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ORDINAL INVARIANTS IN TOPOLOGY-II

Sequential Order of compactifications
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@ 1979 Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn
Printed in the Netherlands

Abstract

We prove a general theorem (using CH) from which the following result is deduced;
If X is any noncompact zero-dimensional separable metrizable space and if a is any
countable ordinal number, there is a sequential compactification of X with sequential
order a. In particular, there exists a compact Hausdorff sequential space with any
pre-fixed ordinal a :!5 toi as its sequential order.

This is then used to answer completely a question posed by Arhangel’skii and
Franklin conceming the interrelations of sequential order and k-order. It is also used to
give a complete answer to a question of Rajagopalan regarding sequential order and the
spaces Sn.

The main corollary (Corollary 5 in §4) was partially announced in
[3]. This answers a question of Arhangelskii and Franklin posed in [1].
It has also been announced in [4] in a weaker form, together with
answers to many other questions of [1]. This paper is a sequel to [3]
wherein two previous questions of [1] have been answered. The
answer to the question posed by Rajagopalan in [7] obtained here (§4,
corollary 6) has been announced in [5]. Further, corollary 1 in §4
answers Problem C.3 of [6; page 218].
The construction technique described in the first three sections of

this paper, is by itself interesting. In addition to the positive results
(Theorem of §3 and Corollaries in §4) proved by using it, we believe
that it may be useful for providing interesting counter-examples. The
nucleus of its idea is due to Isbell; see the space t/1 described in [2,
page 79]. Roughly, we may describe that our technique does to

topological spaces lying in a large class, what Isbell’s method does to
discrete spaces.
The paper is divided into four short sections. In §1, we describe this
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construction in such a generality that is neither too complicated nor
too weak. In §2 we append to this construction by giving a specific
way, so that it may be easy to compute the sequential order of the
extension, that is thus constructed. In §3 the main result is proved in a
fairly general form. The last section concems the three posed ques-
tions.

The notions like sequential spaces, sequential order, k-order,
spaces Sn, scattered spaces, derived length, etc. are not defined here,
though they should have been. The reader is referred to [3] or [6] for
their definitions and properties.

§1

Let X be a space satisfying the following six conditions:
i) locally compact
ii) Hausdorff
iii) zero-dimensional
iv) sequential
v) every countably compact closed subset is compact.

vi’) not pseudocompact.
These conditions, though numerous, are not stringent; there are

plenty of spaces satisfying them. For example, X may be any space
obtained by deleting a limit point from a compact zero-dimensional
metrizable space.
We now describe a process of constructing an extension X* of X

which retains all the above six properties and which, as we shall see
later, helps to increase the sequential order of X without losing these
fair properties.

In the presence of zero-dimensionality, it is known that vi) is

equivalent to
vi) There exists a pairwise disjoint countably infinite family of

clopen (that is, both closed and open) subsets of X covering X.
It is this form of vi) that will be more helpful for us in the sequel. In
view of this, we have a decomposition of our spaces X in the form
X = Y-n=1 Xn where each Xn is a space satisfying the six conditions i)
to vi).
Now we fix a positive integer n and consider Xn. We construct an

extension Xn(1) of X in a special way. For this, we write Xn =

1=1 1 Xn;;, where each Xn;i satisfies i) to vi). This is done, by doing to
Xn, what we did above for X.
We start with a family F of subsets of Xn satisfying the five
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conditions A) to E) to be mentioned below. The extension Xn(1) to be
constructed below, should be, for a greater clarity, denoted as

Xn(l, f), because it depends on the family F. When F is changed to
some other family F’ (satisfying those five conditions) the extension
Xn(1, F’) is différent from Xn(1, F) ; in fact, at times it may even happen
that the two extensions are non-homeomorphic. See [8]. Notwithstand-
ing this, for convenience in notation, we omit the mention of the family
and simply write the extension as Xn (1).

The conditions imposed on F are the following :
A) Every member of F is clopen in Xn.
B) Any two distinct members of F intersect in a compact set.
C) Xn,; belongs to F for every positive integer i.
D) No member of F is compact.
E) F is maximal with respect to the above four properties.It will be

useful to note that E) can be equivalently stated as
E’) If V is a noncompact clopen subset of Xn and if V fl W is compact

for every W in F, then V is in F.
The existence of such a family can be proved by an easy application of
Zorn’s lemma.

Then we. let the disjoint union of Xn and F be the underlying set of
the space Xn(1) that we now define. If V is an element of F, it is on
one hand an element of Xn(1) and on the other hand a subset of Xn
and hence of Xn(l). This may create some confusion in our later
discussions. To avoid this, we use the notation V* for V, when it is
considered as an element of Xn(1) ; we simply write it as V when we
consider it as a subspace of Xn or Xn(1). Thus for example,

Now we describe the topology of Xn(j). It is best described in

terms of neighbourhoods. If x is in Xn, then its neighbourhood system
in Xn is declared as its neighbourhood base in Xn(1) also. If V* is in
Xn(l), a neighbourhood base at V* is given by

It can be shown that what we consider, is the unique topology on
Xn ( 1) such that the following four conditions hold:

a) every compact set is closed.
b) Xn is open in Xn ( 1) retaining its topology.
c) for every V in F, the set f V*} U V is compact.
d) for every V in F, the set {V*} U V is open in Xn ( 1 ).
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It is also describable as the strongest topology on Xn(1) satisfying
the conditions a), b) and c) given above.
We finally let

We shall presently show that X* satisfies the six conditions i) to
vi) mentioned in the beginning.

Claim 1: X* is locally compact.
Because of conditions C) and D) we have IV U IV*}: VEF} is an

open cover for Xn(1) ; by C), every member of this open cover is

compact. Hence Xn(1) is locally compact. It follows that X* is also
so.

Claim 2: X * is Hausdorff.
It suffices to prove that each Xn(1) is Hausdorff. Let x and y be

distinct elements of Xn (1) and let us consider three cases.
Suppose both x and y are in Xn. Since Xn is open in X,,(1) retaining

its topology and since the topology of Xn is Hausdorff, x and y can be
separated by disjoint open sets in Xn(1).

Let x and y both belong to F. Let them be V* and W*, where V and W
are in F. Then f V*} Li (VB W) and 1 W*} U (WB V) are disjoint neigh-
bourhoods of x and y respectively. Here we use condition B) to obtain
that V fl W is compact.
Suppose x E Xn and y = V* for some V in F. Here we consider

two subcases. If x is in V, choose any compact neighbourhood K of x
in Xn ; then i V*} Li VBK and K are disjoint neighbourhoods of y and x
respectively. If x is not in V, then IV*} Li V and XB V are disjoint
neighbourhoods of y and x respectively.

Claim 3: X* is zero-dimensional.
As before, it suffices to prove that each Xn(1) is zero-dimensional.

First, we. observe that if V E F, then f V*} U V is clopen in Xn(l).
Next one can prove that {{V*} U V : V E FI U (any base for X,,) is a
base for X,,(1). Since Xn is zero-dimensional and locally compact, it
admits a base of compact open sets. It follows that Xn(1) is zero-
dimensional.

Claim 4: X* is sequential.
We first prove that for a locally compact Hausdorff space Y the

following are equivalent:
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1) the one-point-compactification of Y is sequential.
2) Y is sequential and every countably compact closed subset of Y

is compact.
Let (1) hold and let A be a countably compact closed subset of Y.

Let oo be the extra point in the one-point-compactification of Y. If a
sequence in A converges to 00, then the set of this sequence is infinite,
discrete and closed in A, contradicting the countable compactness of
A. Hence A is sequentially closed in Y U 1-1 and hence closed by 1).
Therefore A is compact. Y is sequential, since sequentialness is

open-hereditary.
Conversely, let 2) hold and let Y U 1-1 be the one-point-com-

pactification of Y. Let A be sequentially closed in Y U 1-1. If AB1-1 is
countably compact, then by assumption, it is compact. Clearly then, A is
closed in Y U 1-}. If AB1-1 is not countably compact, it contains an
infinite discrete subset B closed in Y. Then B can be shown to contain

the set of a sequence converging to 00. Since A is sequentially closed, is
in A. Also ABf-} is sequentially closed in Y and hence closed in Y. Thus
in both cases, A is closed in Y U lool.
We next observe that 2) is closed-hereditary. In particular, because

Xn satisfies it, it holds for V for every V in F. Therefore IV*l U V is
sequential. Thus there is an open cover for X,,(I) every member of
which, is sequential. Hence Xn(l) itself for each n, and hence X*, is
sequential.

Claim 5: Every countably compact closed subset of X * is compact.
Let F be a countably compact closed subset of X*. Then F m Xn (1)

is nonempty only for a finite number of values of n. Hence, to prove
the compactness of F, it suffices to prove that F n Xn (1) is compact,
for a general n. Now F m Xn(1) is a countably compact closed subset
of Xn(l). It is easily seen that Xn(1)BXn is discrete and closed.

Therefore so is the set (F mXn(1)))Xn. On the other hand it is

countably compact. Therefore it is finite. Since Xn(1) is locally
compact and zero-dimensional (see claims 1 and 3), we can choose a
compact open set W containing this finite set. Then (F fl Xn(l»B W is
countably compact and closed in Xn. Therefore, by condition v) it is
compact. Now F n xn (1) is a closed subset of the compact set

W U ((F H Xn(l)B W). Therefore it is compact.

Claim 6: X* is not pseudocompact.
By its very definition, X* is a disjoint sum of infinite number of

spaces. Hence it satisfies vi’) which is equivalent to non-pseudocom-
pactness among zerodimensional Hausdorff spaces.
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Before proceeding to the next section, we want to record the
following fact: X is a dense subspace of X *. Therefore the one point
compactification of X * is a compactification of X also. This com-
pactification satisfies the five conditions i) to v).

§2

We assume continuum hypothesis, throughout the remaining sec-
tions of the paper. Under one more condition on X, we prove now
that the family F discussed in §1, can be so chosen that the sequential
closure of X will be contained in X * in any Hausdorff extension of
X*. This result is needed for our later purposes. c denotes the

cardinality of the continuum, 00 the first infinite ordinal number and W i
the first uncountable ordinal number and N the set of all natural

numbers.

LEMMA 1: Let X be a space satisfying the seven conditions i) to vii)
where i) to vi) are the ones listed in §l and the last one is: vii) its
cardinality is -c.
Let X = n-1 Xn be a decomposition of X into a countably infinite
number of noncompact clopen subsets. Such a decomposition always
exists. See vi’) in § 1. Then there is a family F of subsets of X satisfying
the following five conditions :

A’) Every member of F is clopen in X.
B’) Any two distinct members of F intersect in a compact set.
C’) Xn is in F for every positive integer n.
D’) No member of F is compact.
F) Every infinite discrete closed subset of X meets some member of F

in an infinite set.
[Note: The first four conditions are analogues of A), B), C), D) of § 1.
The new condition F) is crucial.]

PROOF: Let C be the collection of all infinite subsets A of X such that
A fl Xn contains at most one element for every n e N. Then C is
contained in the family of all countable subsets of X. Hence ICI:5 c,
because IXI:5 c. On the other hand if we fix a point xn in Xn for every n in
N, then fx,,: n E BI is a member of C whenever B C N is infinite. Since
the set of all infinite subsets of N has cardinality c, it follows that )C( &#x3E; c.
Thus we have ICI = c.
Let AI, A2..., Aa, ... be a well-ordering of C to the order type of

wl. We now define sets Wi, W2,..., Wa, ... by induction.
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Look at A 1. For every positive integer n such that A 1 fl Xn is

nonempty, choose a compact open neighbourhood Wl,n of the unique
point of A, n x,, such that Wl,n C Xn. Let then W1 = U {W1,n : n E
N, AI n xn 7é oi.
Suppose a is a countable ordinal number and suppose that we have

defined clopen subsets Wo for every j8  a. To define Wa, look at Aa
and consider two cases. If Aan WI3 is infinite for some j3  a, then let

Wa = WI3 for the least such 0. If Aan WI3 is finite for every Q  a, we

proceed to define Wa as indicated below. Because a is countable, it is
possible to rewrite the members of the set {WI3 : (3  a} in the form of
a (finite or infinite) sequence Wl, W2, ... , Wn, ... [We have only to
set up a bijection between a and (»; it does not matter what this

bijection is; we omit the repetitions in forming this sequence.] Using
the two facts (a) Aa fl wn is finite for every n in N and (b) Aa fl Xn is

nonempty for an infinity of values of n, we can construct a strictly
increasing sequence ri, r2,... rn,... of natural numbers such that

(c) Aa fl W" fl Xr is empty for every r ± rn and (d) Aa rl Xrn is

nonempty. Then for every natural number i, we choose a compact
open subset Wa,¡ of Xr; such that

Such a choice is possible because, A« n Xri is a singleton set disjoint
with the clopen set U j=l "’i and contained in the clopen set Xr;. Finally
let W« = U 1=1 Wa,i’
Having defined W« thus for every a  col 1 we make the following

observations and assertions:

(a) For every a  lOI, and for every n ,w, the set Wa n Xn is

compact and open.
(b) For every a  w 1, the set Wa n Xn is nonempty for an infinity

of values of n.

(c) For every a  wl, the set A« n W« is infinite.
(d) If a and 8 are two countable ordinal numbers with W,,, 0 WI3,

then W« n WI3 is compact.
Of these four statements, we prove only (d), the others being easy.
Choose the two ordinal numbers a 1 and {31 such that
Wa = Wat
Wa 0 Wr for every r  a 1

Wo = Wl3t
Wp 0 Wr for every r  j8i 

Of the two numbers j3i and aI, anything may be smaller, say j3i  a
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Then by the definition of Wa,, we have W,,,, = U î=l W,,,,,@, where each
W,,,,@, is compact and Wal,i H W131 is empty except for a finite number of
values of i. Therefore Wal n W131 is contained in a finite union of sets
of the form Wal.i and hence is compact.
We now define F = IW: W = Wa for some a  £ùll U IXn : n  lÕ}.

We claim that F satisfies the required five conditions.
A’) Every member of F is clopen in X. (It follows from (a) that

each Wa is clopen in X; it is given that each Xn is clopen in X.)
B’) Any two distinct members of F intersect in a compact set.

(Combine (a) and (d).)
C’) Xn E F for every natural number n, by the very definition of F.
D’) No member of F is compact. (The X,,’s are non-compact, by

hypothesis. The Wa’s are non-compact because of (b).)
F) Every infinite discrete closed subset of X meets some member

of F in an infinite set. For, let F be one such set. If F n xn is infinite
for some n in N, we are done, since X" is in F. If F n xn is finite for

every n, then form a set A by choosing one point from each of those
sets that are nonempty, among the sets in f F n Xn : n E N}. Then
A E C and so there is a  mi such that A = Aa. Then by (c), Aa fl Wa
is infinite. We are through, after observing that Wa E F and Aa C F.
The proof of the lemma is now complete.

LEMMA 2: If F is as in the previous lemma, then F is maximal with
respect to the four properties A’), B’), C’) and D’).

PROOF: Suppose W is a noncompact clopen subset of X. Then W
is not countably compact, since X satisfies v). Therefore W contains
an infinite discrete closed subset, say A. Because F satisfies F), we
have A rl W1 is infinite for some W1 in F. The set A fl W1 is discrete
and closed, because A is so. Thus W fl W1 contains a noncompact
closed subset and hence, is itself non compact. Therefore F U IWI
does not satisfy B’). Hence the assertion.

REMARK: Now we go back to the space X of § 1. We recall that we
wrote it as £M= Xn where each X,, satisfies the six conditions i) to vi).
We also had a decomposition Xn = Yî= 1 X,,,i for each n. We apply

the first lemma of this section, with Xn =Y, î= , Xn,; in the place of
X = Z§J=iXn. Then we would have got a family F of subsets of Xn
such that the five conditions A) to E) of §1 hold for F and further
such that F’) every infinite discrete closed subset of Xn meets some
member of F is an infinite set.

We construct X,,(I) with such a family F.
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PROPOSITION : Let Xn(l) be constructed as above. Let Y be any
Hausdorff space containing Xn(l). 7hen no sequence from Xn can
converge to any point of YBXn(l).

PROOF: Suppose a sequence from Xn converges to a point y of

YBXn(l). Let A be the set of this sequence. Then since Y is Hausdorff,
A U ly} is closed.

Also, A is an infinite discrete closed subset of Xn. Hence by our
choice of F (See condition F)), there is a member V of F such that
V fl A is infinite. Look at the point V* in X" ( 1). This must be a limit
point of V f1 A, since V n A cannot be contained in any compact set.

This contradicts the observation made in the previous paragraph
that A U ly} is closed.

REMARK: We let X* = IXn(1) where Xn(1) is as above.

To sum uP: Let X be a space satisfying the seven conditions i) to
vii). Let X* be an extension of X constructed as above. Then X * has
the following properties.

(1) X* also satisfies conditions i) to vii)
(2) X is an open dense subspace of X *
(3) X*BX is discrete.
(4) In any Hausdorff extension of X *, the sequential closure of X

(that is, the set of all limits of séquences in X) is precisely X*.

§3

Starting from X with certain properties, we constructed an exten-
sion X* retaining these properties. Therefore we can repeat the

process and construct (X *)*, «X *)*)* and so on. We wish to do it

transfinitely up to w 1 times. The limit ordinals offer some difliculty.
The most natural way is to consider direct limits of the system

consisting of previous spaces, when we encounter limit ordinals. But
then there is no guarantee that properties like non-pseudo-compact-
ness, are preserved. Unless this is guarenteed, we can not proceed
ahead by again applying our process. The main purpose of this

section is to overcome this difficulty, with a compromise that instead
of having (ol steps, we shall have a steps, where a is any ordinal
 £ùi fixed before.

As a standing assumption for this section, we take that a, (3, y, 8,
denote general countable ordinal numbers. X is a space satisfying the
seven conditions i) to vii).
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When 8 - a, we construct an extension X(,B, a) of X as follows:
Consider the ordinal number oi"’. There is a collection f Xy : y 

,W,.+’l indexed by the set of w"l such that
a) XI’ is infinite and clopen in X for each y
b) any two distinct members of this collection are disjoint
c) The union of the members of this collection is the whole of X.
In other words, X = 2’Y(ùa+t XI"
Such a splitting exists because w"’ is countable and X is non-

pseudo compact. [See condition vi’) of § 1 .].
Once such a partition of X is fixed, for each pair (8, q) of ordinals

-a, define the subset Zs,, of X as follows:

In the sequel, we will often talk of the sum of various Z8,Tl’S for a
fixed q and varying 5.

In such occasions, it is understood that 6 varies over all those

countable ordinal numbers such that (ù Tl.(5 + 1):5 (ùa+1.

Having fixed these notations, we proceed to define X(,B, a), by
induction on /3 (fixing a at present). We first define

This is meaningful, since Zs,l can be easily proved to satisfy
conditions i) to vii).
Suppose as induction hypothesis that we have defined X(y, a ) for

every y ,Bo such that the following hold:
a) Each X(y, a:) satisfies the seven conditions i) to vii).
b) If y,  y2  130, there is a natural one-to-one continuous open

map i ’YI /2 from X(Yl,a) to X(Y2,a); further i yl,’y2 "iY2,Y3 = ly,y3 holds
whenever meaningful.

c) Y-sio,,(Z&#x26;,,) = X(,q, a) for every 71  /3o. This needs some

explanation. We assume that X(O, a) = X. Therefore by b), io,, is a

homeomorphism from X onto an open subspace of X(,q, a). There-
fore io,,(Z&#x26;,,) is an open subspace of X(,q, a) for each 8. The demand
is that their closures are pairwise disjoint and exhaust the whole of
X(,q, «).

Before proceeding further, we pause a while to observe that our
definition of X(l, a) satisfies the above three conditions (by taking
,80 = 2): al) X and X(l, a ) satisfy conditions i) to vii)
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bi) We take io,l to be the sum (over 8) of the inclusion maps Z8,t in
(Z8,1)*’ Then it is a homeomorphism from X onto an open subspace of
X(l, a).

CI) X(l, a) = 1,&#x26;(Z&#x26;,,) since Zâ,l is nothing but (Z8,1)*.
Our purpose now is to define the space X(/3o, a ) and the inclusion

maps i’Y,(3o from X(-y, a ) to X(po, a ) for each y  /30, in such a way that
analogues of a), b), c) hold for this bigger system also. We consider
two cases.

If /3o is a limit ordinal, we observe that {X( y, ci), i^yl,-y2: y  a, yi 

y2  al is a direct limit system. The limit space is denoted by
X(,60, a ); the maps iY,130 f or y  /3o are naturally defined then.

If /3o is a non-limit ordinal, then jgo = q + 1 for some ordinal number
q. Then the space X(,q, a) has already (by induction hypothesis) been
defined. We define

where the closures are taken in X(,q, a). This is meaningful because
by a), the space iO’TI(Z,TI+1) is a clopen subspace of X(11, a) (for any
considered value of 5) and hence satisfies conditions i) to vii).
We now show that if X(f3o, a ) is added to the system, conditions

analagous to a), b), c) still hold good:
To prove a) for this larger system, we have to show that X(,6(), a)

satisfies i) to vii). For this we make a claim that the first five of these

properties are left invariant by any one of the following construction
processes; the last two of the properties are easily verifiable.

(1) Forming the direct limit of such spaces over a diagram of a
countable well-ordered set, provided each map in the direct limit

system in injective, open and continuous.
(2) Forming disjoint topological sums.
(3) Forming the extension X- X* described in the previous

sections.

(4) Forming clopen subspaces.
b) is easily proved.
c) follows from the argument below: If po is a limit ordinal, then

io,a(Zs,o) (the closure being taken in X(/3o, a ) has the property that its
preimage under iY,l3o is clopen in X(y, a:)) for each y ,Bo. Therefore it
is itself clopen in .Y(/3o, a).

If /30 is a non-limit ordinal, c) holds by the very definition of

X(,6o, a ) and the fact that Y is always dense in Y *.
The construction of X(jg, a) is now complete.
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THEOREM: Let X be any space satisfying the seven conditions i) to
vii). Let a be any countable ordinal number. Let X(a, a ) be constructed
as above. Then

1) X(a, a ) also satisfies conditions i) to vii).
2) X is homeomorphic to an open dense subspace of X(a, a).
3) X(a, a )BX is a scattered space of derived length - a.
4) The sequential order of X(a, a ) is at least max(/3, a) and at most
+ a, where a is the sequential order of X.

5) In particular, if X is discrete, then the sequential order of X(a, a ) is
exactly a.

PROOF:

1) has been proved as a part of the construction of spaces X((3, a).
2) The map lp,a serves as a homeomorphism from X = X (0, a) onto

an open dense subspace of X(a, a).
3) This follows from the fact that for every ordinal (3  a, it is true

that i+I,a(X({3 + 1 ,a)))io,(X(Q, a )) is discrete.
This fact follows from the already proved result that Y*B Y is

discrete for every Y for which Y * is defined.

4) Let a be the sequential order of X(a, a ). Then we want to prove
the three inequalities i) a a a ii) o, -,6 and iii) o- :5 (3 + a. Let us

denote the subspace a» of X(a, a) simply by X(,B, a) for
conveniences in the following proof. Then we have an increasing
sequence X = X(O, a) C: X(l, a) C: - - - C X(,B, a) C ... C X(a, a) of

subsets of X(a, a). The set X is dense in X(a, a). We can prove
easily by appealing to earlier results (mainly the last proposition of
§2) that for every 8  a, the set of all sequential limits of X(,B, a) is
contained in X(i3 + 1, a). It is immediate that at least a steps are

required to catch the whole of X(a, a) through sequential closures,
starting from X. Hence we have ? a.

Since X is an open subspace of X(a, a) and since open subspaces
always have a smaller sequential order, the inequality o- -,6 is easily
proved.
To prove the third inequality, we make the following stronger

claim: Let Y be any sequential space written as a union Y = A U B
where A is open and B is its complement. Further let B be scattered.
Then the sequential order is at most the sum "sequential order of
A + derived length of B ".

This can be proved by transfinite induction on the derived length of
B. The first step there, is the following result, whose proof may be
found in [6, chapter 6]: lf’X is a sequential space, x E X, V is a

neighbourhood of x, a is an ordinal number and if the sequential
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order at any point of V is _ a, then the sequential order at x is at

most a + 1.

We leave the other details of the proof of iii) to the reader.
5) If X is discrete, we have 8 = 0. Therefore max(/3, a) = j8 + a. It

follows from 4) that the sequential order of X(a, a) is exactly a.

§4

In this final section, we derive some important corollaries of the
theorem of §3. Note that CH has been used in its proof. Throughout
this section, the one-point compactification of a locally compact non
compact Hausdorff space Y will be denoted by Y and the unique
point of ÊB Y will be denoted by 00.

REMARK: The following observation on the sequential order of Y
will be helpful. Let Y be such that Y is sequential. (See the proof of
claim 4 in § 1). Then it is always true that a(Y) S a(9) = u( Y) + 1
where a denotes sequential order. Examples can be given to show
that i) a(9) may be equal to u(Y) and ii)o-(y) may be equal to
a( Y) + 1. What is useful for us is the following fact. If Y is a disjoint
sum of infinite number of spaces, then the sequential order at 00 in Y
is always 1; therefore (r(y) = u(Y).
With this back-ground, we now proceed to state the corollaries.

COROLLARY 1: Let a be any ordinal S(Ol. T’here exists a compact

Hausdorff sequential space with sequential order a. [It is well-known
conversely that the sequential order can never exceed (01.]

PROOF: For a = 0, this is obvious, by considering a finite discrete
space.

For 0  a  (ol, this follows from the theorem of §3 and the remark

above, when we consider (N(a, a)j where N is the set of natural
numbers with discrete topology.
For a = Wh consider Y where Y = }:oac"lN(a, a). Then every

countably compact closed subspace of Y is compact, since this

property holds for each N(a, a). Hence Y is sequential. By the remark
above, o,(Ê) = a( Y) = Supo,,,.Icr(N(a, a)) = Supo,,,,,,,Ia = W1’

COROLLARY 2: Let X be any space satisfying the conditions i) to vii).
Let a be any countable ordinal number. Then X admits a sequential
compactification whose sequential order is 2::a.
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PROOF: Consider (X(a, a)).

COROLLARY 3: Let X be any noncompact space. Then the set S of all
countable ordinal numbers that arise as sequential orders of zero
dimensional sequential compactifications of X with cardinality :5C, is
either empty or cofinal in the set of all countable ordinal numbers.

PROOF: Suppose S is not empty. Then there is a space Z which is a
zero dimensional sequential compactification of X such that IZI:5 c
and such that the sequential order of Z is countable. Since X is

noncompact, there is at least one point in ZBX. Let Y be the space
obtained from Z by deleting one of the points of ZBX. Then it is easy
to prove that Y satisfies the seven conditions i) to vii). Now for each
countable ordinal number a, the space ( Y(a, a )) is a compactification
of X with required properties, and its sequential order is aa.

COROLLARY 4: Let X be any noncompact zero-dimensional separable
metrizable space. Let a be any countable ordinal number z- 1. Then X

admits a sequential compactification with sequential order exactly a.

PROOF: First, we can embed X in the cantor set K as a nonclosed

subspace, take a point x of XBX and put Y = i-CBfx}. (Here the closures
are taken in K.) It is easy to verify that Y automatically satisfies the
seven conditions i) to vii).
Consider (Y(a, a»-. Its sequential order = sequential order of

Y(a, a). This is (by the Theorem of §3) at least a and at most 1 + a.

Theref ore if a is infinite, then it is exactly a (since, then 1 + a = a ).
Hence the assertion is proved for infinite ordinals. Consider the

sequence of spaces Y, Y(l, 1), Y(2, 2),..., Y(N, N), ... let sn be the

sequential order of Y(n, n ) for each n = 0, 1, 2,... Then we have the
following three facts:

i) for each n a 0, sn is either n or n + 1. (This follows from assertion 4)
of Theorem of §3). ii) Sn+ 1 :5 Sn + 1 for each n --- 0. (To prove this, first one
can show that if a is any ordinal number, then Y(a + 1, a + 1) can be

thought of as Z(l, 1) where Z= Y(a, a); then apply assertion 4) of
Theorem). iii) so = 1. These three facts imply that 1, 2, 3, 4, ... is a

subsequence of so, sI, s2, ... (in fact, (sn) is same as (n) after deleting one
term, if necessary). Hence the assertion is proved.

COROLLARY 5: Let a and Q be two ordinal numbers such that
1 :5 a --5 0 --5 w 1. Then there is a Tychonoff sequential space X(a, 0) such
that its k-order is a and sequential order is p.
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PROOF: By Corollary 1, there is a compact Hausdorff sequential space
K (,0) with sequential order j8. We have already established in [3] that
there exists a Tychonoff sequential space X(a) for which the k-order
and the sequential order are both equal to a. We let X(a, {3) =
K((3 ) + X (a ). This disjoint topological sum has the required property.

PROPOSITION: S2 cannot be embedded in a compact Hausdorff
sequential space.

PROOF: Let if possible X be a compact Hausdorff sequential space
containing S2. Without loss of generality, we may assume that S2 is
dense in X. Let us fix the following notations: For each n = 1, 2, ..., Sn
is the n th column of S2 forming a convergent séquence; oo is the unique
point of S2 that is not of first countability; K is the set of all non-isolated
points of S2.

First, note that must be in the closure of the set XBS2. For if V is a

compact neighbourhood ouf - in X, then V cannot be contained in S2.
Therefore there is a countable subset C of XBS2 having 00 in its

closure. (Here we use the fact that every sequential space is a c-space in
the following sense: Whenever some point x is in the closure of a set A, it
is true that x is in the closure of some countable subset of A.) Let
C = {ci, c2, ... , Cn...}. For each positive integer n, choose a neighbour-
hood Vn of cn in X such that Vn does not meet the compact set K. Let
Wn = VnB(U ?=iS’). Then Wn is a neighbourhood of cn for every n.
(because U ?=1 Si is compact). Let W = U n= Wn. Then W is an open set
containing C. Therefore 00 E ( W n S2). But W n S2 meets each column
S" in a finite set of isolated points. This is a contradiction. We have thus
proved the stronger assertion that S2 cannot be embedded in a compact
Hausdorff c-space.

COROLLARY 6: Given any two natural numbers n and m with n ? 2,
there is a compact Hausdorff sequential space with sequential order
exactly m, not containing any copy of Sn.

PROOF: Combine the above Proposition with Corollary 1.
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