COMPOSITIO MATHEMATICA

SEBASTIAN J. VAN STRIEN Unicity of the Lie product

Compositio Mathematica, tome 40, nº 1 (1980), p. 79-85 <http://www.numdam.org/item?id=CM 1980 40 1 79 0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 40, Fasc. 1, 1980, pag. 79–85 © 1980 Sijthoff & Noordhoff International Publishers – Alphen aan den Rijn Printed in the Netherlands

UNICITY OF THE LIE PRODUCT

Sebastian J. van Strien

1. Statement of the result

For a C^{∞} manifold M, $\mathfrak{X}(M)$ denotes the linear space of C^{∞} vectorfields on M. Let $\chi: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ be a bilinear operator, defined for every n dimensional manifold M. This operator is called natural if for every smooth open embedding $f: N \to M$ the following diagram commutes:

$$\begin{array}{c} \mathcal{X}(M) \times \mathcal{X}(M) - \chi \to \mathcal{X}(M) \\ & \downarrow^{f^* \times f^*} & \downarrow^{f^*} \\ \mathcal{X}(N) \times \mathcal{X}(N) - \chi \to \mathcal{X}(n) \end{array}$$

where M, N are C^{∞} manifolds and f^* is the composition $\mathcal{X}(M) \xrightarrow{r} \mathcal{X}(M)$

 $\mathscr{X}(f(N)) \xrightarrow{(f^{-1})_*} \mathscr{X}(N)$, *r* the restriction operator, i.e. $f^*X(x) = df(x)^{-1}(X(f(x)))$ for $X \in \mathscr{X}(M)$. In this note I shall prove that the Lie-product $([X, Y] = X \cdot Y - Y \cdot X \text{ for } X, Y \in \mathscr{X}(M))$ is characterised by this property:

THEOREM: Let χ be a bilinear natural operator in the above sense, then there exists a constant $\lambda \in \mathbb{R}$ such that $\chi(X, Y) = \lambda \cdot [X, Y]$, for all $X, Y \in \mathcal{X}(M)$.

Palais and others [3], [4], [5] prove analogous results for operations on differential forms. Peetre [6] has a similar characterisation of linear (not bilinear) differential operators. The formal techniques are similar to those in [7]. I am indebted to my supervisor Prof. Floris Takens, for suggesting the problem and for his encouragement.

0010-437X/80/01/0079-8 \$00.20/0

2. The proof

The naturality of χ implies that it is a local operator, i.e. for U open in M

$$\chi(X, Y) \mid U = \chi(X \mid U, Y \mid U).$$

Furthermore if $U, V \subset M, U, V$ diffeomorphic and $\chi(X, Y) = \lambda \cdot [X, Y]$ for some constant and all $X, Y \in \mathcal{X}(U)$, then also $\chi(X, Y) = \lambda \cdot [X, Y]$ for all $X, Y \in \mathcal{X}(V)$. Therefore I may assume $M = \mathbb{R}^n$. It is sufficient to prove

$$\chi(X, Y)(0) = \lambda \cdot [X, Y](0), \ \forall X, Y \in \mathcal{X}(\mathbb{R}^n),$$

because χ commutes with translations. Of course naturality implies

(1)
$$f_*\chi(X, Y)(0) = \chi(f_*X, f_*Y)(0)$$

for every diffeomorphism f and every X, $Y \in \mathcal{X}(\mathbb{R}^n)$.

The main step in the proof is $\chi(X, Y)(0) = \chi(j^1X(0), j^1Y(0))(0)$. (Where, for $s \in \mathbb{N}$, $j^sX(p)$ is the polynomial vectorfield of degree s corresponding to the s-jet of X in p, that is, the first s terms of the Taylor expansion of X in p.) In lemma 1 I use naturality to prove this for polynomial vectorfields. In lemmas 2 and 3 this is shown for arbitrary smooth vectorfields, by proving $\chi(X, Y)(0) = 0$ if X(p) or Y(p) has in p = 0 a zero of sufficiently high order.

In lemma 4 I show that there exist constants $\gamma_1, \ldots, \gamma_4$ such that:

$$\chi(X, Y)(0) = \gamma_1 \cdot \nabla_X Y(0) + \gamma_2 \cdot \nabla_Y X(0) + \gamma_3 \cdot ((\operatorname{div} Y)(0)) \cdot X(0) + \gamma_4 \cdot ((\operatorname{div} X)(0)) \cdot Y(0).$$

$$\left(\text{Where } \nabla_X Y = \sum X_i \frac{\partial Y_i}{\partial x_i} \frac{\partial}{\partial x_i}, \text{ if } X = \sum X_i \frac{\partial}{\partial x_i}, Y = \sum Y_i \frac{\partial}{\partial x_i}\right)$$

In these lemmas I use the naturality property, but only with affine diffeomorphisms f in equation (1).

Finally in the proof of the theorem one needs non-linear diffeomorphisms f in (1) to show that the constants $\gamma_1, \ldots, \gamma_4$ satisfy $\gamma_1 = -\gamma_2, \gamma_3 = \gamma_4 = 0$; i.e.: $\chi(X, Y) = \gamma_1[X, Y]$.

LEMMA 1: For monomial vectorfields

$$X(x_1,\ldots,x_n) = x_1^{\alpha_1}\ldots x_n^{\alpha_n}\frac{\partial}{\partial x_i},$$
$$Y(x_1,\ldots,x_n) = x_1^{\beta_1}\ldots x_n^{\beta_n}\frac{\partial}{\partial x_j},$$

 $\chi(X, Y)(0) = 0$ if $\sum \alpha_i + \sum \beta_i \neq 1$.

PROOF: Let

$$\chi(X, Y)(0) = \chi\left(x_1^{\alpha_1} \dots x_n^{\alpha_n} \frac{\partial}{\partial x_i}, x_1^{\beta_1} \dots x_n^{\beta_n} \frac{\partial}{\partial x_j}\right)(0)$$
$$= c_1 \frac{\partial}{\partial x_1} \Big|_0 + \dots + c_n \frac{\partial}{\partial x_n} \Big|_0.$$

Define a diffeomorphism by $\Phi(x) = \lambda \cdot x$, $\lambda \neq 0$. Then

$$\Phi_*X = \lambda^{-\Sigma\alpha_i+1} \cdot X, \quad \Phi_*Y = \lambda^{-\Sigma\beta_i+1} \cdot Y,$$

hence, using (1),

$$\Phi_*(\chi(X, Y)) = \chi(\Phi_*X, \Phi_*Y) = \lambda^{-\Sigma\alpha_i - \Sigma\beta_i + 2} \cdot \chi(X, Y).$$

However, the left side at 0 is equal to $\lambda \cdot \chi(X, Y)(0)$. This proves the lemma.

LEMMA 2: For X a C^{∞} vectorfield, there exists a C^{∞} vectorfield \bar{X} and sequences $p_s \to 0$, $q_s \to 0$ such that: (1) $\bar{X} \mid U_s = (X - j^s X(p_s)) \mid U_s$, U_s a neighbourhood of p_s . (2) $\bar{X} \mid V_s = 0$, V_s a neighbourhood of q_s .

PROOF: In fact lemmas 2 and 3 use a classical theorem of E. Borel and a technique of J. Peetre [6]. Take for example $p_s =$ $(1/s, 0, ..., 0), q_s = -p_s$. Define a smooth function $\alpha : \mathbb{R}^n \to \mathbb{R}$ such that

$$\alpha(x) = \begin{cases} 1 \text{ for } ||x|| \le \frac{1}{2} \\ 0 \text{ for } ||x|| \ge 1. \end{cases}$$

and $\tilde{X}_s = X - j^s X(p_s)$, for every $s \in \mathbb{N}$. Choose $\epsilon_s > 0$ so small that

$$\frac{1}{s+1}+\epsilon_{s+1}<\frac{1}{s}-\epsilon_s$$

so that

$$\left\|\alpha\left(\frac{x-p_s}{\epsilon_s}\right)\tilde{X}_s\right\|_i < 2^{-i} \quad \text{for } i=1,\ldots,s-1;$$

$$||f||_i = \sup_{\substack{|\nu|=i\\x\in\mathbb{R}^n}} |D^{\nu}f(x)|.$$

Then

$$\bar{X} = \sum_{s} \alpha \left(\frac{x - p_{s}}{\epsilon_{s}} \right) \tilde{X}_{s}$$

converges and has the desired properties.

LEMMA 3: For all X, $Y \in \mathcal{X}(\mathbb{R}^n)$

$$\chi(X, Y)(0) = \chi(j^1X(0), j^1Y(0))(0).$$

PROOF: This lemma can also be immediately deduced from Peetre [6], because $X \to \chi(X, Y)$ is a local linear operator. But for the sake of completeness an elementary proof will be given here. Take \bar{X} , \bar{Y} as in lemma 2.

First I shall prove that for all $p \in \mathbb{R}^n$:

(2)
$$\chi\left(x_1^{\alpha_1}\ldots x_n^{\alpha_n}\frac{\partial}{\partial x_i},Y\right)(p)=\chi\left(x_1^{\alpha_1}\ldots x_n^{\alpha_n}\frac{\partial}{\partial x_i},j^{\dagger}Y(p)\right)(p).$$

 $\chi(Z, \bar{Y})(0) = 0$ for every $Z \in \chi(\mathbb{R}^n)$, because $\chi(Z, \bar{Y})(q_s) = 0$ and $q_s \rightarrow 0$. Furthermore for $a = (a_1, \ldots, a_n) x_1^{\alpha_1} \ldots x_n^{\alpha_n}$ can be considered as a polynomial in $x_1 - a_1, \ldots, x_n - a_n$ and using lemma 1:

$$\chi\left(x_1^{\alpha_1}\ldots x_n^{\alpha_n}\frac{\partial}{\partial x_i}, j^t Y(p_s)\right)(p_s) = \chi\left(x_1^{\alpha_1}\ldots x_n^{\alpha_n}\frac{\partial}{\partial x_i}, j^1 Y(p_s)\right)(p_s)$$

for every $t \in \mathbb{N}$.

But, for every s, $j^1 Y(p_s)$ is a linear combination of

$$\frac{\partial}{\partial x_j}, x_k \frac{\partial}{\partial x_l}, j, k, l = 1, 2, \ldots, n.$$

Since any linear operator on a finite dimensional vectorspace is

continuous:

$$\chi\left(x_1^{\alpha_1}\ldots x_n^{\alpha_n}\frac{\partial}{\partial x_i},j^1Y(p_s)\right)(p_s)\to\chi\left(x_1^{\alpha_1}\ldots x_n^{\alpha_n}\frac{\partial}{\partial x_i},j^1Y(0)\right)(0),$$

for $s \rightarrow \infty$. This together implies that the limit of:

$$\chi\left(x_{1}^{\alpha_{1}}\ldots x_{n}^{\alpha_{n}}\frac{\partial}{\partial x_{i}},Y\right)(p_{s})=\chi\left(x_{1}^{\alpha_{1}}\ldots x_{n}^{\alpha_{n}}\frac{\partial}{\partial x_{i}},\bar{Y}\right)(p_{s})$$
$$+\chi\left(x_{1}^{\alpha_{1}}\ldots x_{n}^{\alpha_{n}}\frac{\partial}{\partial x_{i}},j^{1}Y(p_{s})\right)(p_{s})$$

is

$$\chi\left(x_1^{\alpha_1}\ldots x_n^{\alpha_n}\frac{\partial}{\partial x_i},j^1Y(0)\right)(0).$$

Translation gives (2) for any $p \in \mathbb{R}^n$. Therefore:

$$\chi(X, Y)(p_s) = \chi(\overline{X}, \overline{Y})(p_s) + \chi(j^1X(p_s), j^1Y(p_s))(p_s)$$

which goes to $\chi(j^1X(0), j^1Y(0))(0)$ for $s \to \infty$.

Compare this with the proof of the continuity of local operators on vectorfields in [2], XVIII. 13. problem 1.

LEMMA 4: There are constants $\gamma_1, \ldots, \gamma_4$ such that

$$\chi(X, Y)(0) = \gamma_1 \cdot \nabla_X Y(0) + \gamma_2 \cdot \nabla_Y X(0) + \gamma_3 \cdot ((\operatorname{div} Y)(0)) \cdot X(0) + \gamma_4 \cdot ((\operatorname{div} X)(0)) \cdot Y(0).$$

PROOF: Lemmas 1 and 3 imply that χ can be written as:

(3)
$$\chi(X, Y)(0) = (M_1(dY(0))) \cdot X(0) + (M_2(dX(0))) \cdot Y(0)$$

with M_i linear maps from the $(n \times n)$ -matrices to the $(n \times n)$ -matrices. The lemma is proved when I show that for certain constants γ_1 , γ_3 :

(4)
$$M_1(A) = \gamma_1 \cdot A + \gamma_3 \cdot \operatorname{Tr}(A) \cdot I.$$

for all matrices A.

Now take Y(0) = 0, A = dY(0), $f(x) = L \cdot x$ (L a linear invertible map) and use naturality (1) in equation (3). This implies:

(5)
$$M_1(L^{-1} \cdot A \cdot L) = L^{-1} \cdot M_1(A) \cdot L.$$

Let L run over all diagonal and permutation matrices and deduce from (5) that there exist constants γ_1 , γ_3 such that (4) is true for all diagonal matrices A. Therefore (4) is true for all diagonalisable matrices A. But every matrix is a sum of diagonalisable matrices. This proves (4).

Proof of the theorem

a) The constants in lemma 4 satisfy $\gamma_1 = -\gamma_2$, $\gamma_3 = -\gamma_4$. That is:

(6)
$$\chi(X, Y) = \gamma_1 \cdot [X, Y] + \gamma_3 \cdot ((\operatorname{div} Y)X - (\operatorname{div} X)Y).$$

To show this, it is now sufficient to prove χ is antisymmetric, i.e. that $\chi(X, X) = 0 \ \forall X \in \mathcal{X}(\mathbb{R}^n)$.

If X(0) = 0, then lemmas 1 and 3 give $\chi(X, X)(0) = 0$.

If $X(0) \neq 0$ the flow-box theorem [1] gives a local diffeomorphism $\varphi: (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$ such that

$$\varphi_*X(0) = \frac{\partial}{\partial x_1}$$
: $\varphi_*\chi(X, X)(0) = \chi\left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1}\right)(0) = 0$

and again $\chi(X, X)(0) = 0$.

b) For n = 1: (div Y)X - (div X)Y = [X, Y] and we are done.

c) If $n \ge 2$: The operator $(X, Y) \rightarrow (\text{div } Y)X - (\text{div } X)Y$ does not commute with every diffeomorphism φ and therefore $\gamma_3 = 0$ in equation (6). To see this, take

$$X = \sum_{i=1}^{\alpha} X_i(x_1, \ldots, x_{\alpha}) \frac{\partial}{\partial x_i}, Y = \sum_{i=\alpha+1}^{n} Y_i(x_{\alpha+1}, \ldots, x_n) \frac{\partial}{\partial x_i}$$

and a (non-measure preserving) local diffeomorphism $\tilde{\varphi}_1: (\mathbb{R}^{\alpha}, 0) \rightarrow (\mathbb{R}^{\alpha}, 0)$ such that div X(0) = div Y(0) = 0, $Y(0) \neq 0$ and div $((\varphi_1)_*X) \neq 0$.

Define $\varphi(x_1, \ldots, x_n) = (\tilde{\varphi}_1(x_1, \ldots, x_\alpha), x_{\alpha+1}, \ldots, x_n)$, then div $(\varphi_*X)(0) \neq 0$, div $(\varphi_*Y) = 0$, that is (div Y)X – (div X)Y does not commute with this φ .

REFERENCES

- [1] V.I. ARNOLD: Ordinary Differential Equations MIT press. Cambridge (1973).
- [2] J. DIEUDONNÉ: Eléments d'Analyse, tome III. Gauthier-Villars, Paris, 1970.
- [3] L. JONKER: A note on a Paper of Palais. Proc. of the Amer. Math. Soc., 27 (1971) 337-340.
- [4] H. LEICHER: Natural Operations on Covariant Tensor Fields. J. Diff. Geom., 8 (1973) 117-123 (MR 51 #14130).

- [5] R. PALAIS: Natural Operations on Differential Forms., Trans. Amer. Soc., 92 (1959) 125-141.
- [6] J. PEETRE: Une Characterisation Abstraite des Operateurs Différentiels. Math. Scand., 7 (1959) 211-218 (also Math. Scand., 8 (1960) 116-120).
- [7] F. TAKENS: Derivations of Vector Fields. Compositio Mathematica, 20 (1973) 151-158.

(Oblatum 26-I-1978 & 4-X-1978)

Mathematisch Instituut Rijksuniversiteit Groningen Postbus 800 9700 AV Groningen The Netherlands

Current address: Mathematisch Instituut Rijksuniversiteit Utrecht Budapestlaan 3508 TA Utrecht The Netherlands

85