Compositio Mathematica

Sebastian J. Van Strien Unicity of the Lie product

Compositio Mathematica, tome 40, $\mathrm{n}^{\circ} 1$ (1980), p. 79-85
http://www.numdam.org/item?id=CM_1980__40_1_79_0
© Foundation Compositio Mathematica, 1980, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

UNICITY OF THE LIE PRODUCT

Sebastian J. van Strien

1. Statement of the result

For a C^{∞} manifold $M, \mathfrak{X}(M)$ denotes the linear space of C^{∞} vectorfields on M. Let $\chi: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ be a bilinear operator, defined for every n dimensional manifold M. This operator is called natural if for every smooth open embedding $f: N \rightarrow M$ the following diagram commutes:

where M, N are C^{∞} manifolds and f^{*} is the composition $\mathscr{X}(M) \xrightarrow{r}$ $\mathscr{X}(f(N)) \xrightarrow{\left(f^{-1}\right)_{*}} \mathscr{X}(N), r$ the restriction operator, i.e. $f^{*} X(x)=$ $\operatorname{df}(x)^{-1}(X(f(x)))$ for $X \in \mathscr{X}(M)$. In this note I shall prove that the Lie-product $([X, Y]=X \cdot Y-Y \cdot X$ for $X, Y \in \mathscr{X}(M))$ is characterised by this property:

Theorem: Let χ be a bilinear natural operator in the above sense, then there exists a constant $\lambda \in R$ such that $\chi(X, Y)=\lambda \cdot[X, Y]$, for all $X, Y \in \mathfrak{X}(M)$.

Palais and others [3], [4], [5] prove analogous results for operations on differential forms. Peetre [6] has a similar characterisation of linear (not bilinear) differential operators. The formal techniques are similar to those in [7]. I am indebted to my supervisor Prof. Floris Takens, for suggesting the problem and for his encouragement.

2. The proof

The naturality of χ implies that it is a local operator, i.e. for U open in M

$$
\chi(X, Y) \mid U=\chi(X|U, Y| U)
$$

Furthermore if $U, V \subset M, U, V$ diffeomorphic and $\chi(X, Y)=$ $\lambda \cdot[X, Y]$ for some constant and all $X, Y \in \mathfrak{X}(U)$, then also $\chi(X, Y)=\lambda \cdot[X, Y]$ for all $X, Y \in \mathfrak{X}(V)$. Therefore I may assume $M=\mathbb{R}^{n}$. It is sufficient to prove

$$
\chi(X, Y)(0)=\lambda \cdot[X, Y](0), \forall X, Y \in \mathscr{X}\left(\mathbb{R}^{n}\right)
$$

because χ commutes with translations. Of course naturality implies

$$
\begin{equation*}
f_{* \chi} \chi(X, Y)(0)=\chi\left(f_{*} X, f_{*} Y\right)(0) \tag{1}
\end{equation*}
$$

for every diffeomorphism f and every $X, Y \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$.

The main step in the proof is $\chi(X, Y)(0)=\chi\left(j^{1} X(0), j^{1} Y(0)\right)(0)$. (Where, for $s \in N, j^{s} X(p)$ is the polynomial vectorfield of degree s corresponding to the s-jet of X in p, that is, the first s terms of the Taylor expansion of X in p.) In lemma 1 I use naturality to prove this for polynomial vectorfields. In lemmas 2 and 3 this is shown for arbitrary smooth vectorfields, by proving $\chi(X, Y)(0)=0$ if $X(p)$ or $Y(p)$ has in $p=0$ a zero of sufficiently high order.

In lemma 4 I show that there exist constants $\gamma_{1}, \ldots, \gamma_{4}$ such that:

$$
\begin{aligned}
\chi(X, Y)(0)=\gamma_{1} \cdot \nabla_{X} Y(0) & +\gamma_{2} \cdot \nabla_{Y} X(0)+\gamma_{3} \cdot((\operatorname{div} Y)(0)) \cdot X(0) \\
& +\gamma_{4} \cdot((\operatorname{div} X)(0)) \cdot Y(0) .
\end{aligned}
$$

$$
\left(\text { Where } \nabla_{X} Y=\sum X_{j} \frac{\partial Y_{i}}{\partial x_{j}} \frac{\partial}{\partial x_{i}}, \quad \text { if } X=\sum X_{i} \frac{\partial}{\partial x_{i}}, Y=\sum Y_{i} \frac{\partial}{\partial x_{i}} .\right)
$$

In these lemmas I use the naturality property, but only with affine diffeomorphisms f in equation (1).

Finally in the proof of the theorem one needs non-linear diffeomorphisms f in (1) to show that the constants $\gamma_{1}, \ldots, \gamma_{4}$ satisfy $\gamma_{1}=-\gamma_{2}, \gamma_{3}=\gamma_{4}=0$; i.e.: $\chi(X, Y)=\gamma_{1}[X, Y]$.

Lemma 1: For monomial vectorfields

$$
\begin{aligned}
& X\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, \\
& Y\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \frac{\partial}{\partial x_{j}},
\end{aligned}
$$

$\chi(X, Y)(0)=0$ if $\Sigma \alpha_{i}+\Sigma \beta_{i} \neq 1$.

Proof: Let

$$
\begin{aligned}
\chi(X, Y)(0) & =\chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \frac{\partial}{\partial x_{j}}\right)(0) \\
& =\left.c_{1} \frac{\partial}{\partial x_{1}}\right|_{0}+\cdots+\left.c_{n} \frac{\partial}{\partial x_{n}}\right|_{0} .
\end{aligned}
$$

Define a diffeomorphism by $\Phi(x)=\lambda \cdot x, \lambda \neq 0$. Then

$$
\Phi_{*} X=\lambda^{-\Sigma \alpha_{i}+1} \cdot X, \quad \Phi_{*} Y=\lambda^{-\Sigma \beta_{i}+1} \cdot Y,
$$

hence, using (1),

$$
\Phi_{*}(\chi(X, Y))=\chi\left(\Phi_{*} X, \Phi_{*} Y\right)=\lambda^{-\Sigma \alpha_{i}-\Sigma \beta_{i}+2} \cdot \chi(X, Y)
$$

However, the left side at 0 is equal to $\lambda \cdot \chi(X, Y)(0)$. This proves the lemma.

Lemma 2: For X a C^{∞} vectorfield, there exists a C^{∞} vectorfield \bar{X} and sequences $p_{s} \rightarrow 0, q_{s} \rightarrow 0$ such that: (1) $\bar{X}\left|U_{s}=\left(X-j^{s} X\left(p_{s}\right)\right)\right| U_{s}$, U_{s} a neighbourhood of p_{s}. (2) $\bar{X} \mid V_{s}=0, V_{s}$ a neighbourhood of q_{s}.

Proof: In fact lemmas 2 and 3 use a classical theorem of E. Borel and a technique of J. Peetre [6]. Take for example $p_{s}=$ $(1 / s, 0, \ldots, 0), q_{s}=-p_{s}$. Define a smooth function $\alpha: R^{n} \rightarrow R$ such that

$$
\alpha(x)=\left\{\begin{array}{l}
1 \text { for }\|x\| \leq \frac{1}{2} \\
0 \text { for }\|x\| \geq 1
\end{array}\right.
$$

and $\tilde{X}_{s}=X-j^{s} X\left(p_{s}\right)$, for every $s \in N$. Choose $\epsilon_{s}>0$ so small that

$$
\frac{1}{s+1}+\epsilon_{s+1}<\frac{1}{s}-\epsilon_{s}
$$

so that

$$
\begin{gathered}
\left\|\alpha\left(\frac{x-p_{s}}{\epsilon_{s}}\right) \tilde{X}_{s}\right\|_{i}<2^{-i} \text { for } i=1, \ldots, s-1 \\
\|f\|_{i}=\sup _{\substack{\mid \nu=i \\
x \in R^{n}}}\left|D^{\nu} f(x)\right| .
\end{gathered}
$$

Then

$$
\bar{X}=\sum_{s} \alpha\left(\frac{x-p_{s}}{\epsilon_{s}}\right) \tilde{X}_{s}
$$

converges and has the desired properties.
Lemma 3: Forall $X, Y \in \mathscr{X}\left(\mathbf{R}^{n}\right)$

$$
\chi(X, Y)(0)=\chi\left(j^{1} X(0), j^{1} Y(0)\right)(0)
$$

Proof: This lemma can also be immediately deduced from Peetre [6], because $X \rightarrow \chi(X, Y)$ is a local linear operator. But for the sake of completeness an elementary proof will be given here. Take \bar{X}, \bar{Y} as in lemma 2.

First I shall prove that for all $p \in \mathbf{R}^{n}$:

$$
\begin{equation*}
\chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, Y\right)(p)=\chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, j^{1} Y(p)\right)(p) \tag{2}
\end{equation*}
$$

$\chi(Z, \bar{Y})(0)=0$ for every $Z \in \chi\left(\mathrm{R}^{n}\right)$, because $\chi(Z, \bar{Y})\left(q_{s}\right)=0$ and $q_{s} \rightarrow$ 0 . Furthermore for $a=\left(a_{1}, \ldots, a_{n}\right) x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ can be considered as a polynomial in $x_{1}-a_{1}, \ldots, x_{n}-a_{n}$ and using lemma 1:

$$
\chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, j^{t} Y\left(p_{s}\right)\right)\left(p_{s}\right)=\chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, j^{1} Y\left(p_{s}\right)\right)\left(p_{s}\right)
$$

for every $t \in N$.
But, for every $s, j^{1} Y\left(p_{s}\right)$ is a linear combination of

$$
\frac{\partial}{\partial x_{j}}, x_{k} \frac{\partial}{\partial x_{l}}, j, k, l=1,2, \ldots, n .
$$

Since any linear operator on a finite dimensional vectorspace is
continuous:

$$
\chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, j^{1} Y\left(p_{s}\right)\right)\left(p_{s}\right) \rightarrow \chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, j^{1} Y(0)\right)(0)
$$

for $s \rightarrow \infty$. This together implies that the limit of:

$$
\begin{aligned}
\chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, Y\right)\left(p_{s}\right)= & \chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, \bar{Y}\right)\left(p_{s}\right) \\
& +\chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, j^{1} Y\left(p_{s}\right)\right)\left(p_{s}\right)
\end{aligned}
$$

is

$$
\chi\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \frac{\partial}{\partial x_{i}}, j^{1} Y(0)\right)(0)
$$

Translation gives (2) for any $p \in \mathbf{R}^{n}$. Therefore:

$$
\chi(X, Y)\left(p_{s}\right)=\chi(\bar{X}, \bar{Y})\left(p_{s}\right)+\chi\left(j^{1} X\left(p_{s}\right), j^{1} Y\left(p_{s}\right)\right)\left(p_{s}\right)
$$

which goes to $\chi\left(j^{1} X(0), j^{1} Y(0)\right)(0)$ for $s \rightarrow \infty$.
Compare this with the proof of the continuity of local operators on vectorfields in [2], XVIII. 13. problem 1.

Lemma 4: There are constants $\gamma_{1}, \ldots, \gamma_{4}$ such that

$$
\begin{aligned}
\chi(X, Y)(0)= & \gamma_{1} \cdot \nabla_{X} Y(0)+\gamma_{2} \cdot \nabla_{Y} X(0)+\gamma_{3} \cdot((\operatorname{div} Y)(0)) \cdot X(0) \\
& +\gamma_{4} \cdot((\operatorname{div} X)(0)) \cdot Y(0) .
\end{aligned}
$$

Proof: Lemmas 1 and 3 imply that χ can be written as:

$$
\begin{equation*}
\chi(X, Y)(0)=\left(M_{1}(\mathrm{~d} Y(0))\right) \cdot X(0)+\left(M_{2}(\mathrm{~d} X(0))\right) \cdot Y(0) \tag{3}
\end{equation*}
$$

with M_{i} linear maps from the ($n \times n$)-matrices to the ($n \times n$)-matrices. The lemma is proved when I show that for certain constants γ_{1}, γ_{3} :

$$
\begin{equation*}
M_{1}(A)=\gamma_{1} \cdot A+\gamma_{3} \cdot \operatorname{Tr}(A) \cdot I . \tag{4}
\end{equation*}
$$

for all matrices A.
Now take $Y(0)=0, A=\mathrm{d} Y(0), f(x)=L \cdot x$ (L a linear invertible map) and use naturality (1) in equation (3). This implies:

$$
\begin{equation*}
M_{1}\left(L^{-1} \cdot A \cdot L\right)=L^{-1} \cdot M_{1}(A) \cdot L \tag{5}
\end{equation*}
$$

Let L run over all diagonal and permutation matrices and deduce from (5) that there exist constants γ_{1}, γ_{3} such that (4) is true for all diagonal matrices A. Therefore (4) is true for all diagonalisable matrices A. But every matrix is a sum of diagonalisable matrices. This proves (4).

Proof of the theorem

a) The constants in lemma 4 satisfy $\gamma_{1}=-\gamma_{2}, \gamma_{3}=-\gamma_{4}$. That is:

$$
\begin{equation*}
\chi(X, Y)=\gamma_{1} \cdot[X, Y]+\gamma_{3} \cdot((\operatorname{div} Y) X-(\operatorname{div} X) Y) \tag{6}
\end{equation*}
$$

To show this, it is now sufficient to prove χ is antisymmetric, i.e. that $\chi(X, X)=0 \forall X \in \mathscr{X}\left(\mathbb{R}^{n}\right)$.

If $X(0)=0$, then lemmas 1 and 3 give $\chi(X, X)(0)=0$.
If $X(0) \neq 0$ the flow-box theorem [1] gives a local diffeomorphism $\varphi:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ such that

$$
\varphi_{*} X(0)=\frac{\partial}{\partial x_{1}}: \quad \varphi_{*} \chi(X, X)(0)=\chi\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right)(0)=0
$$

and again $\chi(X, X)(0)=0$.
b) For $n=1:(\operatorname{div} Y) X-(\operatorname{div} X) Y=[X, Y]$ and we are done.
c) If $n \geq 2$: The operator $(X, Y) \rightarrow(\operatorname{div} Y) X-(\operatorname{div} X) Y$ does not commute with every diffeomorphism φ and therefore $\gamma_{3}=0$ in equation (6). To see this, take

$$
X=\sum_{i=1}^{\alpha} X_{i}\left(x_{1}, \ldots, x_{\alpha}\right) \frac{\partial}{\partial x_{i}}, Y=\sum_{i=\alpha+1}^{n} Y_{i}\left(x_{\alpha+1}, \ldots, x_{n}\right) \frac{\partial}{\partial x_{i}}
$$

and a (non-measure preserving) local diffeomorphism $\tilde{\varphi}_{1}:\left(\mathbf{R}^{\alpha}, 0\right) \rightarrow$ $\left(R^{\alpha}, 0\right) \quad$ such that $\quad \operatorname{div} X(0)=\operatorname{div} Y(0)=0, \quad Y(0) \neq 0 \quad$ and $\operatorname{div}\left(\left(\varphi_{1}\right)_{*} X\right) \neq 0$.

Define $\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(\tilde{\varphi}_{1}\left(x_{1}, \ldots, x_{\alpha}\right), x_{\alpha+1}, \ldots, x_{n}\right)$, then $\operatorname{div}\left(\varphi_{*} X\right)(0)$ $\neq 0, \operatorname{div}\left(\varphi_{*} Y\right)=0$, that is $(\operatorname{div} Y) X-(\operatorname{div} X) Y$ does not commute with this φ.

REFERENCES

[1] V.I. Arnold: Ordinary Differential Equations MIT press. Cambridge (1973).
[2] J. Dieudonné: Eléments d'Analyse, tome III. Gauthier-Villars, Paris, 1970.
[3] L. Jonker: A note on a Paper of Palais. Proc. of the Amer. Math. Soc., 27 (1971) 337-340.
[4] H. Leicher: Natural Operations on Covariant Tensor Fields. J. Diff. Geom., 8 (1973) 117-123 (MR 51 \#14130).
[5] R. Palais: Natural Operations on Differential Forms., Trans. Amer. Soc., 92 (1959) 125-141.
[6] J. Peetre: Une Characterisation Abstraite des Operateurs Différentiels. Math. Scand., 7 (1959) 211-218 (also Math. Scand., 8 (1960) 116-120).
[7] F. TAKENS: Derivations of Vector Fields. Compositio Mathematica, 20 (1973) 151-158.
(Oblatum 26-I-1978 \& 4-X-1978)
Mathematisch Instituut
Rijksuniversiteit Groningen Postbus 800
9700 AV Groningen
The Netherlands

Current address:
Mathematisch Instituut Rijksuniversiteit Utrècht
Budapestlaan
3508 TA Utrecht
The Netherlands

