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1. Statement of the result

For a C°° manifold M, .!(M) denotes the linear space of Coo

vectorfields on M. Let X: lF(M) x 1’(M)-+1’(M) be a bilinear opera-
tor, defined for every n dimensional manifold M. This operator is

called natural if for every smooth open embedding f : N --&#x3E;M the

following diagram commutes:

where M, N are Coo manifolds and f * is the composition iF(M) r

X(f(N» - lF(N), r the restriction operator, i.e. f*X(x) =
df(x)-I(X(f(x») for X E lf(M). In this note 1 shall prove that the

Lie-product ([X, Y] = X - Y - Y - X for X, Y e X(M» is charac-

terised by this property:

THEOREM: Let X be a bilinear natural operator in the above sense,
then there exists a constant À E R such that X(X, Y) = A . [X, Y], for
all X, Y E X(M).

Palais and others [3], [4], [5] prove analogous results for operations
on differential forms. Peetre [6] has a similar characterisation of
linear (not bilinear) differential operators. The formal techniques are
similar to those in [7]. 1 am indebted to my supervisor Prof. Floris
Takens, for suggesting the problem and for his encouragement.
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2. The proof

The naturality of y implies that it is a local operator, i.e. for U

open in M

Furthermore if U, V C M, U, V diffeomorphic and y(X, Y) =
À . [X, Y] for some constant and all X, Y E I ( U), then also

X(X, Y) = A . [X, Y] for all X, Y E X( V). Therefore 1 may assume

M = R. It is sufficient to prove

because X commutes with translations. Of course naturality implies

for every diffeomorphism f and every X, Y E X(R").

The main step in the proof is X(X, Y)(0) = X(jIX(O), jly(O»(O).
(Where, for sEN, jS X (p) is the polynomial vectorfield of degree s
corresponding to the s-jet of X in p, that is, the first s terms of the
Taylor expansion of X in p.) In lemma 1 1 use naturality to prove this
for polynomial vectorfields. In lemmas 2 and 3 this is shown for

arbitrary smooth vectorfields, by proving X(X, Y)(0) = 0 if X (p) or
Y(p ) has in p = 0 a zero of sufficiently high order.
In lemma 4 1 show that there exist constants y,, ..., y4 such that:

In these lemmas 1 use the naturality property, but only with affine
diffeomorphisms f in equation (1).

Finally in the proof of the theorem one needs non-linear

diffeomorphisms f in (1) to show that the constants y,, ..., y4 satisfy
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LEMMA 1: : For monomial vectorfields

PROOF: Let

Define a diffeomorphism by 0(x) = À x, k 0 0. Then

hence, using (1),

However, the left side at 0 is equal to À ’ y(X, Y)(0). This proves the
lemma.

LEMMA 2: For X a C°° vectorfield, there exists a C°° vectorfield X
and sequences p, --&#x3E; 0, q, --+ 0 such that: (1) X 1 Us = (X - jSX(ps» 1 Un
US a neighbourhood of p,. (2) X  Vs = 0, Vs a neighbourhood of qs.

PROOF: In fact lemmas 2 and 3 use a classical theorem of E. Borel

and a technique of J. Peetre [6]. Take for example ps =

(1/ s, 0, ..., 0), qs = - p,. Define a smooth function a : R n B&#x3E; R such that

and for every s E N. Choose E, &#x3E; 0 so small that
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so that

Then

converges and has the desired properties.

LEMMA 3: For all X, Y E X(R")

PROOF: This lemma can also be immediately deduced from Peetre
[6], because X - X(X, Y) is a local linear operator. But for the sake of
completeness an elementary proof will be given here. Take 9, f as in
lemma 2.

First 1 shall prove that for all p E R" :

x(Z, Y)(0) = 0 for every Z E X(R"), because y(Z, Y)(q,,) = 0 and q, --&#x3E;

0. Furthermore for a =(ai,..., an) x?i ... xg. can be considered as a
polynomial in xi - ai , ..., xn - an and using lemma 1:

for every t E N.

But, for every s, jl Y(ps) is a linear combination of

Since any linear operator on a finite dimensional vectorspace is
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continuous:

for s --&#x3E; 00. This together implies that the limit of:

is

Translation gives (2) for any p E Rn. Therefore:

which goes to X(jlX(O), jl Y(O»(O) for s - 00.
Compare this with the proof of the continuity of local operators on

vectorfields in [2], XVIII. 13. problem 1.

LEMMA 4: There are constants y,, ..., y4 such that

PROOF: Lemmas 1 and 3 imply that X can be written as:

with Mi linear maps from the (n x n )-matrices to the (n x n )-matrices.
The lemma is proved when 1 show that for certain constants -YI, y3:

for all matrices A.

Now take Y(O) = 0, A = dF(0), f(x) = L. x (L a linear invertible
map) and use naturality (1) in equation (3). This implies:
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Let L run over all diagonal and permutation matrices and deduce
from (5) that there exist constants YI, Y3 such that (4) is true for all
diagonal matrices A. Therefore (4) is true for all diagonalisable
matrices A. But every matrix is a sum of diagonalisable matrices. This
proves (4).

Proof of the theorem
a) The constants in lemma 4 satisf y YI = - y2, y3 = - Y4. That is:

To show this, it is now sufficient to prove X is antisymmetric, i.e. that
X(X, X) = 0 BIX E .f(Rn).

If X(0) = 0, then lemmas 1 and 3 give X(X, X)(0) = 0.
If X(0) # 0 the flow-box theorem [1] gives a local diffeomorphism

q;: (R n, 0) (R n, 0) such that

and again X(X, X)(0) = 0.
b) For n = 1: (div Y)X - (div X) Y = [X, Y] and we are done.
c) If n z-- 2: The operator (X, Y)-(div Y)X - (div X)Y does not

commute with every diffeomorphism cp and therefore Y3 = 0 in equation
(6). To see this, take

and a (non-measure preserving) local diffeomorphism (ol: (R«, 0) --&#x3E;
(R«, 0) such that div X(O) = div Y(0) = 0, Y(O) ;;é 0 and

div ((Oi)*X) # 0.
Define lp(Xl,..., xn) = (§i(xi, ..., xa), x«+i, ..., xn), then div(ç*X)(0)

# 0, div(ç * Y) = 0, that is (div Y)X - (div X) Y does not commute with
this p.
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