BG(A)’.

Recall that T is a fixed, suitably regular point in a 0 ’. If 0 is a

continuous function on 0(0)B0(#B)1, define (A Tf»(X) to be the func-
tion

(the sum over P is of course over all parabolic subgroups.) Note the

similarity with our definitions of the functions k r (x, f ) and k; (x, f) in
[1(c)]. If 0 is a cusp form, A Tc/J = c/J. It is a consequence of [1(c),
Corollary 5.2] that if 0(x) is slowly increasing, in the sense that

for some C and N, then so is

LEMMA 1.1: Fix PI. Then for

unless

PROOF: For any P, let n(4o; P) be the set of sEn such that

s-la &#x3E;0 for each a Ei!Õ. Applying the Bruhat decomposition to
P(Q)BG(Q), we find that fNt(Q)BNt(A) A Tq,(nlx) dnl equals the sum over
P and s E f2(ao; P) of the integral over n in N(Q)BN(A) of the

product of (-l)dim(Alz) with
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Since N,(G)BN,(A) = No(Q)BNÕ(Q)NI(A), this last expression equals

Decompose

This induces a decomposition of the measure dn 1 as dn* dn*. Then
write

and finally, combine the integral over fi * with the integral over n in
N(Q)BN( 11B). Because s lies in !J(40; P), No fl wsNlws n M is the
unipotent radical of a standard parabolic subgroup of M. It follows
that

is the unipotent radical of a uniquely determined parabolic subgroup
P, of G, which is contained in P. We have shown that

f N I(O)BN I(A) ( (n lx) dn 1 equals

We shall change the order of summation, and consider the set of P
which give rise to a fixed P,. Fix s E f2. Define SI (resp. Sl) to be the
set of a eào such that s-Ia is a positive root which is orthogonal
(resp. not orthogonal) to a i. If P, is one of the groups that appear in
the above formula, à 0 -’ will be a subset of SI. Those P which give rise
to a fixed P, are exactly the groups for which 4 ô is the union of 2lg
and a subset S of Si. Thus, for fixed s with àj C S’, we will obtain an
alternating sum over SCSI of the corresponding functions Tp. We
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apply Proposition 1.1 of [ 1(c)]. Let XS be the characteristic function of
the set of H E 40 such that for a OEào -,à-’ 0 U Si, w«(H) &#x3E; 0, while
w,,,, (H) --5 0 for a in Si. Here 1170 is the element in jo corresponding to
a. Then fN1(Q)BN1(A) ((nix) dn 1 is sum over s E f2 and over all subsets 4 ô
of S’, of the integral over n* in W;I No(A)ws nN((Q)Ni(A))
NA(O)NI(A) and n in Ns(Q)BNs(A) of the product of

with -1 raised to a power equal to the number of roots in ào - SI U Si.
Suppose that for some s, Xs(Ho( wsn * v) - T) does not vanish. Then

if

ta is positive for a in ao - dô U SI, and is not positive for a E Si. If
10’ E j¡,

where s-’a is orthogonal to a’ if a E S’. This last number is clearly
less than or equal to 0. Now

for some element v OENo(A). If w EEjo, it is well known that

111 (s-’Ho(wsvws’) is nonnegative and w (T - s-’ T) is strictly positive.
Therefore 111 (Ho(x) - T ) is negative for any w E Âi. 0
From the definition of A T we obtain

LEMMA 1.3: Suppose that (i and cf&#x3E;2 are continuous functions on
0(0)B0(1B)1. Assume that (i 1 is slowly increasing, and that cf&#x3E;2 is

rapidly decreasing, in the sense that for any N, the function
IlxilN . )(2(x)) is bounded on any Siegel set. Then
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PROOF: The inner product (A TCPI, cp2) is defined by an absolutely
convergent integral. It equals

This last expression reduces to

REMARK: It can be shown that A T extends to an orthogonal
projection on L2(G(Q)BG(A)I).
We would like to show that under suitable conditions, A Tep (x) is

rapidly decreasing at infinity. The argument begins the same way as
the proofs of Theorems 7.1 and 8.1 of [1(c)]. Suppose 0 is a con-

tinuous function on G(Q)BG(#B)I. Apply Lemma 6.4 as in the begin-
ning of the proof of Theorem 7.1 of [1(c)]. We find that A To (x) is the
sum over {PI, P2: Po C PI C P21 and 5 E PI(Q)BG(Q), of

where

For the moment, fix 8 and x. We regard 8 as an element in 0(0)
which we are f ree to left multiply by an element in Pl(O). We can
therefore assume, as in [1(c), §7] that

where k E K, n*, n *, and m belong to fixed compact subsets of

N2(A), N2(A) and MI(A)L respectively, and a is an élément in AI(R)D
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with o-’(HO(a) - T) 0 0. Therefore

where c belongs to a fixed compact subset of G(A)’ which depends
only on G.
The function cPPloP2 resembles the function estimated in the corol-

lary of [3, Lemma 10]. We want a slightly different statement of the
estimate, however, so we had best re-examine the proof. If a E LiT, let
p«, Pi C p« C P2, be the parabolic subgroup such that A’î = à g is the
complement of a in LlT. For each a, let (Y«,i, ..., Ya,na} be a basis of
nâ(Q), the Lie algebra of N 2(a). We shall assume that the basis is
compatible with the action of A i, so that each Y«,; is a root vector
corresponding to the root /3a,i of (M2 n Pl, AI). We shall also assume
that if i  j, the height of /3a,i is not less than the height of fl«,j. Define
na,j, 0  j  n« to be the direct sum of {Ya,h..., Y,,,jl with the Lie
algebra of N2, and let Na,j = exp na,j. Then N«,; is a normal subgroup
of Ni which is defined over 0. If V is any subgroup of NI, defined
over Q, let ir(V) be the operator which sends 0 to

Then Op,,p2 is the transform of 0 by the product over a E L1 Î 1 of the
operators

If Ko is an open compact subgroup of G(Aj), G(Q)BG(A)IIKo is
diff erentiable manifold. We assume from now on that 0 is a function
on this space which is differentiable of sufficiently high order. Sup-
pose that 1 is a collection of indices

Then
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and

are normal subgroups of Ni. Let n’ be the span of {Ya,ia} and let
n’(Q)’ be the set of elements

Then if n is any positive integer,

is a nonzero real number. By the Fourier inversion formula for the

group A/a, cf&#x3E;Pl.Pl(Y) is the sum over all I of

Here e and Vi are as in [1(c), §7] and ( ,) is the inner product defined
by our basis on nj. If n is a positive integer,

can be regarded as an element in OU(g(R)1 @ C). Then t!&#x3E;Pt,P2(Y) equals
the sum over I and over e E n,(G)’ of

Now, we set

as above. Since uy(Ho(a) - T) #= 0, a belongs to a fixed Siegel set in
M2(/A). It follows that the integrand in (1.1), as a function of X, is
invariant by an open compact subgroup of n/(/A,) which is in-
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dependent of a and c. Consequently, (1.1) vanishes unless e belongs
to a fixed lattice, LI (Ko), in nI (R). But for n sufficiently large

is finite for all I. Let cn(Ko) be the supremum over all I of these
numbers. Then lq,pt&#x3E;piac)1 is bounded by

Let /31 = E« /3a,ia. Then /31 is a positive sum of roots in a i. For any n,

We can choose a finite set of elements {Xi} in IM(g(R)’(&#x26; C), depend-
ing only on n and Ko, such that for any Pi, P2, I and c,

is a linear combination of fxij. Since c lies in a compact set, we may
assume that each of the coefficients has absolute value less than 1.

We have thus far shown that lA TcP(x)1 is bounded by the sum over all
Pi, P2 and 8 E PI(O)BG(O) of the product of

with

LEMMA 1.4: Let 6 be a Siegel set in G(A)I. For any pair of positive
integers N’ and N, and any open compact subgroup Ko of G(At), we
can choose a finite subset (X;) of OU(g(R)’(D C) and a positive integer
r which satisfy the following property: Suppose that (S, do) is a

measure space and that r#(a, x) is a measurable function from S to
cr(G(O)BG(A)l/Ko). Then for any x E 6,
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is bounded by

PROOF: Substitute cf&#x3E;(u) for 0 in (1.2) and integrate over a. The
result is

If Sx = ac, with a and c as above,

We are assuming that uT(Ho(a) - T) 0 0. Since 131 is a positive sum of
roots inài we conclude from [1(c), Corollary 6.2] that Ilall is bounded
by a fixed power of

It f ollows that for any positive integers N and Ni we may choose n
so that (1.3) is bounded by a constant multiple of

It is well known (see [2]) that there is a constant ci such that for any
y E G(Q) and x E 6,

The only thing left to estimate is

The summand is the characteristic function, evaluated at 8x, of a
certain subset of

The sum is bounded by
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It f ollows from [1(c), Lemma 5.1] that we can find constants C2 and
N2 such that for all Pi this last expression is bounded by C211x1lN2. Set
Ni = N’ + N2. Ni dictates our choice of n, from which we obtain the
differential operators lxil. The theorem follows with any r greater
than all the degrees of the operators Xi. 0

In the next section we will need to have analogues of the operators
A T for different parabolic subgroups of G. If PI is a parabolic
subgroup, and 0 is a continuous function on PI(O)BG(A)’, define

LEMMA 1.5 : Suppose that P is a parabolic subgroup and 0 is a

continuous function on P(Q)BG(A)I. Then

equals

PROOF: We need to prove that (1.4) is the sum over
and 8 E R(O)BP(G) of the product of

with

Consider Lemma 6.3 of [ 1 (c)], with A a point in -(at)+. The sum
given in that lemma then reduces to (1.5). It follows from [l(c), Prop.
1.1] that (1.5) vanishes if R # P and equals 1 if R = P. This establishes
Lemma 1.5. D
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2. Integrability of k f (x, f)

We take r to be a sufficiently large integer, and continue to let T be
a suitably regular point in at. In [1(c)] we associated to every

lE Cr c(G(A)’) a function, kf(x,f), on G(Q)BG(A)’.

THEOREM 2.1: For sufficiently regular T,

is finite. 

We will not prove the theorem directly. Rather, we shall relate

k;(x, f) to the truncation operators whose asymptotic properties we
have just studied. We shall operate on Kp.x(x, y), which of course is a
function of two variables. If Pi C P2, we shall write T’PI (resp. A 2’Pl) for
the operator A T,PI, acting on the first (resp. second) variable.

PROOF: The given expression is the sum over all chains Pl C P C
P2 C P3 and over 5 E PI(G)BG(G), of

As we have done many times, we appeal to [l(c), Prop. 1.1]. We see
that the sum over P2 equals 0 unless P = P3. Therefore the given
expression equals
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Apply Lemma 1.5 to the sum over Pi. We obtain

Since

this last expression equals kI(x, f), as required. 0

Fix Pl C P2. Motivated by the last lemma, we shall examine the

expression

It equals

Let F(Pl, P2) be the set of elements in Pl(o)BP2(0) which do not
belong to Pi(0)BP(Q) for any P, with Pl C P CP2. By [I(c), Prop. 1.1]
the above expression equals 

In this last formula we have affected the cancellation implicit in the
alternating sum over P. In order to exploit the equation we have just
derived, we interrupt with a lemma.

LEMMA 2.3: Suppose that for each i, 1 sis n, we are given a
parabolic subgroup Qi D Pl, points xi, Yi E G(A) and a number ci such
that
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vanishes for all m E MI(Q)BM,(A)’. Then for any X E #,

also vanishes for all m E MI(G)BM,(A)’.

PROOF: Suppose that for a given X’ E #, there is a group R in Px’
which is contained in Pl. We would like to prove that for any function

4&#x3E;x’ E L2(MR(Q)BMR(IA.)I)x" the integral

vanishes for X# X’. Suppose that X# X’, and that 0 E YeQ(ir), for
some Q c Qi, and some 7T E II(MQ). The construction of Eisenstein
series is such that if the function

is substituted for hx in (2.1), the result is 0. It follows from the

estimates of [1(c), §4] that (2.1) itself is 0. The same estimates yield
constants c and N such that

By assumption, 1,, hx(m) equals 0. Consequently (2.1) is zero even
when X = X’. The function hx is continuous. Because (2.1) vanishes
for all 0,,,, h,, satisfies the hypotheses of [4(b), Lemma 3.7]. hx is

therefore zero. D

To return to the proof of the theorem, we look for conditions
imposed on x, y and y by the nonvanishing of

Set

There is a compact subset of G(A)’, depending only on the support of
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f, which contains some point

whenever (2.2) does not vanish. Fix w e â 1 and let A be a rational
representation of G with highest weight dw, d &#x3E; 0. Choose a height
function )) [[ as in [I(c), §1]. If v is a highest weight vector, we can
choose a constant ci such that

whenever x-tynrmYl lies in the given compact subset of G(/A)I. The
lef t side of this inequality equals

which is no less than a constant multiple of

In other words, 0153(Ho(yx)-Ho(Y» is no less than a fixed constant. It
follows from this observation that we may choose a point To E ao,
depending only on the support of f, such that

whenever (2.2) does not vanish identically in m. We conclude from
Lemma 2.3 that if (2.3) fails to hold for a given x, y and y, then

vanishes for all x and m.
Combining [l(c), Lemma 5.1] with what we have just shown, we

conclude that for fixed x and y,

vanishes unless y belongs to a finite subset of F(Pi, P2), independent
of X. Theref ore the sums in
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are finite. Since the expression vanishes for all m in MI(Q)BM,(A)’,
we can apply Lemma 2.3. We obtain an equality of functions of y for
each X. We are certainly at liberty to apply our truncation operator to
those functions. It follows that for any X E ae,

equals

We have thus far shown that

is bounded by the sum over

Let 6 be a fixed Siegel set in MI(A)’ with MI(Q)6 = M1(A)I, and let r
be a compact subset of Ni(A) with NI(Q)r = N1(A). Then the last
integral is bounded by the integral over n E F, m E 6 rl Po(A), a E
A1(R)0 rl G(A)I, and k E K, of

Suppose that f or n, m, a and k as above, and f or some
y E F(PI, P2) and X E f,

Write l’ = VWs1T, for v G NÉ(Q), TT E Po(Q) and s E nM2, the Weyl
group of (M2, Ao). It follows from Lemma 2.3 that there is a fixed
compact subset of 0(1B)1 which contains

for points ni E No(A) and pi E MI(/A)INI(/A). Fix w E A, and let ll and



103

v be as above. A(ws)v is a weight vector, with weight sw. The vector

can be written as a sum of weight vectors, with weights higher than
S’m. By the construction of our height function,

It f ollows that there are constants c’ and c, depending only on the
support of f, such that

Since s fixes d2 pointwise, the inequality

holds for the projection of 1IJ onto ai. In other words, we may take
to be an element in â i. For each such w, m - s w is a nonnegative
integral sum of roots in L1i. We claim that the coefficient of the
element a in à’, such that w = is not zero. Otherwise we would
have (w - s w )(w ’) = 0, or equivalently, S1I7 = w . This would f orce s to
belong to 12",- for some parabolic subgroup P, Pl C P GP2. This
contradicts the assumption that y = VWs1T belongs to F(PI, P2), so the
coefficient of a is indeed positive. We can assume that a has the
additional property that

It follows from Corollary 6.2 of [1(c)] that for any Euclidean norm
1111 on ao there is a constant c such that

We have shown that if a E AI(R), n G(A)l is such that for some X, y,
n,m,mandk,

does not vanish, then the inequality (2.5) holds.
Suppose that f is right invariant under an open compact subgroup
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Ko of G(Af). Then if Ipl( TT, f)o 0 0 for some TT and 0 E 9ÃPl( 1T)x, the
function E(y, 0) is right Ko-invariant in y. Theref ore for any x, y and
X, Kplox( ;’x, y) is right Ko-invariant in y. It follows that (2.6) is right
invariant in m under the open compact subgroup

of M1CA.f)l. We apply Lemma 1.4 with the group G replaced by MI.
For any positive integers Nl and NI we can choose a finite set {A,} of
elements in OU(ml(R)’(&#x26; C), the universal enveloping algebra of the
complexification of the Lie algebra of Ml(R)l, such that for all n E r,

is bounded by

We can choose éléments {Yj} in ôh(g(R)’(D C) such that

where Cij(k) are continuous functions on K. Recall that Kp,,"(x, y) is
ultimately defined in terms of f. The function R,(Yj)Kpl’X(X, y) is

defined the same way, but with f replaced by f * f 4’. The support of
f * F* is contained in the support of f, so we can assume that (2.3) is
valid whenever R,( Yi)Kpl’X( l’X, y) does not vanish. By Corollary 4.6 of
[l(c)],

is bounded by a constant multiple of a power of llxll - M. It follows
from Corollary 5.2 of [l(c)] that the expression
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is also bounded by a constant multiple of a power of llxll - Ilyll. By
taking Ni to be large enough we obtain constants Cz and N2 such
(2.8), and therefore (2.7), is bounded by

Set m = m in (2.7). Integrate the resulting expression over n E r,
m E 6 fl Po(A), k E K and a in the subset of elements in AI(R)o n
G(A)’ which satisfy (2.5). There are constants C3 and N3 such that the
result is bounded by 

If we set Ni = N3, this is finite. The proof of Theorem 2.1 is complete.
Il

LEMMA 2.4: For T sufficiently regular, and r sufficiently large,

for all f E Cr(G(A)’) and X E X.

PROOF: It follows from the proof of Theorem 2.1 that the integral
of k x ’(x, f) is the sum over all Pl C P2 of the product of (-1)dim(A2/Z)
with

As a double integral over x and y this converges absolutely. If

Pt = P2 gé G, the integrand is zero. If Pt = P2 = G, the result is the

integral of AIKx(x, x). We have only to show that if PI CP2, the
result is zero. Let n(PI, P2) be the set of elements s in fl’°2 such that
sa and s -’a are positive roots for each a eà 0 and such that s does
not belong to any !JM, with PICP CP2. Then the above integral
equals the sum over all s E !1(Pt, P2) of

Since
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for any y E PI(O), this equals

If s E Q(Pi, P2), W;lpows n MI is the standard minimal parabolic
subgroup of MI, since s-la &#x3E; 0 for a e A 1. Theref ore Mi n W;lplws
equals mi n Ps, for a unique parabolic subgroup Ps of G, with
Po C Ps C Pl. Write the integral in (2.9) as a double integral over
Ms(Q)Ns(/A)BG(/A)1 x (pi(o) n w;IPt(Q)ws)BMs(Q)Ns(/A). PI n ws’Plws
is the semi-direct product of mi n W;IpIWs and Ni n ws’P1 ws,
and MI n W;lplws decomposes further as the semidirect product
of Ms(G) and NS(Q). Therefore, (2.9) equals the integral over x in
Ms(O)Ns(A)BG(A)’ of the product of U1(Ho(x) - T) and

This last expression equals

We apply Lemma 1.1 to the parabolic subgroup mi n P, of MI. Then
this expression vanishes unless w (Ho(x) - T) is negative for each
w Ej’. On the other hand, we can assume that (2.3) holds, with y, x,
and y replaced by ws, nix, and nx respectively. In other words,

for each 117 E j 1. But it is well known that

so there is a constant C, depending only on the support of f, such that

for every w in ’&#x26;1. These two conditions on Ho(x), we repeat, are
based on the assumption that (2.10) does not vanish. We obtain a third
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condition by demanding that UT(Ho(x) - T) not vanish. We shall show
that these three conditions are incompatible if T is sufficiently
regular.
We write the projection of Ho(x) - T on a i as

The first and third conditions on Hc(x) translate to the positivity of each
ca and c,. Now the Levi component of P, equals Ml f1 ws’M, ws.
Therefore S4ô is orthogonal to a i. Then for wo E j 1,

equals

Now 111 v - S1I1 v is a nonnegative sum of co-roots, so the sum over w is
nonnegative. Moreover we can replace each a in the sum over d by
the corresponding root in Ao’BAs. Since s maps the roots in this latter
set to positive roots, the sum over a is also nonnegative. Finally, for
any wo, 1I10(T - sT) can be made arbitrarily large for T sufficiently
regular. We thus contradict the second condition on Ho(x). Therefore
(2.10) is always zero so the integral of k[(x,f) equals that of

ll 2 TK,(x, x). D

For any x E ài, set

In this section we shall give another formula, which reveals a

différent set of properties of the distributions j x T. We shall build on
Lemma 2.4, which is a partial step in this direction.

Fix P, 1T’ E ll(M) and X E X. Suppose that A is a linear operator on
Wp(w) under which one of the spaces Xp(ir),, YP(Ir),,K,, or

gep(ir),K,,w is invariant. Here Ko is an open compact subgroup of
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G(Af) and W is an equivalence class of irreducible representations of
KR. We shall write AX, AX,KO or Ax,Ko,w for the restriction of A to the
subspace in question.
Suppose that 6 is a Siegel set in G(IA.)I. It is a consequence of

Lemma 1.4 and [1(c), (3.1)] that given any integer N’ and a vector
cp E Yo p (ir),, we can choose a locally bounded function c(C) on the set
of C E a*,c at which E(x, cp,) is regular, such that

for all x e 6. It follows that for 0, 41 E Ye’p(ir),, the integrals

and

converge absolutely, and define meromorphic functions in (£, Ti)
which are regular whenever the integrands are. By Corollary 1.2 and
Lemma 1.3 these meromorphic functions are equal. Thus we obtain a
linear operator M 5(w) on X’(ir) by defining

for every pair 4&#x3E;1 and 4&#x3E;2 in W$(w). M 5(w) dépends only on the orbit
of 1T in nG(M). It is clear that Mp(1T)x is self-adjoint and positive
definite. Notice also that

for all k E K. It f ollows that for any Ko and W, Mp(7T)x leave s the
finite dimensional space XP(Ir),,K,,,W invariant.

Recall that in the proof of Lemma 4.1 of [1(c)], we fixed an elliptic
element à in ’*(g(R)’(D C)KR. For any Ko and W, Yep(ir),K,,w is an
invariant subspace for the operator Ip(7T, à ). Choose à so that for any
X, ir, W and Ko, such that Xp(ir),Ko,w 0 JOI, Ip(ir,,à),K,,,w is the



109

product of the identity operator with a real number which is larger
than 1. For example, we could take à to equal 1 + A *,à 1, where A 1 is a
suitable linear combination of the Casimir elements for G(R)’ and KR.

If A is any operator on a Hilbert space, IIAlh denotes the trace class
norm of A.

THEOREM 3.1: There is a positive integer n such that for any open
compact subgroup Ko of G(Af),

is finite.

Assume the proof of the theorem for the moment and take ri =

deg a". Suppose that f is a function in C§i(G(A)), which is bi-

invariant under Ko. Then

For any 7T the norm of the operator Ip(7T,i1n * f ) is bounded by

Thus, Theorem 3.1 implies that for every

is finite, and in fact defines a continuous seminorm on C§i(G(A)). In
particular, the operator M5(w) . Ip( 7T, f)x is of trace class for almost
aIl 7T.

THEOREM 3.2: There is an r a ri such that f or an y X and an y
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We shall prove the two theorems together, Let N and ro be the

positive integers of Lemma 4.4 in [1(c)]. Choose an open compact
subgroup, Ko, of G(Af) and a Siegel set d in G(/A)I. According to
Lemma 1.4 and the lemma just quoted from [1(c)], we may choose a
finite set 1 Yil of elements in OU(g(R)1 Q9 C) such that for x E G(A)I,

and f a K-finite function in

is bounded by

When we set x = y and integrate the above expression over

GG)BG(A)’, the result is bounded by

Suppose w = ( W,, W2) is a pair of equivalence classes of irreducible
representations of KR. We defined the function

in §4 of [ 1(c)]. We also defined the positive integer eo. Let

As we saw in §4 of [1(c)],
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is a continuous seminorm on C2(G(A)’). We have shown that

is bounded by IIfIJ"2’ for every f E C?(G(A)’).
Let r by any integer larger than r2 f or which Lemma 2.4 is valid.

Then if f E C§(G(A)), and X is fixed,

by Tonelli’s theorem. The operator AT is defined in terms of sums
and integrals over compact sets. If we combine Tonelli’s theorem
with the estimates of [1(c), §41 we find that we can take AT outside
the sums over 0, P and W, and the integral over ir. The result is

which by Lemma 2.4 equals J;(f). The proof of Theorem 3.2 will now
f ollow from Theorem 3.1 if we take r to be larger than ri.
The only remaining thing to prove is Theorem 3.1. We shall use

Lemma 4.1 of [ 1(c)]. We can choose n, and functions g’ e C?(G(A)’)
and gR E C§f(G(A )l’ such that J n * gR + gR is the Dirac distribution at 1
in G(R)I. If 1 = 1, 2, set
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where chKo is the characteristic function of Ko. Then

Suppose that W is an irreducible KR-type and that w = ( W, W). Then
the trace of the restriction of M’(ir), - Ip(ir,,à")-l to J(ep(ir),K,,,w is

Since the eigenvalues of Ip(ir,,à’) are all larger than 1, this last

expression is bounded by

Now the trace class norm of the operator

is the sum of the traces of its restriction to each of the subspaces
7lep( TT)x,Ko,W. Therefore

is bounded by the sum over i = 1, 2 of

This in turn is bounded by

which is just (3.2) with f replaced by gi. Theorem 3.1, as well as
Theorem 3.2, is now proved. 0
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4. Evaluation in a spécial case

In this section we shall give an explicit formula for J;(f) for a
particular kind of class X E ae. These special X we will call unramified;
they are analogues of the unramified classes o e 0 for which we were
able to calculate J’(f) in [1(c), §81. The formula for J;(f) is a

consequence of an inner product formula of Langlands which was
announced in [4(a), §9]. Most of this section will be taken up with the
proof, essentially that of Langlands, for the formula. First, however,
we must demonstrate a connection between the truncation operator
A T and the modified Eisenstein series defined by Langlands in [4(a)].

Fix a parabolic subgroup Pi and a representation TT E II(Mi). If

cf&#x3E; E Xop,(lr) and C E a te, write

If s E f2(al, a2), define M(s, 11’, C) = M(s, C) by

M(s, C) maps Yp,(ir) to W’p,(sir). Suppose that XE ae is such that
Pi E P,,. Then for all X E G(A)’,

is a cusp form in m. If P2 is a second group in 9Jx’ we have the
following basic formula from the theory of Eisenstein series:

A formula like this exists if P2 is replaced by an arbitrary (standard)
parabolic subgroup, P. Recall that 12(al; P) is defined to be the union
over all a2 of those elements s E f2(al, a2) such that s a i = a2 contains
a, and s-la is positive for each a E 42 . Then we have

The verification of this formula is a simple exercise which we can
leave to the reader. It can be proved directly from the series definition
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of E(x, cf&#x3E;, £). Alternatively, one can prove it by induction on dim A,
applying [4(b), Lemma 3.7] to the group M

LEMMA 4.1: Suppose that Pi E P/Jx as above, that cf&#x3E; E &#x3E;%$(w) and
that C is a point in a te whose real part CR lies in pi + (aÎ)+. Then
A TE(x, cf&#x3E;, £) equals

with the sum over 8 converging absolutely. (The functions E2 and 1&#x3E;2
are as [I(c), §8].)

PROOF: Suppose that P2 and s E SlÎ(a i, a2) are given. In the process
of verifying the equality of (8.5) and (8.6) in [1(c)], we ended up
proving that for all H E ao,

was equal to

Apply this to (4.2). Then decompose the sum over P2(O)BG(O) into a
sum over P2(0)BP(G) and P(Q)BG(O). The sum over P(Q))G(Q) will
be finite by [l(c), Lemma 5. 1]. If a EEàp, s-’a’ is a nonnegative sum
of éléments of the form 8’, for,6 E dl. It follows that

is positive. Therefore the sum

is absolutely convergent, and in fact equal to Ep(8x, M(s, C)O, sC). In
particular, the original sum over 5 in (4.2) is absolutely convergent.

We find that (4.2) equals



115

If the left hand side of (4.1) is substituted into the brackets, the result
is ll TE(x, 0, l). D
To simplify the notation, we shall assume that TT(a) is the identity

operator for all a E AI(R)I. This entails no loss of generality, since
any 1T1 E II(Ml) equals TTl1’ for some such ir and some q E ia*. Given
P2, define

If define

for x E G(A)’. This function is not hard to compute. We have only to
evaluate

Since a ---&#x3E; H2(ax) is a measure preserving diffeomorphism from
A2(R)° n G(A)’ onto aG@ this last expression equals

Make a further change of variables

Of course, we will have to multiply by the Jacobian of this change of
measure. It is the volume of ar modulo the lattice, L2, spanned by
{a v: a E A2}. The integral becomes a product of integrals of decreas-
ing functions over half lines; it is easy to evaluate (see [ 1(b), Lemma
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3.4]). We find that 1/’2(A, x) equals

We have been assuming that CR is a point in pi + (a*)+. Let us suppose
from now on that it is suitably regular. Then 1Ji’2(A, x) can be analy-
tically continued as a holomorphic function, for A in a tube in a fc
over a ball Bp2 in a!, centered at the origin, of arbitrarily large radius.
The functions

indexed by A, span a finite dimensional subspace of

L2(M2(O)BM2(A)1 x K). For fixed Ao in Bp,, 1/J’2(A) is a square in-

tegrable function from Ao + i(a 2 )* to this finite dimensional space.
Suppose that Pl’ is another group in e,. Pick a class ir’EE H(M’), a

vector cf&#x3E;’ E lkf$j(w’) and a point Ce atj,c to satisfy the same con-
ditions as above, and define the functions t/12 and 1/1’2 associated to any
other group P2 in e,. Then

is the sum over P2 and P2 in e., of

This last inner product is given by a basic formula in the theory of
Eisenstein series ([4(a), Lemma 4.6]). It equals

where Ao is any point in Bp2 n ( p2 + (a éJ)+), and dA is the Haar measure
on i(4¥)* which is dual to our Haar measure on a1. Therefore, (4.3)
equals the sum over P2 and s E (J(41, (2), of the integral over A, of the
product of
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and

We shall show that (4.5) is a regular function of 11 on the tube over
P2 + (a*)+. The functions M(t, A) are regular on this tube, so the only
signularities are along hyperplanes

for fixed s’, t, £’ and a E à]. Let Sa E lli(a], (2) be the simple reflection
belonging to a (see [4(b), Pg. 35]). Then f3 = -Saa is a root in àpj, and

is the same hyperplane as above. Thus, the summands in (4.5) which
are singular along a given hyperplane occur naturally in pairs. We
shall show that the two residues around the hyperplane add up to 0.
Assume that (s’l’ + tA)(aV) =0. Then (SaS’ l’ + satA)({3V) = 0. The in-
ner product from the summand of (4.5) corresponding to P", sas’, sat
equals

by the functional equations. But

since M(sa, tA) depends only on the projection of tll onto a. There-
fore (4.6) equals

which is the inner product from the summand of (4.5) corresponding
to P2, s’, t. It follows that the residues of the two summands do add
up to zero. Therefore (4.5) is regular at the hyperplane under con-
sideration, and so is regular on the tube over p2 + (aéJ)+.
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Next we shall show that if s ¥: 1, the integral in A of the product of
(4.4) and (4.5) equals 0. Given such an s, choose a root a EEà2 such
that (s£R)(a V)  0. Change the path of integration from Re A = Ao to
Re A = Ao + Nw,,,, where N is a positive integer which we let ap-
proach 00. We can do this by virtue of the regularity of (4.5) and the
fact that the numbers

are bounded independently of N. Notice that

is no greater than 1. Therefore, the integral over Re A = Ao + Nw ,,
approaches 0 as N approaches 00. It follows that the original integral
equals zero.
We have only to set s = 1 in (4.4), multiply the result by (4.5), and

then integrate over A. Make a change of variables in the integral over
A, setting

With this change of measures, we must multiply the result by the
volume of i(af)* modulo the lattice spanned by a EEà2l. Since
dA represents the measure on i(af)* dual to that on ar, and since
{m a} and {a V} are dual bases, this factor equals

The product of this factor with (4.4) then equals

Each za is to be integrated over the line Ao(a ") + iR). We replace this
contour with the line AO(a’) + N + iR, and let N approach 00. Ac-

cording to our assumptions on C, CR(a’) &#x3E; AO(a’), so we will pick up a
residue at Za = C(a’). By the arguments of the previous paragraph,
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the intégral of Za over the line Ao(a V) + N + iR approaches 0 as N
approaches 00. Therefore the integral of za over Ao(a V) + iR equals
the residue of the integrand at Za = (a V). It follows that (4.3) is the

product of vol(a%lL) with the value of (4.5) at s = 1 and A = £. We
have proved

LEMMA 4.2: (Langlands) Suppose that Pi, P E Px, that cf&#x3E; E 1( 71’)x,
cf&#x3E;’ E lfif$j(w’) and that ( and £’ are vectors in a t,c and 0. Í’c whose real
parts are suitably regular points in (a$)+ and (a $j)+ respectively. Then

equals the sum over Of

Both sides of the identity of the lemma are meromorphic functions
in (’, l’). Therefore the identity is valid for all regular points C and £’.

Recall that the elements of X are equivalence classes of pairs
(MI, pi). We shall say that X is unramified if for any pair (Mi, p) in X,
the only element s E lli(a i, ai) for which sp = p is the identity. For the
remainder of this section, assume that X is unramified. Suppose that
Pl = Pl’ = P and that w = ir. Then if çb, C/&#x3E;’, S4 and s’are as in the

lemma,

unless s = s’. It follows that for 11 E ia*, p çb’ ) equals

We can now take ir to be any class in II(M). We have shown that for

On the other hand, if P does not belong to 9, and Tr E II(M), then
l{p(1T)x = {O}. This fact can be extracted from the results of [4(b), §71.
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We can therefore write

with M5(w) given explicitly above in terms of the global intertwining
operators. If we wanted to pursue the analogy with §8 of [1(c)], we
might regard this formula as a linear combination of ’weighted
characters’ of f.

5. Conclusion

The results of this paper, and of [ 1 (c)] can be summarized as an

identity for the reductive group G. Namely, there is an integer r &#x3E; 0

such that for any f E CKG(A)) and any suitably regular point T E 4t,

where

and

Let R,.,p be the restriction of the representation R to

L’..p(G(G)BG(A)’). Let X(G) be the set of classes XE ae such that
ex = {G}. Then jRcusp is the direct sum over all X in ae(G) of the
representations Rx. If X E X(G) and ir E H(G), M’[;(TT)x is the identity
operator. It follows from the finiteness of (3.1) that if f is in

c _f) is of trace class. (This fact also follows from [3,
Pg. 14] and [1(c), Corollary 4.2].) Moreover if f E C’(G(A)@1), for r as
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in Theorem 3.2,

Thus
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