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The proof of the Mordell-Weil Theorem, which asserts that the
group of rational points of an abelian variety over (for example) a
number field is finitely generated, is traditionally divided into two
parts (Cf. [6]), deriving from the theory of heights and from Kum-
mer theory, respectively. Kummer theory already provides the so-
called "weak" Mordell-Weil Theorem, namely, that, given an integer
n, and an abelian variety A over the number field K, the Selmer group
Sn (A, K), defined either in terms of Galois or of flat cohomology, is
finite. There is a natural imbedding of A(K)/nA(K) in Sn(A, K), so
that the number of Z/n Z independent elements of Sn (A, K) provides
an upper bound for the rank of the Z-free part of A(K); the Tate-
Shafarevich conjecture affirms that these numbers coincide for all but
finitely many n. It is therefore of the utmost interest to compute the
group Sn (A, K); this process is known as descent.
The Selmer group Sn (A, K) is defined in terms of H (Galois or flat)

with coeflicients in the group (scheme) A [n ] of n -division points of A.
This can only be computed, in general, by trivializing A [n ] as a Galois
module; i.e., by passing to the field K(A[n]) over which the points of
A [n ] become rational, and computing Sn (A, K (A [n ])) Gal(K(A[n])/K). This
will in general be different from Sn (A, K), although there is a natural
map Sn (A, K) - Sn (A, K(A[n ]))Gal(K(A[n])/K)- However, we have proved
the following theorem:

Effectivity Theorem (2.9 in the text): Let p be a prime number such
that, at every place v of K dividing p, A has good ordinary reduction
at v. (We then say A is ordinary at p.) Then, as n - m, the kernel and
cokernel of the natural map
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have order bounded independently of n.
It is therefore natural to consider the canonical tower K C Ko C

... C Kn C ... C Koo, where Ki = K (A [p ‘+1]), Koo = U Kl, and to
study the Ô = Gal(K./K)-module Spcx{A, K.) = limn-m Spn (A, Kn-1), in
case A is ordinary at p. We note that Spcx{A, K.) is the same whether
we take K or any of the Kn as ground field, and we may therefore
hope that an investigation of Spcx{A, K.) will provide effective in-

formation about the asymptotic growth of the Mordell-Weil groups
A(Kn) as n &#x3E; -.
When Koo is replaced by an extension k/K with Gal(k/K) = r rr Zp,

the analogous questions were considered by Mazur [28], who
based his theory, in turn, on Iwasawa’s theory of modules over

def.
Ar = lim Zp [T/ U]. We develop (§ 1) the analogous theory for AG,

U open in T

defined in the same way, when G is any torsion-free compact p -adic Lie
group, and investigate the structure of Sp-(A, Koo) as AG-module, where
G = Gal(Kool Ko).
The theory of AG, in conjunction with the descent techniques of

Mazur [28], enables us, in certain cases (§5 in the text) to exhibit

asymptotic upper bounds for the Mordell-Weil rank of an elliptic
curve over the intermediate fields of its canonical tower. These upper
bounds can be derived for any abelian variety A which satisfies the

Conjecture (4.6 in the text): If A is ordinary at p, then the Pontryagin
dual of Spoo(A, K.) is a torsion module over AG.

This is a weaker version of a conjecture of Mazur ([28]; Cf. 5.1.1,
in the text). We have only been able to prove this conjecture when A
is an elliptic curve with complex multiplication and K is an abelian
extension of the CM field (5.13), and for several particular classes of
elliptic curves (§5A and B). What evidence we have for the con-
jecture is presented in 4.7, which also provides a somewhat more
explicit description of Spoo(A, K.).
Here is an outline of our major results, in the order in which they

are presented:
In § 1, we develop the theory of Iwasawa algebras, relying heavily

upon the work of Lazard [24] and some elementary noncommutative
and commutative algebra in our proofs of weak analogues of Iwas-
awa’s structure theorems.

Chapter II, §2, introduces the infinite descent theory, à la Mazur
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[28], in the context of the canonical tower of an abelian variety. In

particular, we prove the Effectivity Theorem for abelian varieties
ordinary at p ; our proof makes use of the Weil-Riemann hypothesis
for abelian varieties, and of a cohomological lemma of Serre [41].

In §3, we generalize the fundamental work of Iwasawa, and prove
analogues (Theorems 3.3 and 3.9) of Theorems 5 and 17 of [21], for
any Galois extension K’/K, [K : Q]  00, such that

(1) Gal(K’/K) is a torsion-free pro-p p-adic Lie group, and
(2) Only finitely many primes in K ramify in K’.

(In 3.9, we assume, as does Iwasawa, that K’ contains the p"th roots
of unity for all n.) This theory is applied to the canonical tower of an
abelian variety in the subsequent §, but it is also relevant to the p-adic
extensions defined by Deligne in [10]. A primary task for the future is
to find a substitute for Sp-(A, K.) in Deligne’s context.

In §4, we state the conjecture described above, and present the
relevant evidence. We also generalize (4.9) an observation of Coates
and Wiles [9], (Theorem 11) which plays a major role in their

work on the Birch-Swinnerton-Dyer Conjecture.
Examples of elliptic curves satisfying Conjecture 4.6 are produced

in §5, mostly by explicit calculation. A particularly interesting exam-
ple (5.7) makes use of a recent theorem of Ferrero [13] on the

vanishing of Iwasawa’s IL-invariant. The conjecture is verified (5.13)
for CM-curves, under the restrictions described above; our proof
makes use of Brumer’s work on Leopoldt’s conjecture [5]; the

reader will note the afhnity with work of Coates-Wiles [9] and
Vishik [40].
The Appendix presents a number of simple computations of first

descents for elliptic curves over Q. Particular attention is paid to the
cases, neglected in the main text, of supersingular reduction, and of
the prime p = 2.

1 take this opportunity to express my gratitude to Professor Barry
Mazur, who supervised the thesis of which this paper is a part, not
only for the manifest influence of his work on this paper, but also for
his encouragement and for the frequency with which he could be
reached for advice. Of the many others with whom 1 discussed this

work, 1 am particularly indebted to R. Greenberg and D. Kazhdan,
both of whom helped me to clarify certain crucial misconceptions,
and to K. Ribet, who pointed out that Serre’s paper [41] could be
used to simplify my original proof of the key Lemma 2.6.4.
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Notation

We make use of the following (fairly standard) notation:
When K is a field, K will denote its algebraic closure (all our fields

will be perfect). If v is a valuation on K, Kv will denote the

completion of K at v.
If S is a scheme, and v a point on S of codimension one (or, if S is

affine, a rank one valuation of the affine algebra of S), then Sv will
denote the spectrum of the completion at v of the local ring of S at v.
If X is a sheaf for some topology on Sv, then H!(Sv, X) will be

cohomology with support at the closed point of Sv.
If K is a field, and if X is a Gal(K/K)-module (continuous or

discrete), then we write H’(K, X) instead of Hi (Gal(KIK), X).
If S is a set, then ISI will denote its cardinality, whether or not S is

known a priori to be finite.
If K is a local or global field, OK will designate its integer ring; if K

is global, KA will be the adele ring of K.
We employ the standard notation Z, Q, Fq, Gm, /l-p, etc.

§ 1. Groups algebras of p-analytic groups

In this section we develop the most elementary properties of the

algebras which arise naturally in the infinite descent theory; the

algebras and their representations are investigated more intimately in
[50]. Here we are content to refer to the paper of Lazard [24] for the
bulk of our needed results.

1.1. By a p-analytic group we mean a p-adic analytic Lie group
which is a torsion free pro-p group. Our examples will be closed
subgroups of the kernel of the reduction map GL(n, Z,) ---&#x3E; GL(n, Fp);
such a group will be called standard. (For p = 2, one is restricted to

subgroups of the kernel of reduction mod 4.) If G is a p-analytic
group, its structure of profinite group is expressed by the formula
G = lim GI U, where U runs over the family of open subgroups of G

u

and the maps are the obvious ones. Then the Iwasawa algebra, or

completed group algebra, of G, is the ring AG = liM Zp [GI U], U as
above. u

This will often be denoted A, when there is no ambiguity. The interest of
A derives from the following theorem:

1.2. THEOREM ([24], p. 61): Let M be a complete Zp-module with
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continuous left G action. Then M has a unique continuous left
AG-structure which extends the action of G (via the inclusion of G in
AG).

1.3. Following [14] and [12] we define the left Krull dimension
of a ring R to be the Krull dimension of the partially-ordered set of its
left ideals. Recall that this means the following: a partially ordered set
y has Krull dimension zero if it satisfies the descending chain
condition and if there is at least one non-trivial inequality a  b ; it

has Krull dimension at most n + 1 if and only if for every strictly
decreasing sequence of elements ai &#x3E; a2 &#x3E; a3 ... the following con-
dition is satisfied:

(1.3.1) For i sufficiently large, the set {s E Y: ai+1  s  ai}
has Krull dimension at most n.

The following facts can be found in [ 14] and [12], 3.5:
(1.3.2) If R is commutative, and Noetherian, this is equivalent to

the standard definition.

(1.3.3) If R is filtered, then Krull dim R s Krull dim Gr(R).

1.4. The ring 11G has a natural collection of two-sided ideals: for
any normal open subgroup U of G, the ideal Iu is that generated by
{M20131;MGÏ7}. These form a basis for the topology of A, in a

neighborhood of zero.
For the moment, let Gi = Ker(GL(k, Zp ) GL(k, Z/p ‘+iZ)), G = Go

(for p = 2, let G = G1). Any element g E G defines a one-parameter
subgroup of G (the closure of Ign 1 n = 0, ± 1, ±2,...}); call this (g).
The tangent space T(gll) at the identity maps to a subgroup contain-
ing (g) via the standard formula for the exponential map (by tangent
space, we actually mean the Zp-submodule of the tangent space where
the exponential map converges); this proves

(1.4.1) If g E Gi, then there exists h E G such that hpi = g.
(1.4.2) If g e Gi - Gi+,, then gP E Gi+1- Gi+2. One knows similarly

that

(1.4.3) The subgroup of commutators [Gi, Gj] C Gi+j.
1.4.4. Now let H be a p-analytic subgroup of G. The generators of

the Lie algebra of H give rise by exponentiation to generators Pi E H,
i = 1, ..., n = dim H, such that, if X, = vi - 1 E AH, then every element
of AH has a unique development ([24], p. 165)

Choose a small rational number E, and, with H = G above, let We
be the valuation on AG such that w,(Xi) = 1 - E, w,(p) = 1. Then
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(1.4.1-3) imply that Gr(AG), with respect to the filtration induced by
We, is a ring of commutative polynomials in k2 + 1 variables over Fp
(Cf. [24], p. 165; the extra variable, of course, comes from the

uniformizer p), if E is chosen correctly. (For p = 2, this requires an
additional argument.) Such a filtration induces a filtration on AH such
that Gr( l1H ) = FP[151 XI, ..., Xn] ] where denotes image in the asso-

ciated graded of an element of Au. Then we conclude by (1.3.2, 1.3.3).

1.5. PROPOSITION: Let H be as above. Then AH is a noetherian local

ring, without zero-divisors, of left Krull dimension at most n + 1.
PROOF: What is not immediate can be found in Bourbaki’s Com-

mutative Algebra, III, §2.

1.6. COROLLARY (Nakayama Lemma): Let H act continuously on
the discrete Zp-module M. If MH is cofinite over Zp, then M is cofinite
over AH (here M is cofinite means that the Pontryagin dual M’ of M is
finitely generated).

PROOF: Let m be the maximal idea of A = AH. By assumption, M’
is compact, and M’/mM’ is a finite group. The argument of [43]
Lemma 4, does not depend on commutativity of A, and gives the
result in this case.

1.7. COROLLARY: Suppose, in the situation of 1.6., that MH is

actually a finite group. Then M’ is a torsion module over AH, where
M’ is the Pontryagin dual of M.

PROOF: By Proposition 1.5, the set of torsion elements of M’ forms
a A-submodule (Cf. [12], 3.6.9). We may thus assume that M’ is

torsion -f ree.
(i) M’ is a submodule of a finitely generated free A -module. In fact,

1.5 and Goldie’s Theorem ([12], 3.6.12) imply that A has a skewfield
of fractions K. Then K 0A M’ is a left vector space over K, with

generators v 1, ..., v, say. Let mj = Yi ajis - 1 vi be a set of generators for
M’, imbedded in K 0AM’, where the aij’s and sij’s are in A. If we can
find s;’s in A such that there exist b;;’s in A with s;b;; = s;;, then the
free A-module generated by Isi ’vil contains M’. But such si’s and

bij’s must exist - the existence is needed in the proof of Goldie’s
Theorem (Cf. [12], 3.6.9).

(ii) We may assume, then, that M’ is a submodule of A r for some
integer r. Then, with respect to the filtration induced by We (Cf. 1.4.4),
Gr(M’) C Gr(AT), and in particular is a torsion-free Gr(A) = Fp[p, xi
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module (X = (XI,. - ., Xn)). Let J be the ideal generated by X ; local-
ize everything at J. The hypothesis is that Gr(M’)j = JGr(M’)j (since
p has become invertible). By the ordinary Nakayama lemma,
Gr(M’)j = 0. Since Gr(M’) is torsion-free, it is also zero. Then M’ is
zero.

1.8. We retain the notation of 1.4. We are going to prove an

asymptotic formula for torsion A-modules which will be applied in
the sequel to provide asymptotic bounds for Mordell-Weil ranks of
abelian varieties in the towers generated by their p "-division points.
Such bounds should be regarded as weak analogues of Iwasawa’s
class number formula [21].

Let D = Fp[H] = AlpA. We are goint to prove for f2 results of the
sort we sketched for A in 1.4. We define the envelope of H in G,
written env(H), to be the largest subgroup of G in which H is open; it
is the largest subgroup arising from exponentiation along the direc-
tions contained in the Lie algebra of H.
We assume from now on that p gÉ 2, to save us a great deal of

trouble. If H’ = env(H), let w be the valuation on f2H’ (obvious
notation), for which w(Xi) = 1.

1.8.1. LEMMA: With respect to the filtration defined by w, Gr(nH’) is
commutative. (And consequently, so is Gr(DH ).)

PROOF: Let Hi = H’ n Gi. We first show that if h E H;, then

w (h - 1) pi. In fact, by 1.4.1, h = s Pi , some s E H’ (because H’=
env(H’)). Write s = 77yp, where yl = 1 +X, and ri are p-adic integers.
Then h = (H(l + xi)ri)pi. Expanding this out (if you like, you can ap-
proximate the r;’s by rational integers and take the limit) the cross
terms appear with coefficients divisible by p, and we are left with

1 + caxa as the dominant term (Ci are constants). Incidentally,
the fact that w is a filtration depends on such a computation; we have

blithely been assuming its truth (armed with reference [24]).
A quick computation shows that [Xi, Xjl = «yi, yj) - I)yj-yi (where ( , )

means commutator in the group). Then by the result of the preceding
paragraph and 1.4.3, we are are done. Note how we have used the fact
that p 0 2 in order to get the commutator into a sufficiently high
filtration. Note also how setting wE(p) slightly bigger than w,(Xi) in
1.4.4 makes up for the fact that in A we do not have at our disposal
that p = 0.

1.9. PROPOSITION: In the notation of 1.4, let K be a normal
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subgroup of H such that HI K can also be imbedded in

Ker(GL(k’, Zp) - GL(k’, Fp)) for some k’. Let M be a compact A-
module such that M/lIHIK is a finitely generated torsion AHIK-module.
Then M is a finitely generated torsion AH-module.

Similarly, if MIPM is a finitely generated torsion aH-module, then M
is a finitely generated torsion AH-module.

PROOF: That M is finitely generated follows from 1.6. The assump-
tion on H/K implies that Gr(AH )/Gr(AH )Gr(IK) = Gr(AHIK) is an in-

tegral domain, hence that J’ = Gr(l1H)Gr(IK) is a prime ideal in

Gr(11H). Of course, the ideal generated by fi (Cf. 1.4.4) is a prime in
Gr(AH). Now follow the proof of 1.7, replacing localization at J in
step (ii) by localization at J’ (resp. at fiGr(AH )).

1.10. THEOREM: Let M be a finitely generated compact A = AH-
module, M’ its discrete Pontryagin dual. Let n = dim H, and Hi =
H fl Gi, in the notation of 1.4. The vector space Qp Q9zp MIIH¡M has
finite dimension di. Then the following two conditions are equivalent
(Cf. [21], p. 256):

(i) M is a torsion A -module.

(ii) di = O(P(n-I)i).

PROOF: (i) implies (ii): We may replace M by N = MIM*, where
M* is the p-primary torsion submodule of M; this does not alter the
di’s. Then MIPM is a compact torsion n = aH-module, with Pon-

tryagin dual M’[p] = p-torsion submodule of M’. But d¡ is at most

equal to M’[p]i (d comes from the free, hence flat, part of MIIHM,
and thus persists mod p); we are done by

1.10.1. LEMMA: Let M be a finitely generated compact torsion
module over a = nH, with discrete Pontryagin dual M’. Then

dimFp M’Hi =0(p(n-I)i)@ where n = dim H and Hi = H n Gi.

PROOF: M’Hi is dual to MIIHM = MH., so we can forget about M’.
We may assume that H = env(H). Otherwise, letting H’ = env(H), we
may induce up to H’-i.e., tensor on the left with AH,; if we call the

result M*, then M* is clearly a torsion AH’-module (Cf. 1.11 below for
the trivial proof), and MH, is a submodule of Mhj, so that estimates
for the latter give stronger estimates for the former.
Thus we may assume that all the Xi’s have the same valuation

w(Xi) = 1. Now IH, D (( 1 + X;)P’ - 1) = (Xi’). Thus Gr(IH.) contains

(with notation analogous to that of 1.4.4) every polynomial divisible
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by Xfj for some i, and in particular contains GR(IH) ,,,i defm np’, where n
is as usual dim H = dim(Gr(f2)). Now Gr(M) is a finitely generated
torsion Gr(f2)-module. So for t sufficiently large, Gr(M)ImtGr(M) has
dimension given by XM(t), where XM is the Hilbert polynomial of
Gr(M), of degree at most n - 1. Letting t = np , we see that

Gr(M)/Gr(IH,)Gr(M), which as an abstract vector space is isomorphic
to MH,, is a quotient of a vector space of dimension 0«np’ )n-’); this
gives the required estimate.

(ii) implies (i); Assuming as usual that M is torsion-free, hence
contained in a free A-module (Cf. the proof of 1.7), we derive a
contradiction: Since M C A for some integer r, Gr(M) C Gr(A/.

1.10.2. LEMMA: Let M be a finitely generated module over R =

k[Xo, XI, ..., Xn], k a field, such that M is torsion-free. Then M can be
imbedded in a free R-module V such that Supp( VI M) 2) Supp(R/XoR).

PROOF: Let U be the open subset of Spec(R) on which M is locally
free; then U contains the generic point of every hypersurface (since
the local ring of such a point is a DVR). Thus the complement of U is
of codimension two. Choose a hypersurface containing Spec(R) - U
and transversal to supp(RIXOR); call it H, and its complement W.
Then M (DR F(W, ÛW) is r( W, Cw)-projective, hence a direct sum-
mand of a free r(W, 6w)-module B ; and an R-lattice in B containing
M will be the desired V.

We apply this lemma to Gr(M) and Gr(A) = Fp Xi,..., Xn], let-
ting p play the role of Xo. We have the exact sequence (write M for
Gr(M))

giving rise to the exact sequence (we continue to write R =Gr(A),
and now set J; = Gr(IHj)

We claim that Tj = Tor R(RlJj, 1 VI M) satisfies

In f act, Jj is generated by n elements (coming from (1 + Xi)Pj - 1,
i = 1,..., n, Cf. 1.4.4), so that a free resolution for RIJI begins
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Tj will be a subquotient of R" 0R ( V/M), and will thus remain torsion
when tensored with Rlj5R, thanks to our choice of V. (1.10.4) then
follows from 1.10.1.

Now MI JjM, as a finitely generated Fp[p]-module, has a free part
and a torsion part; we are given that the free part has rank 0(p (n - I)j) ,
and we know that the torsion part is in the image of T;, hence when
reduced mod p has dimension O(P(n-l)j). Thus, as a Gr(f?)-module,
M/pM = N satisfies

we write J; again for the image of Ji in Gr(f?). But in Gr(il), 7/ is

generated by {X fi , i = 1,..., nl, hence is contained in mp’, where m is
the ideal generated by fX,, X,,I. By the Hilbert polynomial,
dimfp NlfftPj -- dimf, NIJIN = O(P(n-llj) implies N is a torsion Gr(il)
module. As in part (i) of the proof of 1.7, this implies M/pM is a
torsion il-module, hence by 1.9, M is a torsion A-module.

1.10.8. REMARK: We may refine Lemma 1.10.1, and consequently
Theorem 1.10, as follows: we have shown that, if M is a finitely
generated compact torsion il-module, and if M’ is the Pontryagin
dual of M, then dimFp M’H  XM(np‘), where n = dim H and XM is the
Hilbert polynomial of Gr(M), considered as a Gr(f?)-module. Hence,
if the support of Gr(M) is of codimension k in Spec(Gr(f2», we may
replace the estimates in 1.10.1 by dimF p M’Hi = O(p(n-k)Î), and thus, we
may replace (ii) of 1.10 with

When H is commutative, one need not reduce (mod p), nor need one

appeal to Gr: the support of M on Spec(H) = Spec(ZpQXI, ..., XnD)
will have a codimension k, and 1.10.8.1 will hold for this k.

1.11. PROPOSITION: Let K be an y p-analytic subgroup of H, M a
compact finitely generated module over AK. Then Ind %(M) is finitely
generated over AH, and M is torsion over AK if and only if Ind t(M) is
torsion over AH.

PROOF: Let {mi} be a set of AK-generators of M. Then {1 Q9 mi} is a
set of AH-generators of IndK(M), and they are annihilated already by
elements of AK if M is a torsion AK-module. On the other hand, if M
is torsion-free, then so is IndÍ2V(K)nHM, since Aenv(K)nH is free over AK;
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thus we may assume that K = env(K) n H. Then Gr(AH) is smooth
over Gr(AK), and in particular faithfully flat; so if Gr(M) is torsion-
free over Gr(AK), then Gr(IndH(M» is torsion-free over Gr(AH), and
IndK(M) is torsion-free over A

1.12. TERMINOLOGY: Let M be a discrete A-module, M’ its com-

pact Pontryagin dual. If M’ is finitely generated over A, we say M is
cofinite; this is to say that MH, up to a finite group is isomorphic to
(Q,/Z,)t for some integer t. If M’ is A-torsion, we say M is cotorsion.
The category of compact torsion A-modules will be denoted 3. We
shall always understand by a torsion module a finitely generated
torsion module.

Finally, let M be a compact A-torsion module; if Supp(Gr(M)) is of
codimension at least two in Spec(Gr(A)), we say M is trivial mod 16,
and we let 16 be the full, necessarily thick, subcategory of J of
modules trivial mod Cf¿; we employ the usual conventions in dealing
with quotient categories. If M is compact and trivial mod 16, its

Pontryagin dual will be called cotrivial mod 16. As in 1.11, we see that
being trivial mod 16 commutes with induction. Similarly, the proper-
ties of being cotorsion or cotrivial mod Q3 commute with coinduction,
where CoindK M = HomAK(AH, M) with its usual left l1H-module
structure.

§2. Mazur’s descent theory and the canonical tower

Hère we recall Mazur’s formulation of the classical theory of
infinite descent for abelian varieties in terms of flat cohomology,
following [28] more or less literally. In that paper, Mazur proves that
Iwasawa theory provides valuable information about the growth of
Mordell-Weil groups of abelian varieties over Zp-extensions, where p
is a prime at which the abelian variety has ordinary reduction. In this
section, we derive analogous results on the growth of the Mordell-
Weil group over the particular p-analytic Galois extension obtained
by adjoining the p"-division points to the ground field for all n.

2.1. Let K be a number field, AK an abelian variety over K. If

S = Spec(OK), OK the ring of integers in K, we denote by A the
Néron model of AK over S. It is known that, over an open subset of
S, A is proper and has connected fibers; thus, if we define Fn, n a

positive integer, by the exactness of the sequence of f pp f sheaves on
S
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(A[n] is the kernel of multiplication by n), then, if A has semi-stable
reduction at all points of characteristic dividing n, then Fn is a

skyscraper sheaf with finite fibers, not in general representable, such
that if q is a number relatively prime to n, then q does not divide the
order of any stalk of Fn. This is true in particular if n is a power of

the prime p, and A has good reduction at all points of characteristic p.
Break up (2.1.1) into the following diagram, whose rows are exact

sequences of f pp f abelian sheaves on S:

This gives rise to the exact cohomology sequences

Let n = p r and take the direct limits, over r, of the three sequences
above. Evidently, at any given point, Fn has order bounded above by
the number of connected components of the Néron fiber. We want to
find sharp bounds for H° and H’ of Fn. First of all, we note that

H’(S, Fn) = EBxEsuppFn Hi(Gal(k(x)lk(x)), Fn,x), where k(x) is the resi-

due field at x, k(x) its algebraic closure - this is true because Fn is a

skyscraper sheaf, and because cohomology of A and A computed for
the flat or étale topologies give the same results (Cf. App., 1.0.2.3),
and by the five lemma, the same is true of Fn.

2.1.3.3. We record, for future reference, that H’(S, Fn) has order
bounded independently of n, which follows immediately from the
corresponding assertion for F" itself.

(2.1.4) In this paragraph only, we assume K is local, S = Spec(OK)
as before. We let Kn = K(A[pn+1]), Koo = K(A[pOO]), in the obvious
notation, and Sn, S. the corresponding Spec’s of integer rings. A does
not lift to a Néron model over Sn in general, but we shall denote ail
the Néron models by the letter A. In any case, there is a map from the
lift of A over Sn to the Néron model of A over Sn, so that it makes

sense to take direct limits over n of cohomology groups of A. Similar
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considerations apply to the F’s, which will also all be denoted by the
same letter.

We assume that the residue characteristic of S is not p. Then the
formal group of A maps to zero in Fp, for any r; thus the number of
elements of order p n in Fpr is bounded by p 2gn, where g is the

dimension of A. Moreover, let F = FPx; the map A[p’](S.) ---&#x3E; F(Sx) is
surjective, and Lang’s theorem [25] on the vanishing of

cohomology of connected groups implies
(2.1.4.1) H’(S,,,A[p’l)---&#x3E;H’(S.,F) is surjective for all i, and an

isomorphism for i &#x3E; 0.

Let D = Gal(KxIKo); we want to prove that H’(S., F)
lim H’(Sn, F) are cotorsion AD-modules for i = 0, 1. It suffices to

n

prove that they are quotients of Zp-modules of the form (QpIZp)k for
some finite k. By (2.1.4.1), this is evident for = 0, and by (2.1.4.1), it

suffices to prove that H l(Soo, A[p’]) is of the form (Qp/Zp)k. But A[pn],
as a group scheme over S;, &#x3E; - 1, is finite and flat (even étale): in

fact, we prove this in 2.2.1 below (this eccentricity of sequence does
not lead to any logical fallacies); by (App., 1.0.2.2) H1(Soo, A[p"]) = 0
for all n, and the local cohomology sequence gives rise to an imbed-

ding of H1(Soo, A[pX]) in Hl(Kx, A[pX])  Hom(Gal(KooIKx), A[pX]).
Since the residue characteristic of S is different from p, class field

theory implies that this last module is of the required form (the
abelian Zp-extensions of K form a one-dimensional family). We have
proved

2.1.5. PROPOSITION: The AD-MOdules Hi(Soo, F) = limn H’(Sn, F) are
cotorsion, for i = 0.1. If D is of p -adic dimension at least two, then the
Pontryagin duals of the above modules are even trivial mod cri.

PROOF: We have only to verify the last statement; but the (com-
pact) modules in question are of finite Zp-rank; upon passing to
Gr( ll ), our assertion becomes clear.

2.1.6. REMARK: This result, or one equivalent to it - namely, that
the infinite descent involves very little ramification at the bad primes -
could have been obtained with less trouble using, for example, the
methods of [6] and not bothering with the Néron model and flat

cohomology; however, we do gain something by working with the
Néron model when we deal with ramification at p.

2.2. We return to our previous notation; thus K is a number field, S
the spectrum of its ring of integers. If G is an abelian group, we let
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G [n ] denote its n-torsion subgroup, and G[p’] its p-primary torsion
subgroup. The same notation holds for group schemes; however,
A[poo], if A is an abelian variety, will often be written Â; this can of
course be interpreted as the p-divisible group associated to A. We
denote the dimension of A by g. A is to have good reduction at all
primes dividing p.

Let Kn = K(A[p "+’]), K = Un Kn ; this will be called the canonical
to wer associated to the information {A, K, p}. We let Sn be Spec(OK,,),
OKn the ring of integers in Kn, and define Sot likewise. Set Gi =
Gal(K./Ki), G = Go, and à = Gal(Kool K). Then G is a p-analytic
group of the type considered in 1.4, and Gi is its associated filtration.
Unless otherwise specified, A will mean AG for this particular G.
The Néron model varies with the Si; in particular, to each S; is

associated an Fpx,; , which we abbreviate F;. The universal property of
the Néron model implies that, if j &#x3E; i, then Fi x s, Sj maps to Fi; thus
we may speak of Mo and Ml, where M, = lim H’(Si, F’;) =

i-.

He(Soo, F.). 

2.2.1. LEMMA: Let v be a place of S, w a place of Soo, dividing v,
such that Foo is non-trivial at w. Then w is ramified over v, and the
inertia group is infinite. (Cf. [16]).

PROOF: The hypothesis implies that A has bad reduction at w (for
convenience, we continue to write A over Sx, even though it is in

general not the same group scheme); similarly, A has bad reduction at
wn, the restriction of w to Sn. Thus the connected component of the

identity of A over the residue field of wn does not have p2g(n+l) pn+l-
division points; here we use the assumption that v is prime to p ; i.e.,
that A has good reduction at primes dividing p.)

Let Bn = (Zlpn+l)2glsn be the (étale) constant group scheme over Sn.
By definition of Kn, the generic fiber of Bn imbeds in AKn; by the
Néron property, this extends to a map of Bn into A over Sn ; the
closure of the image of Bn is a finite flat subgroup scheme of order

p(n+1)2g over Sn (Cf. [37], 2.1); call it E. Now E must be étale over wn,
which is of characteristic prime to p; and since it is finite, we
conclude that the fiber of A over wn does have p2g(n+l) pn+l-division
points, thus, for n sufficiently large, cannot be the lift of the fiber of
A over v. But Néron models remain Néron models over unramified

base extensions. Thus wn is ramified over v for n sufficiently large. To
conclude that the inertia group of w/v is infinite, we may repeat the

argument, replacing S by Sn, v by wn, and remarking that the hypo-
thesis of the lemma remains the same.
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2.3. COROLLARY: The Pontryagin duals of Mo and MI are trivial
mod Q3 as A -modules.

PROOF: It suffices to prove this for each place v of S at which F
has a non-trivial stalk; we may thus assume F has only one non-
trivial stalk (at v, say). Let w be a place of S. over v ; then

M,, = CoindG H’(S.,w, Foo), where Dw is the decomposition group of w
and Sm,w is the completion at w. But we have already proved that the
local module is cotorsion; moreover, Dw maps onto the unramified

cyclotomic Zp-extension, and contains an infinite inertia subgroup;
thus 2.1.5 implies that the local modules are cotrivial mod cg. Then, as
in 1.12, we conclude that the induced module has the same properties
over AG as the original module has over AD,,.

2.4. COROLLARY: The "Kummer sequence"

is exact mod Q3.

PROOF: This will follow from (2.1.2), (2.1.3.1-2), and (2.3), once we
can identify III with H1(S, A)[p°°] (mod W). But the obstruction to this
identification is bounded by H’(S., Foo)K[28], Appendix).

2.5. We want to prove that the sequence of A -modules (2.4.1) is a

sequence of "controlled" modules, in a sense to be made explicit
later, but analogous to that utilized by Mazur in [28]; the purpose of
this is to assure that H1(Soo, Ã)G; is sufficiently close to H1(S¡, Â) - i.e.,
that one can descend diophantine information over the top of the
tower to recover diophantine information in the individual layers. In
order that this be possible, we have now to assume that A has
ordinary reduction at all primes dividing p ; otherwise, there is no way
of knowing a priori that the sequence is controlled. We begin with a
completely general lemma:

2.5.1. LEMMA: Let H be a p-analytic group, M a discrete represen-
tation of H whose Pontryagin dual is a free Zp-module on m genera-
tors. Then, for every q, Hq(H, M) is cofinite (i.e., its Pontryagin dual
is finitely generated) over Zp, and the number of generators can be
bounded in terms of dim H = n and m.

PROOF: For every q, Hq(H, M) is a p-primary torsion module.
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However, the sequence

is exact, by hypothesis, and M[p] is a finite elementary abelian

p-group. From (2.5.1.1) we obtain the exact cohomology sequences

so that the number of congenerators of Hq(H, M) is bounded by

dimFp Hq(H M[p ]). As H module, M[p] has a composition series all
of whose quotients are one-dimensional over Fp (because H is a pro-p
group); by devissage we are reduced to showing that dimfp Hq(H, Fp)
(Fp necessarily has trivial H action) is bounded by a number depend-

ing only on n ; in fact, it is bounded by the binomial coefficient ( )q
([24], V, 2.2.3.5).
We have in mind the following diagram, as in [28], p. 231:

Here Tn is the set of primes of Sn ramified in S’oo, T 00 the set of primes
of S’oo ramified over Sn, Dwi the decomposition group of a typical w;,

and Pi is defined as the kernel of H2(Sn,v;, Â) , H.2(S.,Wi, A) W;. The
horizontal sequences are the long exact sequences of local

cohomology; the first vertical sequence is the baseline of the Hoch-
schild-Serre spectral sequence for étale extensions, and the second
vertical sequence is exact by design.
By a simple diagram chase, we see that
(2.6.1) The order (resp. the number of generators) of ker q; is

bounded above by the order (resp. the number of generators) of
H I( Gm Â (K.».

(2.6.2) The order (resp. the number of generators) of coker cp is

bounded above by the order (resp. the number of generators) of
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H2( Gn, Ã(Koo») EB Il; 1/1’;. We are going to prove that the groups

HE(Gn, Ã(Koo)), E = 1, 2, and the groups 1/1’;, for all i, are finite; thus
ker cp and coker ç are finite. This theorem makes strong use of the
hypothesis of ordinary reduction at primes dividing p. Moreover, we
shall prove that the number of generators of each of the groups
HE(Gn, Ã(Koo)), E = 1, 2, and 1/1’; is bounded independently of i and n ;
thus the number of generators of ker (p will be bounded, in-

dependently of n, and the number of generators of coker ç will be at
most proportional to the number of elements of Tn, which is at most
p n(dim G-2)’ up to a constant multiple. The techniques will be somewhat
different from those of Mazur, and will depend upon a cohomological
lemma of Serre [41] and the Weil-Riemann hypothesis for abelian
varieties.

2.6.3. LEMMA: The groups HE(Gn, Â(K.» are finite, E = 1, 2, and the
number of generators of each of these groups is bounded in-

dependently of n.

PROOF: The first statement is a theorem of Serre ([41], corollary to
Theorem 2); we have used the fact that, if Tp is the Tate module of A
and if Vp = Tp 0zp Qp, then A = Vp/ Tp. The second assertion follows
immediately from 2.5.1.

2.6.4. LEMMA: Let K be a p-adic field, with integer spectrum S; let
A be an ordinary abelian scheme over S, let L = K(A[pOO]), and let
G = Gal(LIK). Then, for all n &#x3E; 0, H n(G, Â(L» is a finite group.

PROOF: As in the proof of the theorem of Serre referred to above,
we need only prove that, if OE is the Lie algebra of G, then

Hn(M, Vp) = 0, where Vp is, as before, the Qp-vector space generated
by the Tate module of A. (The key is the comparison theorem of
Lazard [24], V, 2.4.9). Since A is ordinary, we may choose a Fro-
benius element F E G, and we may even assume that F fixes the
subextension of LI K generated by the p"th roots of unity, for all r

(this is because the unipotent radical of G, considered as a subgroup
of GL(2g, Zp), g = dim A, fixes the maximal unramified subextension
of L and the p-cyclotomic extension of K). Then the eigenvalues of
F on Vp(A) will be algebraic integers Ai,.... À2g, which can be
identified with the unit roots of (the H’-part of) the zeta function of
the reduction of A at the closed point of S, and with the inverses of
these unit roots. By the Weil-Riemann hypothesis for abelian

varieties, if q is the number of elements in the residue field of K, then



194

all the ki’s will have complex absolute values equal to q:f:l/2, , and in
particular the product of k À¡’s will never be equal to the product k + 1
À;’s. Let x E OE be log F; then we have shown that x satisfies the

hypothesis (Pn) of Theorem 1 of [41], for all n ; the lemma then
follows from that theorem.

2.7. LEMMA: In the notation of 2.6, let V¡ be an element of Tn of
characteristic p. Then 1/1¡ is a finite group, the number of whose
generators is bounded independently of n.

PROOF: For the sake of the proof of this lemma, we let K be a local
field, S its integer spectrum, Sn the integer spectrum of K. =
K(A[p "]), S’ the integer spectrum of L = Un Kn, and Gn =

Gal(L/Kn) ; the divergence from our standard notation will be of no
significance. We may then rewrite 2.6 in this local setting:

Here 1/1 is just the previous 1/Ii, where the vi and i have been

suppressed, since we are in a purely local situation. The horizontal
sequences are exact; the zeroes appear on the right because

H2(Sn, Â) = 0, by local flat duality [29]. A diagram chase shows
that, if coker f is finite, then so is 1/I/(lm g); since lm g is finite by
2.6.4, we need only show that coker f is finite to prove the lemma.
Moreover, for any m, we have the commutative diagram (with exact
rows)

the equality on the left follows from the Néron property, and the
whole sequence derives from the Kummer sequence 2.1.1 (F vanishes
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because A has good reduction at primes dividing p). Since

H1(Sm, A) = 0 (by Lang’s Theorem and the f act that A is connected),
we see that coker f = coker (A(Kn) Q9 QplZp (A(L) Q9 QpIZp)Gn).
Now we write, for each integer m, the exact sequences

Taking Gn-cohomology of 2.7.3.2, we imbed

(A(j-) ® ZI P m Z)Gnl(A(Kn) ® zI P ‘ z) in H1(GmpmA(L); and Gn-
cohomology of 2.7.3.1 gives rise to the exact sequence

We want to know that 1]1 is finite, and this will follow from the

statements

Of these, 2.7.3.4 follows from 2.6.4. Let H be the inertia subgroup of
Gm of codimension one. By Hochschild-Serre, we need only show
H1(G,JH, A(L H » and H1(H, A(L)GnIH are finite.

First, LH/Kn is unramified by definition, and GJH = Gal(L/K,,);
then H’(G,,IH, A(LH)) = 0, by [28], Prop. 4.3.
Write A(L) as an extension

here r is the reduction at the closed point of S’. As H-modules, there
is an exact sequence

by Hilbert’s Theorem 90, there is an isomorphism
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as Gn-module, the left-hand side is AO(L),.,,, and so

HO(G,JH, H1(H, AO(L)) is finite. We have only to prove that

HO(G,JH, H1(H, Aét(L)) is finite. But, since G,JH is of cohomological
dimension one, the natural restriction map (from Hochschild-Serre)

is surjective; and the left-hand group is just H1(Gn, Âét(L)), which is
finite by Serre’s Theorem, as in 2.6.4 (the eigenvalues of Frobenius on
Âét(L) are a subset of the eigenvalues on Vp(A)).

This proves that 1/1’; is finite; the statement about the number of

generators follows from 2.5.1 and the fact that the number of genera-
tors of 1/1’; is bounded by the number of generators of various

cohomology groups of the type discussed in 2.5.1.
2.8. In order to complete the program described in 2.6, we have still

to prove that 1/1’; is finite when vi is of residue characteristic 10 p. For
this paragraph, we let K be an 1-asdic field, S its integer spectrum. We
shall prove that H.’(S, Â) is finite, and that the number of its

generators depends only on A, and not on K. In fact, we have the
local cohomology sequence

we cannot set H2(S, Â) = 0 because A is not necessarily an abelian
scheme over S. By Tate’s local duality theorem [46] the exact

sequence arising from 2.1.1 gives rise to

here * denotes Pontryagin dual, and A is the dual abelian variety to
A. Since K is of residue characteristic prime to p, 2.8.2 implies that
H’(K, À) is finite, and the number of its generators depends only on
A. On the other hand, for r sufficiently large, H2(S, 4), where Â is as
in sequence (2.1.l.1)(pr), vanishes by Lang’s Theorem; then the

sequences 2.1.1.1 imply H2(S, Â) is a subgroup of H2(S, A)[p°°] =
lim H2(S, Fp·), which, as we saw in 2.1.4, is of finite order, depending

r

only on A.
We summarize 2.6-2.8 as follows:

2.9. THEOREM: Let ’Pj be the natural map H1(Sj, Â) --&#x3E; H1(Soo, À)Gi, in
the notation of 2.2. Then the number of generators of ker ’Pj is
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bounded, independently of j, and the number of generators of coker ’Pj
iS 0(p(di-G-2)j). .

PROOF: We have proved all but the last statement. As noted in 2.6,
the number of generators of coker ’P¡ will be proportional to the
number of elements in T;, which is O(max [G : DvGj]); here T is the

vET

set of primes in K which ramify in K, and Dv is the decomposition
group of such a prime. But Dv is of dimension at least two: in fact, K.
contains an infinite unramified extension at each v (for v % p, this is
true because A has good ordinary reduction at p ; for v ) p, there is the
cyclotomic Zp-extension); and of course, the inertia group at each
prime v is of dimension at least one. The theorem follows im-

mediately.

2.10.1. COROLLARY : H1(Soo, Â) is a cofinite AG-module. Moreover, if
H1(So, À) is finite, i. e., if A(Ko) and III(A, Ko)[p’l are finite, then
H1(Soo, À) is a cotorsion AG-module.

PROOF: The first assertion follows from 1.6, 2.9, and the weak
Mordell-Weil theorem which asserts (in conjunction with 2.1.3.3) that
H1(So, Â) is finitely cogenerated as a Zp-module. The second asser-
tion follows from 2.9 and 1.7.

2.10.2. REMARK: H1(Soo, Â) will be cofinite even when A does not
have ordinary reduction at all primes dividing p ; Cf. 4.10, below.

2.11. COROLLARY : The free rank of the Mordell- Weil group of A
over Kn is bounded above by the cofree rank of H1(Soo, Ã)Gn; if the
Tate-Shafarevich conjecture is true, i. e., if ill(Km A) is finite, then
these ranks are in fact equal. In particular, if H1(Soo, Â) is a cotorsion
AG-module, then

(2.11.1) Mordell- Weil rank of A over Kn = O(pn(dimG-1».

PROOF: All the assertions are immediate consequences of 2.9, with
the exception of 2.11.1, which follows from 1.10.

2.12. The above corollaries indicate that one loses no information

about Mordell-Weil groups by passing to an extension which trivi-
alizes the Galois module A[p°°] (p a prime ordinary for A) and
retaining the Galois module structure of the group of descents over
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this extension. We give a few more details on this group of descents
in §4; in principle, it is easier to compute once A[p’] has been
trivialized.

§3. Iwasawa theory f or p-analytic extensions

An ingredient in our computation of descents is the prior deter-
mination of the Galois group of the p -Hilbert class field of the summit
Koo of the canonical tower; this Galois group will be called the

Iwasawa module of the canonical tower. In this section, we prove,
among other things, that the Iwasawa module is a torsion A-module.
When A is commutative, this result is due to Ralph Greenberg
[17]. Our use of Kummer theory is modeled on that of Iwasawa

[21].

3.1. PROPOSITION: Let K’IK be an extension of p-adic fields, with
K finite over Qp(Cp), such that H = Gal(KIK) is p-analytic, of the
type considered in 1.4. Let M be the maximal abelian pro-p extension

of K’, and let X = Gal(M/K’) be endowed with its natural structure as
A = l1H-module. Then X is finitely generated over A.

PROOF: Let K" be the cyclotomic Zp-extension of K’, H’ _

Gal(K"/K), M’, X’ the corresponding structures for K". It is sufficient
to prove the Proposition for K", H’, X’: In fact, AH is naturally a

quotient of AH’, and AH Q9AH1 X’ maps to X with at most one-

dimensional cokernel (generated by Gal(K"/K’). We may thus assume
that K’ contains the pftth roots of unity for all n, and drop the extra’.
By Kummer theory, it suffices to prove that K’" 0 QplZp is cofinite;

i.e., that (K’X I(K’X)P)H is a finite group. Consider the exact sequences

where W is the group of p th roots of unity. Taking cohomology in
(3.1.1), we obtain the exact sequence K-(K"I(K")’)’---&#x3E;
H’(H, K"I W); the left-hand term is finitely generated, and (3.1.2) and
Hilbert’s Theorem 90 give an imbedding of H1(H, K’XIW) in

H2(H, W), which is finite because H is p-analytic.
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3.2. PROPOSITION: Let K’I K be an extension of number fields, with
K finite over Q(C,), such that H = Gal(K’/K) is p-analytic, of the type
considered in 1.4. Assume that only a finite set T of primes in K
ramify in K’, and let M be the maximal abelian pro-p extension of K’,
unramified outside T ; endow X = Gal(M/K’) with its natural structure
as A = 1H-module. Then X is finitely generated over A.

PROOF: As in 3.1, we are reduced to proving that the subgroup JK
of KX/(KX)P, represented by elements whose pth roots generate
extensions of K’ unramified outside T, is finite. As in [21], p. 273,
x E K x, x (mod(K xY) E: « if and only if the principal T-ideal (i.e., that
part of the ideal prime to T) generated by x becomes a p th power in
K’; since K’ is unramified outside T, the T-ideal (x) is already a pth
power in the ideal group of K. Then, as in [21], p. 275, there is an
exact sequence

where ET is the finitely generated group of T -units and CT is the finite
group of T-ideal classes of K. Since the end terms of (3.2.1) are finite,
so is Al.

3.2.2. COROLLARY: In the situation of 3.2., let L be the maximal

unramified pro-p abelian extension of K’; let Iw(K’/K) = Gal(L/K’),
endowed with its natural structure as A-module ; then Iw(K’/K) is

finitely generated over A.

Iw(K’/K) will be called the Iwasawa module of the extension

K’/K. We know even more about it:

3.3. THEOREM : In the situation of 3.2., Iw(K’/K) is a torsion

A -module.

PROOF: Let H = Gal(K’IK) be an extension 1 ---&#x3E; R --&#x3E; I-I --&#x3E; J --&#x3E; I,
with R solvable and J semisimple; we first prove the theorem with H
replaced by J, K’ replaced by K" = K’R. We know that Iw(K"/K)j =

Iw(K"IK)IIjIw(K"IK), where Ij is the augmentation idéal, is finitely
generated over Zp by 3.2. Suppose it has a Zp-free quotient, say
N = Gal(L/KI, where L is unramified over K". Then W = Gal(N/K)
will be a central extension of J by N. We use the following lemma:

3.3.1. LEMMA: Let J be a semi-simple p-analytic group of the type
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considered in 1.4, and let W be a central extension of J by Z’. If [J, J]
is the derived subgroup of J, then there is a homomorphism
[J, JI W such that, if W J is the natural map, then a O y is the
identity (i.e., W splits on [J, J]). Moreover, W/y[J, J] is an abelian

group.

PROOF: By Levi’s Theorem, the corresponding extension of Lie
algebras splits; thus W splits on some open subgroup U of J. Since U
is of finite index in J, the cocycle defining W in H2(J, Z p) is of finite
order: in fact, because H1(U, Z’) = Hom( U, Z’) = 0, the Hochschild-
Serre spectral sequence implies that the cocycle lifts from

H2(JIU, Z p). (N.B.: We are dealing with continuous cohomology.)
Say this cocycle is killed by p ". Then, in the exact sequence

our cocycle is in the image of 0. But H’(J, Z p/p "Z p) _
Hom(J, Zp/p"Zp), and any element of the latter group dies in

H 1([J, J], Z p/p"Z p). The sequence (3.3.1.1) maps into the correspond-
ing sequence with J replaced by [J, J] ; thus any cocycle in the image
of 0 dies in H2([J, J], Z p). The last statement is now a consequence of

3.3.1.2. SUBLEMMA: Let Y be a central extension of the finite
abelian p-group G by Z p. Then Y is an abelian group.

PROOF: This is clear when G is cyclic. Now if H is any subgroup of
G, H1(H, Z p) = Hom(H, Zp) = 0; consequently, if G = H x H’, the

Hochschild-Serre spectral sequence gives us a decomposition

and by induction, if G is the product of cyclic groups G =

Hl x H2 x ... x H" then H2(G, Z s) II i H2(H;, Z p); it follows that

H2(G, Zs) is generated by abelian groups, and since the Baer sum of
two abelian groups is again abelian, we are done.
We apply 3.3.1 to the extension L/K ; it implies that [J, J] lifts to a

(necessarily normal) subgroup J’ of W; Z/ will be an abelian exten-
sion of K, and Gal(LI’IK) will have the same free rank as lw(K"/K)j.
Let, for each v E T, Iv be the inertia group of v in LI’; Iv will be a
finitely generated Zp-module, whose free rank is strictly less than the
dimension of G. The quotient of Gal(LI’1 K) by the subgroup gener-
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ated by the Iv will be the Galois group of an unramified abelian extension
of K, and is therefore finite. We thus see that dimQp Qp ®Zp Iw(K’VK)j 
1 T 1. Let K" = U Kn, where Kn = K "Jn, and where Jn is a filtration of J as

n

in 1.4. Then the same argument gives

where Tn is the set of primes of Kn lying over T. But every prime in T
is ramified in K", by assumption; in particular, for each prime v E T,
there is a subgroup DU C J, of dimension at least one, which is the
decomposition group of some prime of K" dividing v. The number of
primes of Tn lying over v will be [J: JnD,] = O(p n(dim J-dim Dv». Com-
bining this with 3.3.2, we find (since T is finite)

it then follows from 1.10 that Iw(K"/K) is torsion over 11J.
We now induct on the Zp-composition factors of R. Our task is thus

reduced to proving the following statement:

3.3.4. LEMMA: Let EI K be an extension, as in 3.2, such that

Iw(E/K) is a torsion 1H-module, where H = Gal(E/K). Let E’D E be
a Galois extension of K, as in 3.2, with Gal(E’/K) = H’, Gal(E’/E) =

Zp. Then Iw(E’ 1 K) is a torsion 11H,-module.

PROOF: We more or less follow the argument of Greenberg [17].
Write r = Gal(E’/E), and let X = Iw(E’/K)r. Now X is the Galois
group of an abelian extension MI E’ fixed by F; and since I’ has

cohomological dimension one, M is the lift of an abelian extension

MI E with Galois group X; note that M is unramified over E’. It

follows that the only primes ramifying in M/E are those which ramify
in E’/E; let TE be the set of such primes. Then each v E TE has an
inertia group Iv of Zp-rank one in MI E; we are given that the quotient
of X by the subgroup R generated by the Iv is torsion over AH; it

then follows from 1.9 that we will be done if we can find a l1H--torsion
submodule of lw(E’IK) which maps onto R. Let Dv be the decom-
position group of v in H’. Since only finitely many primes of K
ramify in E’, we may assume all the v’s divide the same prime w of
K. Then choose any such v, and choose a subgroup iv of Iw(E’/K)
which reduces isomorphically to Iv. If v also divides w, then v’ = hv
for some h E H’; thus the AH,-module generated by Iv maps onto R;
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but I, will be fixed by Dv; thus R is a quotient of (AH’IID,,AH’)’ for
some s, and in particular is torsion.

3.4. Since ll has a skew-field of fractions 3t, we can associate to

any finitely generated A -module M a numerical invariant, the rank of
M, by setting rank M = dimx X QSJA M. If A = AH, let Hi be the usual
filtration of H, and let IH;, as usual, be the (two-sided) ideal in A
generated by ih - 1 ) h E Hil.

3.4.1. LEMMA: Let m be the rank of the finitely generated A -module
M. Then dimQp Qp ®Zp MIIHM = m[H: Hi] + O(p(n-1)i); here n =

dim H. (Note: [H : Hi] = O(pni».

PROOF: If M is A -free of rank m, then the conclusion of the lemma

is obvious (without the 0(p (n-I)i ». In general, if T (M) is the torsion
submodule of M, there is an exact sequence

it follows from 1.10 (applied to the leftmost term of 3.4.1.1) that we
may assume M is torsion-free. Thus we may assume that there exists

a free, rank m A -module V (resp. V’) containing (resp. contained in)
M, such that V/M (resp. Af/V) is a torsion ll -module. We have

and

From 3.4.1.2 and 1.10 (applied to V/M) we conclude that

from 3.4.1.3 and 1.10 (applied to MI V) we obtain the reverse in-

equality, and the lemma follows.
3.5. Let X be as in 3.2; we want to compute the rank of X. We are

going to have to assume that K’ contains the pftth roots of unity for
all n. Then Kummer theory sets X in duality with a subgroup « of
K’x (&#x26; Qp/Z,. If AlH = (Qp/Zp) di (D (finite group), then the rank of X
will be that number m such that di = m [H : Hi] + O(p(ft-1)i). Let T be
as in 3.2; then, as in ([21], p. 275), there is an exact sequence
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where ET is the group of T -units of K’ and AT is the p-part of the

group of T-ideal classes (i.e., ideal classes represented by ideals

prime to T) of K’. In both cases, the group for K’ is the direct limit of
the corresponding groups for subfields of K’ finite over K.
We first show that AT contributes nothing to the rank of X.

3.6. PROPOSITION: The module AT is cotorsion over A.

PROOF: Iwasawa’s proof of the analogous theorem for the cyclo-
tomic Zp-extension is very long, owing to the number of technical
facts about Az -modules which enter into the proof. We sketch the
generalization of these facts to AG in the following paragraph; the
details are easy to check. (Cf. [21]).
Thus, let vij EE AH, CA be an element whose image in Zp [HilHj] is

equal to Yh,,=-HdH, h. Then vijIH, is evidently contained in IHj’ and so
x -&#x3E; v;,;x induces a map /,j : MlIgM --&#x3E; MIIHJM, if M is any compact
ll -module. These maps do not depend on the choice of v;,;, and satisfy
the compatibility fik - fij = fi,k; thus they give rise to a direct system
lim(MIIHiM) = M? Suppose we are given, for each pair i, j, i  j, a

7i,-j-
commutative diagram of 11-modules, with exact rows:

where Ni, Nj are finite groups ; then M? maps onto lim Ni = N?, and
N? is a discrete 11-module, with compact Pontryagin dual N’. Now
the map g --&#x3E; g -’ in H gives rise to a ZP-linear involution of A, which
we denote by k --&#x3E;,k!. The compatibility in notation is that, if À

annihilates every element of M, then À! annihilates every element of
N’ (the action of H on the Pontryagin dual Hom(A, Q p/ZP ) is given by
g(f(x» = f(g-’x), where x E A, g E H, and f E Hom(A, Qp/ZP)); in

other words, N’ is a torsion A -module.
Let Ai be the p-part of the ideal class group of Ki, and let

A = lim Ai. If Li is the maximal unramified abelian p -extension of Ki,
i 

there are canonical maps Iw(K’I K)/IH;Iw(K’I K) -- Gal(K’Li/K’) --&#x3E; A;
= Gal(L;/K;). Of these, the first is surjective, and the second has
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cokernel isomorphic to Gal(L; n K’IK¡), which has at most n = dim H
generators (cf. [21]). Theorem 7 applies in the present case as well, to
provide a commutative diagram (Cf. [48], 11.3)

Thus we have an exact sequence lw(K’/K)? ÀA -lim(Gal(L; n K’/
Ki»---&#x3E; 0; the cokernel term is evidently cotorsion, and by 3.3 and the
preceding argument, so is Im p ; thus A, and hence its submodule AT, is a
cotorsion A -module.

3.7. We conclude from (3.5.1) and 3.6 that our task is to compute
(ET (g) QpIZp)H, up to 0(p("-’&#x3E;’); in fact, it suffices to compute the
divisible part, by 3.4.1. We may as well replace ET with ET/ W, where

W is the group of roots of unity in K’. Let Z’ = Z 2013 ; then there is an[Pl 
exact sequence

which gives rise to an injection

The exact sequence 0 --&#x3E; W ---&#x3E; ET --&#x3E; E7j W --&#x3E; 0, combined with 2.5.1

applied to W, gives rise to an exact sequence

where Bi 1 and B2 are cogenerated by a set of finite cardinality
independent of i. Thus, in computing the contribution of

H 1(H;, E/ W) to the rank of X, it suffices to compute the divisible

part of H 1(H;, ET):

3.7.3. LEMMA: There is an isomorphism Ker(ATi ---&#x3E; AT) ---&#x3E;
H’(H;, ET); in particular, H 1 (H;, ET) is finite, hence has no divisible part.
(Here ATi is the T ideal class group of K;.)
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PROOF: Let ETi be the T-unit group of K,; let ITi and PTi be

respectively the T-ideal group and principal T-ideal group of Ki, and
let IT = lim ITi, PT = lim PTi. The exact sequence

;---&#x3E; T

gives, thanks to Hilbert’s theorem 90, an isomorphism P !fil PT,i =
H’(Hi, ET) (note that K"H’= K;). Now ITHI = IT,;, because only ideals
in T ramify in K’IKi; since PT C IT, it follows that PT C IT,;, and thus
consists precisely of those ideals in Ki which become principal in K’.
Thus P THilPTi is the group of ideal classes of Ki which become

principal in K’, i.e. P!fiIPT,i = Ker(AT,; - AT).
3.8. It remains only to compute the divisible part of

(ETIW@Z,)Hi0QpIZp. Now (ETIW0Z,)Hi is just ET,;/WnET,i@Z’;
in other words, we have only to compute the free rank of ET,; as
Z-module. Let Ti be the set of points of Si dividing primes in T. Note
that Ki is totally imaginary (it contains the pth roots of unity). We
conclude that

Since each prime in T has a non-trivial inertia group in H, we see that

’T;/ = o(p(n-I)i). Summarizing, we have

3.9. THEOREM: Let K"IK be an extension of the number field
K, [K : Q] finite. Assume that H = Gal(K’/K) is p-analytic of the type
considered in 1.4. Assume furthermore that K contains the pth roots

of unity, and that K’ contains the pn th roots of unity for all n.

Assume, finally, that the set T of primes of K ramifying in K’ is finite.
Let X be the Galois group of the maximal abelian p -extension of K’ in
which only primes dividing primes in T ramify. Then the rank of X as
a A = l1H-module is exactly l[K: 2 Q].

3.10. REMARK: We have proved the weakest possible result, in the
sense that we have failed to examine the torsion part of X, and we
have neglected to characterize further the nature of possible imbed-
dings of XI(torsion) in free A-modules ; such concerns figure
significantly in the work of Iwasawa, and in that of others who have
followed him (Cf. especially [21], [8], [19]). We hope to be able
to return to these questions.

3.11. Finally, we work out the local analogue of 3.9; i.e., we
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compute the AH-rank of the module X in 3.1, assuming K’ contains
the p "th roots of unity for all n. As before, we have to compute the Zp
coranks of (K" 0 QplZp)Hi; as in 3.7, the différence between the latter
group and (K,Hi)X Q9 Qp/Zp is measured by H1(Hi, K,xl W), where W is
the group of roots of unity in K’; and this difference is insignificant.
Since (K,Hi)X has Zp-rank equal to [K: Qp][H: Hi], we conclude, via
3.4.1, that

3.12. PROPOSITION: The module X in 3.1 has l1H-rank [K :Qp], if
H contains the p nth roots of unity for all n.

§4. Untwisting the wild ramification

We are now ready to compute the descent modules H1(Soo, Â),
introduced in Section 2, in terms of class field theory of the sort
described in Section 3. In this section we examine the contribution ot

the descent of the wild ramification at primes dividing p ; in Section 5
we obtain examples for which this contribution is represented by a
torsion ll -module.

4.0. NOTATION, Part I: We recall that AK is an abelian variety over
a number field K, of dimension d, and A is its Néron model over

Spec( OK) = S. We have chosen an odd prime p such that at every
point of S of residue characteristic p, A has good ordinary reduction;
associated to this information we have the canonical tower of number

fields K C Ko C KI c ... C Ki C ... C K., with notation as in 2.2; thus

Gi = Gal(KooIKi) is p-analytic for i = 0, 1,.... We write G = Go, and
G = GaI(Kool K).
We are going to assume that K = Q; although it would be relatively

straightforward to treat the général case, it would require an un-
justifiable prodigality with notation - unjustifiable because (at the

moment) there are no examples available in which the module of

descents is A -torsion, except when K = Q.
The primes of S; dividing p will be denoted ei,,. To each such ei,, is

associated a free rank d Zlpi+lZ-submoduIe of the group (or group
scheme) A[pi+l](Si): namely, the connected component of the latter at
ei,,. This rank d module will be denoted Li,,. The primes of 5’co

dividing p will be denoted v, or Vs; the corresponding submodule of A
isomorphic to (QpIZp)d will be called Lv (resp. L,). If v divides 9i,,,
then evidently Li,s C L". To an Lv corresponds a parabolic subgroup
of GL(2d, Zp), denoted PLv; the canonical imbedding of Ô in



207

GL(2d, Zp) represents the decomposition group Dv as a subgroup of

PLv. We say that a ei,, belongs to the stabilizer PL of a rank d
submodule L of Z pd if PL is PLv for some v E Soo dividing pjJi,s’

4.1. As in 2.2.1, we find that, over Si, A[p"’] is a finite flat subgroup
scheme of A (we continue to write A for the Néron model, regardless
of the base scheme), and in particular is étale away from primes
dividing p. By local flat duality [29], H!(Si,e,@s, A[pi+l]) vanishes;
the local cohomology sequences for (Zlpi+1)2d and A[pi+1] then give

here Ti is the set of primes of Si dividing p. (We are making use of
App., 1.0.2.4.) It follows from (4.1.1) that H1(Si’ A[pi+1]) contains as a
subgroup Hom(C(Ki), (Z/pi+1)2d), where C(Ki) is the ideal class group
of Ki; in the limit, then, there is an imbedding

this is an imbedding of A = AG-modules if G acts on (QpIZp)2d by its
representation on Â. We know already (3.3) that the left-hand side is a
cotorsion A-module ; we are now concerned with its cokernel, which we
represent as

Now 4.1.1 represents 01 as a subgroup of
H’(Si -Ti, (Z/p i+1)2d)/(IM j i)@ which in turn can be realized as

Hom(K[A/K[( Us;-T;), (Z/p i+l)2d)/(Im J); here K’ is the idèle group of
Ki and, if V is a subset of Si, then Uv = II Uv, where Uv is the

vEV

local unit group at v. The assertion with which this paragraph began is
an obvious consequence of class field theory. Let the bottom line of
(4.1.1) be rewritten 0-A-B - C; then there is a commutative

diagram
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From (4.1.2), we conclude that 4Ji is that subgroup of B whose image
under Q is contained in the image of y; all these identifications are
mod Ji (unramified extensions).
Let 9 be a typical gpi,s’ We have assumed that A is ordinary at

gp. Thus A[p i+l] =::: (ZI p i+1)d x (ppi+l)d over S;,,, the latter factor

being canonically imbedded. The portion of y arising from -ôp may
then be imbedded in the diagram (4.1.3) below:

Now

(4.1.3.1) The image of the right-hand map consists of unramified
extensions of S;,,.

(4.1.3.2) Kummer theory gives us the exact sequence
U,l UI(),+14 H1(Si,’ p,pi+l) - H’(Sie, Gm); the rightmost term vanishes,
because Gm is smooth and connected. Thus the image of the left-hand

map in (4.1.3) consists of extensions obtained by taking pi+1st roots of
elements of U ; in terms of class field theory, these are represented by
maps from Kl to Zlp i+1 (in our situation, coming in d-tuples) which
vanish on U è, the orthogonal complement to Ug, under the norm
re sidue mapping. We note for the future that U é C Ue.

(4.1.3.3) Since the subgroup scheme (p,pi+l)d C A[pi+1] is exactly
Li,,, if 9J = ei,,, we obtain the f ollowing characterisation of the image
of y.

4.2. LEMMA: With the natural identifications, the image of y in
(4.1.2) may be realized as

4.3. The group in (4.2.1) has a subgroup Ni =
Hom(H,(Kei@,lUei,,),(Zlp ill)2d); the group Ji of 4.1 is taken into Ni
under the natural map; moreover, any element of A (Cf. 4.1.2) which

maps to Ni induces an unramified homomorphism of
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Ils into (7,1p’+’)"; i.e., cornes from Ji. Thus we may
naturally identify tPi with a submodule of (4.2.1)/N,; but this is just

We record what we have done to this point:

4.3.2. MNEMONIC: The module H1(Soo, Ã) is an extension of

lim Oi C lim ni by Hom(lw(KooIKo), Â).
i i

4.4. We may identify the f2i of 4.3.1 with a coinduced AIIGA-
module, namely with

Here IIL means the product is taken over those s such that ôPi,,
s

belongs to PL ; the L chosen must be a rank d submodule such that the
set of 0-li,s belonging to PL is not empty. Thus all the decomposition
groups Di,s of the 0,li,s appearing in 4.4.1 are contained in PL f1 Ô, and
conversely, any element of Ô which lies in PL must stabilize the set of
,’Pi,, which belong to PL ; thus 4.4.1 has a meaning which evidently
identifies it with ni. Taking the limit, we obtain

here U, = lim Ui, the inverse limit being taken with respect to the norm
viei

maps; Uj is defined similarly, and the remaining notation is defined

according to the plane of 4.4.1. Now lim ni is represented, by means of
i

4.4.2, as a submodule of

where Dv is the decomposition group of some v E 5’co. Now, Uv is

isomorphic, via local class field theory, to the module X of 3.1 a

priori, it is only isomorphic up to something of Zp-rank one, coming
from the maximal (local) unramified p-extension; but this is already
contained in Koe,v, because A is ordinary); and Uv has Zp-rank at most
one; thus UJU;; has ADvno-rank equal to [Ko,v :Qp], by 3.11, where
Ko,v is the completion of Ko at the restriction to Ko of v. It follows
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that Indgvnô( uvl U -;;) has Tic-rank equal to [Ko : Q], and therefore that
the right-hand side of 4.4.3 has AG-corank equal to 2d[KO:
Similarly, the right-hand side of 4.4.2 has AG-corank equal to

d[Ko: l ol.

4.5. We are now ready to globalize. First, denote the right-hand
side of 4.4.3 (resp. 4.4.2) by Yo (resp. Y,). Let Y2 be the submodule of
Yo consisting in homomorphisms which are trivial on the subgroup É
of IndÔDnô(U,,IU’), where E is the closure of the (inverse limit with
respect to norm maps of the) global units. We make two claims:

4.5.1. Y2 has Aa-corank equal to d[Ko : Q].

4.5.2. In the notation of 4.3, lim Oi = Y, n Y2, where Y, and Y2 are
considered as submodules of Yo.

PROOF oF 4.5.1: It suffices to prove that IndZvnô(Uv)IË has rank
[Ko : Q]/2. Let X be as in 3.2, with K’IK = KoolKo (for now). X is a
Galois group, and class field theory identifies IndGDnà(U.)IE =--
(II Uv)1 Ë with the subgroup X’ of X which fixes L, the maximal

v

abelian p-extension of Koe ramified only at the primes in T-(primes
dividing pl, in the notation of 3.2. Now Gal(L/Koe) can be shown to be
a torsion AG-module by the same techniques used to prove 3.3.

(Alternatively, the difference between Gal(L/K.) and Iw(Koe/Ko) is

given by the inertia groups of the primes lying over primes in T but
not dividing p ; but these inertia groups are trivial, because the

maximal p-extension of Ko,w, for any w E T, not dividing p, is already
contained in K.,w,, for w’ an extension of w to K.; we conclude by
invoking 3.3.) Thus rank X’ = rank X = [Ko : Q]/2, by 3.9.
The truth of 4.5.2 is evident.

 Thus lim Oi is cotorsion if and only if Yl n Y2 is, and by the rank
7Î

computations in 4.4 and 4.5.1, this is true if and only if YI + Y2 is a
AG-submodule of Yo of maximum corank. Encouraged by the fact
that our rank computations allow the possibility that YI n Y2 be

cotorsion, we state the following

4.6. CONJECTURE: H1(Soo, Ã) is a cotorsion module, when A has
good ordinary reduction at p.

In Section 5, we find examples of elliptic curves for which the
conjecture is satisfied; we note that the conjecture is a consequence



211

of a conjecture of Mazur in [28] on the analogue for the cyclotomic
Zp-extension (this is 5.1.1, below); and we prove the conjecture for
elliptic curves with complex multiplication, in case K is abelian over
the complex multiplication field; our proof makes essential use of
Brumer’s work [5] on Leopoldt’s conjecture, with which 4.6 has
evident structural similarities.
We summarize those results we have proved in this section:

4.7. THEOREM: Let A be an abelian variety over Q ordinary at p.
Let QcKocK,c ... C Koe be the canonical tower associated to A,
and let Si be the integer spectrum of Ki. Let G = Gal(Kool Ko). Then
H1(Soo, À) is an extension by Hom(Iw(KooIKo), Â) of the following
module:

where v runs through the primes of Soe dividing p, Uv, U’, and É are as
in 4.4 and 4.5, and Lv is the connected component of Â at v ; this is an
extension of modules over Ô = Gal(Koo/Q). Furthermore,
Hom(ll Uvl U -;, À) is a AG-module Yo whose Pontryagin dual hasv
(torsion-free) rank 2d[Ko:Q], where d = dim A; and the submodules
Y,, Y2 of Yo defined by the conditions that f ( Uv) C Lv (resp. f (É) = 0)
are each of corank d[Ko: Q] : H1(Soo, Â) is cotorsion if and only if Y,
and Y2 generate Yo (up to cotorsion modules), and in any case

(4.7.1) = YI n Y2.

4.8. The usefulness of this theorem is that one can (in principle)
compute Iw(Koe/Ko) and (4.7.1) and therefore compute H1(Soo, Â). The
usefulness of the latter is demonstrated, in some cases, by Pro-

position 5.10, below, which states that, once one knows H1(Soo, Â) as
a G-module, one also knows the divisible part of H1(S’, À), when S’
is the integer spectrum of any finite extension K’ of K contained in
Koe. The Tate-Shafarevich conjecture is that the number of copies of

Q p/Z p contained in H ’(S’, Â) is exactly the Mordell-Weil rank of A
over K’. We conclude this section with a simple proof of a pro-
position which (in the case of complex multiplication) plays a major
role in the work of Coates and Wiles on the Birch-Swinnerton-Dyer
conjectures [9]:

4.9. PROPOSITION: Let x be an element of A(Koo) of infinite order,
and let V be the image (mod   i#) of x 0 Qp/Zp in H1(Soo, Â), under the
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map described in 2.4.1. Then V is not contained in the image of
Hom(Iw(KooIKo), Â) under the map described in Theorem 4.7. More

precisely, let x be an element of A(Koo.v), where v lies over p and Koo.v is
the completion of Koe at v ; assume x is of infinite order. Then x is not
infinitely divisible by p in A(Koo.v)’

PROOF: The map described in 2.4.1 arises from dividing points x of
infinite order in A(K.) by high powers of p and considering the Galois
cocycle (which also represents a flat cohomology class) f, =
u(xlpt) - xlp’, for a E Gal(KooIKoo); the latter assertion of the pro-

position is that this cocycle does not split when restricted to Koe,v,
hence defines a non-trivial extension of K.,v which is necessarily
ramified (for t sufficiently large). Since the extension is ramified, it

cannot come from a homomorphism of the Iwasawa module into Â;
thus the second assertion is a stronger form of the first. We prove the

second; thus we may assume K, Ko, Koo are all local. We may as well
assume x is defined over Ko (otherwise replace K by a larger field). In
this case, the local analogue of diagram 2.6 implies that the kernel of
H’(S,, Â) - H’(S., Â)’ is bounded above by H’(G, Â(K.»; the latter
is a Galois cohomology group. If we know that H’(G, Ã(Koo)) is finite,
we will be done; but this is 2.6.4.

4.10. REMARK: Note that, in 4.1.1, we give an imbedding of

H1(Si, À) in H1(Si - Ti, Â); taking this to the limit, we obtain an

imbedding of H1(Soo, Â) in H1(Soo - Toe, Â) = Hom(X, Â), where X is
the module in 3.2. This does not depend on the fact that A is ordinary,
and since X is finitely generated over A, we see that H1(Soo, Â) is

finitely generated over A in any case; we can even replace Soo by the
integer spectrum in any p-analytic extension of K (because the

property of finite generation both lifts and descends for maps G
G’). However, it is not clear whether H1(Soo, Â) has any interesting
properties (from the point of view of K) unless A is ordinary.

§5. Examples of torsion A-modules

A. Relations with Mazur’s theory

5.1. Our first aim is to demonstrate that examples of torsion

modules of the type studied by Mazur give rise to torsion modules of
our type. Let A be, as usual, (the Néron model of) an abelian variety
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over the number field K ; let K,,, K. be as in Section 2. Then Kn
contains Cn = KO(C,.,1), where Ck is a kth root of unity. Let C = U Cn ;
then T = Gal( C/Ko) = Zp ; we let H = GaI(Kool C), C = GaI(Kool Ko), so
that G/H = T. The infinite descent module H1(Soo, Â) (notation as in
Section 2) is a ll = AG-module, which we call X ; then X H is a

Ar-module. Let Zn be the spectrum of the ring of integers in Cn,
Z = lim Zn the spectrum of the ring of integers in C. There is a natural

map Y = H’(Z, Â) _ XH.

5.1.1. PROPOSITION: Under the usual assumption that A has good
/ 

+ordinary reduction at p, the kernel and cokernel of the map y__&#x3E; X H
are finitely cogenerated. It follows that if Y is a cotorsion Ar-module,
then X is a cotorsion A -module.

PROOF: Let Tn = Gal( C/ Cn). In diagram (2.6), replace Sn with Zn, Gn
with the inverse image under G ---&#x3E; T of Tn, and modify the remaining
notation correspondingly. Denote the resulting diagram (2.6’, n), and
denote the map which takes the place of ç in (2.6) by fn. Then (since

lim is exact) Ker (resp. Coker) f is just lim (Ker fn) (resp.

lim (Coker fn)). By 2.9, the number of cogenerators of Ker (resp.
n

Coker)fn as Zp-module is bounded independently of n, which implies
the first assertion of the proposition. The second is then a con-

sequence of 1.9.

5.2. Mazur’s paper [28] contains a number of examples of elliptic
curves over Q whose associated descent modules over the cyclotomic
Zp-extension of Q are torsion Ar-modules ; however, we need this
information over the cyclotomic Zp-extension of Ko (mainly because
Gal(Ko/Q) acts as a non-trivial group of automorphisms of l1 = AG ;
we will have more to say about this later). Our first set of examples
will be in the case p = 3, and the elliptic curve A/Q is divisible over
Spec(Z) = S by the finite flat group scheme Z/3 (B 93. Recall that this
means that the subgroup scheme A[3] C A (the Néron model) is

globally isomorphic to Z/3 (B P3, which translates into a condition on
the Galois group action on A[3] and a condition on the numbers of
connected components of the degenerate fibers of A. In this case
Ko = Co = Q(C3), and Gal(Q(C3)/Q) =,à acts on everything; since A is

of order 2, we may speak of the + and - parts of any d -module: they
are the + 1 and 2013 1 eigenspaces for the action of à.
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We repeat the Kummer sequence (2.1.1):

Regard this as a sequence for the étale topology of Z (notation as in
S.1). Then à acts on (2.1.1). Now Z is unramified over all primes in S
for which A has bad reduction; it follows that F3r/z = F3r/s xsZ.
Consequently, by (2.1.2-2.1.3)

(5.2.1) H’(Z, A[3"]) is of finite index in H’(Z, Â)[3"].

We denote by (5.2.1 +) (resp. (5.2.1-)) the corresponding statement
with a + (resp. a -) affixed to each group in (5.2.1).

5.2.2. LEMMA: H’(Z, Â)- is a cotorsion A -module.

PROOF: It will suffice to show that H’(Z, Â)-[31 is a finite group; by
(5.2.1-) we will know this once we know H’(Z, A[3])- =
H1(Z, Z/3 0153 1l3)- is finite. By a theorem of Iwasawa [22] the class
number of Zn is prime to 3 for all n (3 is a regular prime); thus
H1(Z, Z/3) = 0. Furthermore, if Z+ is the integer spectrum of the
maximal totally real subfield of C", then, as in I, 1.1, H l(Zm P3)’ =

H’(Z+, 1l3) (Z.IZ+ is tamely ramified, so the Hochschild-Serre spec-
tral sequence is valid, and gives 0 --&#x3E; H’(Gal(Zn/Z+), 93) ---&#x3E; H’(Z+, 93)
- H1(Zm 93)+ - H2(Gal(ZnfZ:), 1L3), whose end terms are evidently
trivial). Then the Kummer sequence 0 &#x3E; P3 &#x3E; Gm &#x3E; Gm 0
gives rise to the exact cohomology sequence

Here k is either Cn or its maximal totally real subfield. Now Hl with
coefficients in Gm is the ideal class group, which we have seen is

trivial. We have written Ek for the group of units in k ; if k = Cn,
EJ3Ek is (by Dirichlet’s theorem) a vector space over F3 of rank 3",
whereas if k is the maximal real subfield of Cn, Ekl3Ek is of rank

3" -1 (the difference comes from the presence in Cn of a third roôt of
unity). It follows that H1(Zn, P,3)+ is of index 3 in H1(Zm P,3), or that
H’(Z, Z/3 ED 93)- is of order 3.

5.3. THEOREM: Let A be an elliptic curve over Q which is divisible
over Spec(Z) by Z/3 ® P,3. Suppose that A(Q) and m(A, Q)[3’] are
finite groups. Then the module X (see 5.1 for notation) is a cotorsion
A -module.
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PROOF: It suffices, by 5.1.1, to prove that Y is a cotorsion Ar-
module. It is shown in [28], §6 that, under our hypotheses, Y’ is a
cotorsion Ar-module. By 5.2.2, Y- is a cotorsion Ar-module. Hence Y
is a cotorsion Ar-module.

5.4. REMARK: In [28] a number of examples of curves satisfying
the hypotheses of the theorem are exhibited; there are, for example,
curves with the conductor 14, 19, 26, 35, and 37. Mazur also des-
cribes, in [28], a means for generating still more examples.

5.5. REMARK: We have developed our descent theory only for
curves with good reduction at the relevant prime. However, our Y- is
in fact H1(Z+, Â*), where A* is the unique curve over Q, distinct
from A, which becomes isomorphic to A over Q(C3). Here A* has bad
additive reduction at 3. It is easy enough to exhibit an A such that
A *(Q) is of infinite order: the curve with conductor 19 is such an A

([1], p. 82). Mazur’s examples of torsion Ar-modules all come from
elliptic curves over Q with finite Mordell-Weil groups over Q; but they
all have good reduction.

5.6. We now consider a not very different case: suppose the

representation of Gal(Q/Q) on A[3] is via the group N = the nor-

malizer of a split Cartan subgroup of GL(2, F3). Then N is a group of
order 8, and contains the subgroup of homotheties W = :t 1; NI W = Li
is isomorphic to the Klein 4-group. The field K’ = Kr is thus a

biquadratic extension of Q. Since det(W) = {l}, K’ contains Q({3), by
general principles. Since N is not contained in a Borel subgroup of
GL(2, F3), [39], implies that the prime 3 splits in the field fixed by the
Cartan subgroup contained in N; this field is an imaginary quadratic
extension of Q, and hence we call it k. The non-trivial element in

Gal(K’/k) is called a, and complex conjugation in K’ is called J. The
fixed field of J is called K+. The following picture may help:
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The group N is associated to a pair of F3-lines in A[3], say LI, L2. If
3 splits into ÔPI’-?&#x3E;2 in k, then (possibly renumbering) we may assume
that Ll (resp. L2) is the kernel of reduction of A[3] at el (resp. -?&#x3E;2).
Let S’ be the integer spectrum of K’, let Z’ be the cyclotomic
Z3-extension of S’, with Galois group T, and let C’ = C"’, Cn = C’
The superscripts + and - will refer to the action of W.
Our aim is to prove that H1(Z, A[3j)- is a finite group; this will

imply that H’(Z, Â)- is a torsion Ar-module (with zero Iwasawa
li-invariant, in fact). Now as a finite flat group scheme, A[3] =
L, (D L2 (at least, over k), so it will suffice to prove (by symmetry)
that H’(Z, L1)- is finite; we drop the subscript 1, then, and refer only
to L and the prime e over which L is a connected group scheme.

Let Zn be as in 5.1, and Zn = Z w. Let Tn (resp. T n) be the set of

points of Zn (resp. Zn) dividing ôP. Then, since L is finite and flat,
H!(Zn,v, L) and H!(Z’,,, L) are both trivial; here Zn,v, Z’,, are the

completions (or localizations - by [28], 5.1 it makes no difference to

H.’) at v of the respective schemes, and the assertion is proved in
[29]. Thus H1(Zm L)- imbeds in H’(Zn - Tn, L)-. Now, over Zn - Tn,
L is étale; thus H ’(Zn - Tn, L) = Hom( On, L) where On is the Galois

group of the maximal abelian extension of Cn of exponent 3 un-
ramified away from Tn. Since W acts as - 1 on L, we see that

H1(Zn - Tn, L)- = Hom( O n, Z/3), where O n is the Galois group of the
maximal abelian extension of Cn of exponent 3 unramified away from

T’. So we have only to prove that 1 i9’l is bounded independently of n.
The maximal abelian unramified extension of exponent 3, over Cn,

has Galois group Bn, a quotient of On. But B, the Galois group of the
maximal abelian unramified 3-extension of C’, is a torsion Ar-module,
by classical Iwasawa theory, and IBni will be bounded, independently
of n, if and only if Iwasawa’s li-invariant vanishes for B. Recall the
definition of the g-invariant: it is the number of copies of 11r/pllr
which imbed (mod Q3) in a compact torsion Ar-module. The li-

invariant in question here is the invariant U3 of the field K’, which
vanishes, by a theorem of Ferrero [13], because K’ is abelian over
Q. (Here 93 is the p.,-invariant of the Ar-module Iw(C’/K’).)
Now let n be the kernel of the natural map 0’ n --- &#x3E; B,,. If g E n,

then g is in the inertia group of some point in Tn for some abelian
extension of Cn of exponent 3 which is unramified away from T n.
Now the element J of Gal(K’/K+) takes abelian extensions of Cn
unramified away from T’ n to abelian extensions of Cn unramified
outside JT’, where JT ;, = f points of Z’ dividing 31 - IT’nl. Since
JT n fl T n = 0, we see that if 0 4 g e - n then g + Jg, qua element of
the Galois group Un of the maximal abelian extension of C’, of
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exponent 3, unramified outside 3, is non-trivial. There is thus an

imbedding of Sn in Un, and in fact in Ui. Now Ui is the Galois group
of the maximal abelian extension of Cn’ = C’, of exponent 3, un-
ramified outside 3. Let C+ = U C+n U’ = lim Uj. the Galois group of

n fi

the maximal abelian extension of C’ of exponent 3 unramified outside
3. Then UJ is a Ar-module, with regard to the natural T = Gal( C+/K+)
action. If we can prove that Uj is a torsion Ar-module with trivial

IL -invariant, then it will follow that 1 U J 1, and hence 1 - and On (, are
bounded independently of n. Now since K’ is real and abelian over
Q, [5] and class field theory imply U’ is torsion (Cf. [18]), and it

follows from [18], Prop. 1, that the 1£-invariant of U’ is trivial if

the IL-invariant of Iw( C’I K’) is trivial; then Ferrero’s theorem applies
again, and we conclude

5.7. THEOREM: Let A be an elliptic curve over Q, with good
ordinary reduction at 3, such that the representation of Gal(Q/Q) on
A[3] is via the group N = the normalizer of a split Cartan subgroup of
GL(2, F3). Let W be the center of N, Ko = Q(A[3]), Koe = Q(Â), G =
Gal(Kool Ko), S. the integer spectrum of Koo, and X = H’(S., Â). If X -
is the -1 eigenspace for the action of W on X, then X - is a cotorsion
AG-module. Moreover, if Y- is the - 1 eigenspace for the action of W
on Y = H1(Z, Â), where Z is the cyclotomic Z3 = r-extension of Ko,
then Y- is a cotorsion Ar-module, whose Iwasawa IL invariant is

trivial.

5.8. REMARK: Although this example seems rather special, the

method of proof applies in any case where the appropriate IL-

invariant (of an Iwasawa-type situation) vanishes. For example, sup-
pose the representation of Gal(Q/Q) acts on A[p], where A is an

elliptic curve over Q, as the normalizer of a split Cartan subgroup of
GL(2, Fp); as usual, let Ko = Q(A[p]), C the cyclotomic Zp = r-
extension of Ko, Z the integer spectrum of C. Let k C Ko be the
imaginary quadratic field fixed by the Cartan subgroup of GL(2, Fp); p
splits as ele2 in k. Let M be the maximal abelian p-extension
unramified outside ei, and let 0 = Gal(MI C). It is not difHcult to

show that O is a torsion Ar-module (we do so in Part C, below), and
by the arguments in 5.7, we may derive the following proposition:

5.8.1. PROPOSITION: The IL-invariant of 0 is zero if and only if
H’(Z, Â) is a torsion Ar-module with zero IL-invariant.
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This proposition applies in particular to elliptic curves over Q with
complex multiplication and ordinary reduction at p. In this connection
it would be interesting to compute (for small p) the p-adic L-series,
associated by Mazur and Swinnerton-Dyer to A in [33]. Ac-

cording to conjectures raised in that paper, this series is divisible by p
if and only if the IL-invariant of H’(Z, Â)Ga(Kd") is different from zero.
Other curves to which the proposition applies are parametrized by the
Q-rational points of the modular curve Xsplit(p), discussed in [30].

In Part C, below, we prove a related result for elliptic curves with
complex multiplication.

B. Effective descent and more examples

The examples treated in Part A are somewhat unsatisfying, since
they derive their torsion properties from the initial T-extension, and
do not exhibit the properties of torsion modules over non-com-

mutative rings. Here we obtain examples, arising from descent on

elliptic curves, of torsion modules over APGL(2,z,) and in so doing
strengthen the computations of Section 2 somewhat in the case of
elliptic curves.

5.9. NOTATION: The notations Ko, Kn, K., So, Sn, S., A, G, and Gn
will have their usual meaning. For simplicity we assume A is an

elliptic curve; then G will be identified with its image in GL(2, Zp).
The subgroup of diagonal matrices in G will be called D, and K DGn
will be called PKn; PSn, PK., and PS. will have the obvious

significance. G/D will be called PG, and GNDID will be called PGn.
The module H’(S., Â) will be called X, and H’(PS., À) will be called
PX.

5.10. PROPOSITION: The maps H 1(Sn, Â) - X‘’’" and H’(Sn,Â)--&#x3E;
PX’G- have finite kemel and cokemel.

5.10.1. COROLLARY: If H’(SO, Â) is finite, then PX is a cotorsion
ApG-module.

PROOF OF COROLLARY: This follows from 1.7 immediately. As in
[28] and in Section 2, H1(So, Â) will be finite precisely when the
Mordell-Weil and (p -primary part of the) Tate-Shafarevich groups of
A over Ko are finite.
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PROOF oF 5.10: The statement about X’,, follows from 2.9, as does
the assertion that H’(S,,, Â) --&#x3E; PXPG- has finite kernel. Since

H (S., Â) f &#x3E; PXPG- X G,- n has finite cokernel, in order to prove
that f has finite cokernel, it will be enough to prove that f’ has finite
kernel. But, as in 2.6, this kernel is bounded by H’(D, Â), which is
finite because D has only finitely many fixed points in À, and because
D is (topologically) cyclic.

5.10.1. REMARKS: If we are willing to accept the Tate-Shafarevich
conjecture, we will have examples of torsion modules over ApG (and
the asymptotic bounds on Mordell-Weil rank which follow from the
torsion property) as soon as we find elliptic curves over Ko with finite
Mordell-Weil groups over Ko. For example, there is a curve of

conductor 14 over Q with two 3-isogenies and a rational point of
order 3; consequently, the 3-division points of this curve A are

defined over Q(C3). Now both A and its twist A* over Q(C3) have finite
Mordell-Weil groups over Q. (The twist has conductor 126 and this
information is provided by Table 1 in [1]); thus A(Q«(3» is finite.

5.11. It is impossible to find an elliptic curve over Q, divisible by
Z/3 EB 11-3, which has finite Mordell-Weil group and trivial Tate-

Shafarevich group over Q(C3), so that it requires a second descent in
each of these cases to verify the 3-primary part of the Tate-Shafare-
vich conjecture (and thus provide an example of a torsion module
over ApG). In order to avoid this, we choose the curve Xo(20), which
as two fortunate properties:

(5.11.1) It has potential good reduction at 2.
(5.11.2) It is divisible by Z/3.
These can be read off the table in [1]; they imply
(5.11.1’) Xo(20) has good reduction at the primes dividing 2 in

Ko = Q(A[3]), if A = Xo(20). ([44], §2)
(5.11.2’) The prime dividing 3 splits completely in KOIQ(C3), which

is totally ramified at 2.
In fact, by 5.11.2, the representation of Gal(Q/Q) on A[3] is given in

matrix form as 1 :). . Now locally at 3, A[3] has a canonical line(0 *).
defined within it, namely the kernel of reduction mod 3 (A is ordinary
at 3 because it is divisible by Z/3). This line and also the line

generated by the point of order 3 rational over Q are fixed by
Gal(Q3/Q3), which thus acts on A[3] (in the same coordinates as
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above) via the matrices 1 0 Since A acquires good reduction over(0 *

Ko, Ko must be ramified over Q, thus over Q(C3); but Ko is a cyclic
cubic extension of Q(C3).

5.11.3. We conclude as well that there are three primes vi, V2, and

V3 lying over 3 in Ko, and that, in the coordinates introduced above,
the kernels of the reduction maps mod vi are generated by the vectors
(i, 1) i = 0, 1, 2.

5.11.4. Finally, one reads from the tables that the prime 5, at which
A has (multiplicative) bad reduction, is defective for 3, i.e., that the
number of components of the Néron model of A at 5 is prime to 3;
since this can certainly not be true over Ko, and since the Néron
model lifts over unramified base extensions, we conclude that

KOIQ(C3) is totally ramified at 5 as well. Note that 2 and 5 stay prime
in Q(C3)/Q. Of course KOIQ(C3) is unramified away from 2 and 5.

Combining these data, we see there are altogether at most four (and in
fact only three) cyclic cubic extensions of Q(C3) unramified away from
2 and 5 (parametrized by lines in (F3)2 =U2/3 U2 x U513 U5, where Up is
the group of local units at p), that only two of them (at most) are
ramified both at 2 and 5, and only Q(C3,’110) splits completely at 3.
So we know that Ko = Q(C3, ViO). (We have here used that the class
number of Q(C3) is one.)

5.11.5. The 3-class number of Ko is one. In fact, the class number
of Q(N3/1-0) is one (Cf. [7]), hence so is that of each of its con-

jugates ; it follows that any 3-ideal class must be transformed to its

inverse by any involution in Gal(Ko/Q), and must thus be fixed by
Gal(KO/Q(C3». It must thus be representable by a product of primes
ramifying in KOIQ(C3), i.e. dividing 2 and 5; but primes dividing 2 and
5 are principal in Q(W10) and stay prime in Ko/QCV10).

5.11.6. The units of Ko generate a subspace of dimension three in
il U"ilUl . U3i ; here Vi are as in 5.11.3, Uv; is the group of local units
i 

at vi, and U’ represents the annihilator of Uv; under the norm residue
symbol (i.e., the units in Uv; whose cube roots generate unramified
extensions of K";). In fact, this is equivalent to saying (by Kummer
theory) that the cube root of any unit in Ko which is not itself a cube
in Ko generates a ramified extension of Ko, and that this is necessarily
so follows from 5.11.5.

5.11.7. Over Ko, A has bad reduction only at the prime dividing 5
(which is unique, by 5.11.4); that is the only point at which the Néron
fiber is disconnected, and there the three-part of the group of com-
ponents is of order exactly three. (In any case, the group of com-
ponents is cyclic, since the bad reduction is multiplicative.) The
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descent arguments of [28] apply (specifically, 9.7 of that paper,
which does not in fact rely on the hypothesis that the ground field is
Q): if p is the Mordell-Weil rank of A over Ko, r the F3-rank of the
elements of its Tate-Shafarevich group of order 3, and 6 = 2 is the
rank of the group of 3-division points of A defined over Ko, then

5.11.8. LEMMA: H1(So, A[3]) is of order 3.

PROOF: We know that A[3] is finite and flat over So, and is thus
étale over So - IVI, v2, V31. Moreover, over each vi, A[3] = Z/3 (D 11-3; the
kernels of the reduction maps are generated (in the coordinates of
5.11.2’) by ei = (i, 1). Since A[3] splits over So, the H’ is a Galois

cohomology group, and consists of maps to A[3] of the idèles Kô,A,
which vanish on Kô and on the local units at primes different from
f vl, V2, V31; since the connected parts of A[3] at primes dividing 3 are
of multiplicative type, these maps must also vanish on the U i (Cf.
5.11.6); and finally, these maps must take Uv; to the line generated by
ei for each i. In fact, since Ko has class number prime to three, we are
dealing with

An easy combinatorial argument, using 5.11.6, completes the proof.
From 5.11.7.1, 5.11.8, and 5.10.1, we conclude

5.12. COROLLARY: The 1 pG and AG-modules of "infinite descent"
over the towers of PKn’s and Kn’s associated to the curve A = Xo(20)
and the prime 3 are cotorsion modules.

C. Elliptic curves with complex multiplication

Our aim is to prove the f ollowing theorem, and to derive various
consequences from it:

5.13. THEOREM: Let A be an elliptic curve over the field K, with
complex multiplication by the imaginary quadratic field k; suppose
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K(Ators) = U n K(A[n]) is an abelian extension of k. Then conjecture
4.6 is true for A/K, for any prime p at which A has ordinary
reduction. In other words, if Soe is the integer spectrum of Koe =
U K(A[pi]), then H1(Soo, Â) is a cotorsion AG-module, where G =

Gal(K./K(A[pl».

5.13.1. COROLLARY: If AG is regarded as the ring of power series
over Zp in two variables (Cf. [17]), then the support of X, the

Pontryagin dual of H1(Soo, A), on Spec(AG), is (up to codimension
two) equal to a divisor D A/K,p on Spec(AG).

5.13.2. Since AG has unique factorization, we may choose an ele-
ment f A/K,p E AG, whose divisor is D A/K,p; this is called the p-adic
characteristic function of A/K, and is well defined up to a unit in AG.

5.13.3. LEMMA: Let K’ 1 K be a Zp-extension of K contained in Koe.
(In other words, K’ is the lift to K of a Zp-extension of k.) Let S’ be
the integer spectrum of K’, and let H’ = H1(S’, Ã); let G’ =

Gal(K./K’). Suppose K’ is not contained in the field obtained by
adjoining the ,n -division points of A to K, for all n; here ’TT is one of
the primes of k lying over p in Q (there are two, because p is ordinary
for A ([26], p. 176»), and ’TT acts on Â via the complex multi-

plication. Then the map

has finite kernel and cokernel.

PROOF: One knows from diagram 2.6 that the kernel of 5.13.3.1 is

bounded above by H1(G’, Â(K.». By the Hochschild-Serre spectral
sequence, we may replace G’ by its open subgroup U = Zp, and prove
that H1(U, Ã(K» is finite. By hypothesis, U has only finitely many
fixed points in À (otherwise K’ would be contained in a field such as
was forbidden in the statement of the lemma); thus the Herbrand
quotient gives us the required result.
As for the cokernel, that is bounded (by [28], §6) by the inverse

limit over i of ED,,Ip(A(K,,)nLCK NLjK,@,,(A(L.», if A has good
reduction at every prime of K; here Ki is finite/K for each i, and
K’ = U Ki; N is the norm map, and w is an extension of v to the

(finite) extension LI Ki. The arguments of [28], §§4-6, imply that
each of the summands in the above expression has, for each i, order
bounded by a number which depends only on the number of p-
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primary division points of A defined over Ki,v; by hypothesis, this is
bounded independently of i. Moreover, p splits finitely in K’ (because
it splits finitely in K., by the theory of complex multiplication); this is
sufficient to prove the lemma if A has everywhere good reduction.

If A does not have everywhere good reduction, then [44] there is
an extension K"/K’, finite, of order prime to p, such that A has good
reduction everywhere over K"; moreover, K" is contained in K.. We
have proved that, if H" is to K" as H’ is to K’, then H’-

H1(Soo, Ã)Oal(KooIK") has finite cokernel. We have thus only to show that

Hf f &#x3E; H"GaI(K"IK’) has finite cokernel. In fact, since GaI(K"IK) is of
order prime to p, App., Prop. 1.1, shows that f is even an isomorphism.
This completes the proof.

def. 

5.13.4. The action of Gal(Ko/K) =,à on H’(S., À), where Ko is, as
usual, K (A[p ]), is semi-simple, since p % là 1; thus, H l(Soo, Â) = Q9 HX,
where HX is the X-isotypic component of H’(S., À). Each Hx has a
well-defined p -adic characteristic function written f AlK,p,x’ On the
other hand, for each Zp-extension K’/K contained in K., Mazur has
defined a p-adic characteristic function of one variable (which he
chooses to be polynomial; Cf. [28]; namely, a generator (as always,
mod i#) of the ideal in AGàl(,KiK) which annihilates H’(S’, Â) ; here S’ is
the integer spectrum of K’. Call this function fA,K’IK,p; if we look at the
extension K’Ko/K, we can also define functions fA,K’KoIK,p,x’ Now each
such K’ is associated with a unique linear divisor in Spec(AG):
namely, there is a surjective map G --&#x3E; Gal(K’/K), and thus a map
AG - AOal(K’IKh giving rise to an imbedding Spec(AGal(K’IK» --&#x3E; Spec(AG)
as a linear divisor. We may restrict functions in AG to that divisor,
and obtain functions of one variable. The result is

5.12.5. COROLLARY : For all but finitely many Zp-extensions K’IK
contained in Koe,

up to a unit in AGal(K’IKh where DK, is the linear divisor associated with
K’ on Spec(AG).

PROOF: If IK, is the idéal of the divisor DK,, then 5.13.3 implies that,
for all but two fields K’, (H1(S’, Â»* - H1(Soo, Â»* Q9 AG/IK, (mod



224

(6); this mod % refers to modules over AGa1(K’IK), and * means Pon-
tryagin dual. This is enough to prove 5.13.5.1 for all K’ such that DK,
does not contain any cycle in Supp(H1(Soo, À)*) - D,,VK,,; the problem
is that f AlK,p does not notice codimension two cycles. This proves the
corollary, with one exception: if infinitely many DK, contain such a
cycle, then Supp(H1(Soo, Â)*) has an isolated codimension two com-
ponent with support at the origin of Spec(AG). By 5.10, this implies
that H’(So, Â) contains an infinitely divisible element (So is the integer
spectrum of Ko): i.e., either A(Ko) or III(A, Ko) is of infinite order.

5.13.6. COROLLARY: For all but finitely many Zp-extensions K’IK
contained in Koo, A(K’) is finitely generated.

PROOF: We know that A(K’) is finitely generated if and only if

f A,K’IK,p is not identically zero: indeed, in that case, H’(S’, Â) will be a
torsion AGa1(K’IK)-moduIe, and the assertion follows from Iwasawa’s
classification of such modules [21], noting that A(K’)OQp/Zp is

contained (up to a finite group) in H’(S’, Â). Now, by 5.13.5 (and even
by the weaker injectivity in 5.13.3), fA,K’IK,p will be identically zero
only when DK, C DAlK,p, which can be true only for finitely many K’.

5.13.7. REMARK: Mazur [31] has constructed examples of K’ as
above for which A(K’) is not finitely generated; a generalization of
his construction to the non-complex multiplication case forms the
subject matter of [51].

5.13.8. REMARK: It is a conjecture of Mazur [28] that A(K’) is

always finitely generated when K’ is the cyclotomic Zp-extension of
K. Moreover, he conjectures, that, in this cyclotomic case, the

function f A,xnx,p is (up to a unit in ll ) equal to the p-adic L-function of
the elliptic curve, constructed by him and Swinnerton-Dyer in [33];
this p-adic L-function is a power series in one p-adic variable,
which is defined for every elliptic curve which admits a parametriza-
tion by modular functions (i.e., a Weil curve). Now Manin-Vishik
[27] and Katz [23] have defined p-adic L-functions of two

variables, for any p-adic character of the idele classes of the CM field
k; moreover, Katz has demonstrated that his function of two vari-
ables, when specialized to an appropriate line, restricts to the function
of Mazur and Swinnerton-Dyer (with a slight modification).

It now remains to prove Theorem 5.13. We remark that such a

result is implicit in the work of Coates and Wiles [9] and Vishik
[49]; moreover, they have also made use of Brumer’s theorem, and
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obtained relations between the module considered here (restricted to
one variable) and the p-adic L-functions of Katz.

PROOF oF 5.13: We let the ideal (p ) split into 1r and 1r’ in k ; then
the p-divisible group Â splits as a direct sum (over K) À = À 1 (D Â2
where A l is the ir-divisible part and À2 the 1r’-divisible part. By
symmetry, it suffices to prove that H ’(S., A1) is cotorsion.
Now A1 1 is étale over SO-Iprimes dividing irl. So the theory

developed in Section 4 allows us to represent H1(Soo, Âl) as a sub-
group of Hom(XI, Ã1), where Xi is the Galois group (over K.) of the
maximal abelian p-extension of Koo, unramified away from ir. We will
be done if we can show that Xi is A -torsion.

Let K’ be the splitting field of A 1, and let L’ be the maximal abelian
p-extension of K’, unramified outside ir. Then K’ is a Zp-extension of
Ko, ramified only at ir; thus L’./Ko is ramified only at 1r. Now, let
H = Gal(K’/Ko); Ki the i th intermediate field of the Zp-extension
K’/Ko, and Hi = Gal(K’IKi). Let X’ = Gal(L’/K’). We want to show
that X’ is a torsion AH-module, i.e., that dim QP ® X H; is bounded,
independently of i ; lower Hi means coinvariants. Now X’ is a

quotient of the Galois group of the maximal abelian extension of K)
contained in L’; in other words, a quotient of the Galois group of the
maximal abelian p-extension of Ki unramified outside ir. Class field

theory identifies the latter with KÂ/(Ki rI Uv), i.e. the quotient of the
VI1T

idèle classes by the local units away from ir. Up to the finite ideal
class group, this can be identified with ( II Uv)/E; here E is the

VI,,

closure (in the ir-units) of the global units. Now Brumer has proved
that the rank of E is one less than the rank of II Uv. (He only

to have proved that the rank of the closure of E in II Uv is the

same as the Z-rank of E; but what he in fact proves, via the argument
of Ax [4], is that there is an element e e E such that, given any
imbedding lp(e) E Qp, the translates of lp(e) by Gal(Ki/k) generate a
group which, under the logarithm map, is taken to a submodule of Qp
of Zp-rank Gal(Kilk)l- 1. Since Gal(Kilk) does not interchange im-
beddings over ir and ir’, his argument gives the stronger result.) Since
this is independent of i, we have shown that X’ is torsion over AH.
Now let G’ C G be Gal(KooIK’); we will be done, by 1.9, if we show

that XIG, is torsion over AH. But XlH is a quotient of the maximal
abelian extension of K’ contained in Koo. The only difference, then,
between X1H and the module X’, which we already know to be
torsion, comes from ramification at ir’. Now, there are only finitely
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many primes in K’ lying over ir, because K’ contains an infinite
residue field extension at every prime over 7r’ (adjoining all the

p-division points of the reduction of A mod r’). And each of them
has an inertia group in X1H of Zp-rank at most one: if Xi = Gal(LIKoo),
then, since L/K is unramified outside 7r, all the zr’ ramification

happens in K.IK’, which is of Zp-rank one. This completes the proof.

5.13.9. REMARK: If K = Q, then Gal(k/Q) acts on H1(Soo, Â) by
"interchanging the variables."

APPENDIX

§ 1. Some tame descents: p # 2

1.0. ORIENTATION: E will be an elliptic curve, almost always over
Q. By abuse of notation, we shall allow the letter E also to denote the
Néron model [34] of E over Z, and, by further abuse, over any
finite covering of Z, or over any completion thereof. Of course, the
Néron model is not invariant under base change; we follow the
convention of 2.1.4 with regard to maps between the cohomology
groups of Néron models.

1.0.2. Let S be a Dedekind scheme, with generic point j:X--&#x3E;S.
We say the fppf sheaf F/S satisfies the Néron property if, as a sheaf
on the smooth site over S,

The Néron model on an abelian variety over S is the prototypical
example of such a sheaf. If A is such a Néron model, let A[n] be
subgroup scheme of A which is the kernel of multiplication by n ;

then A[n ] also satisfies 1.0.2.1 (because j * and j* are left exact).
Suppose v is a closed point of S of residue characteristic prime to n.
Then A[n] is a quasi-finite smooth group scheme over Sv, where Sv is
either the henselization or the completion of S at v. It follows that

([28], 5.1 (v) (b)), in either case,

here H is local cohomology in the fppf topology with support at the
closed point of S,. In general, our cohomology will be in the fppf
topology unless otherwise noted. We remark that, if G is a smooth
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commutative group scheme over S, then ([15], 11.7)

we shall use this information freely in the sequel. Finally, if A has

good reduction at v, then for any n, AIS, # AIS, is surjective; then
the five-lemma and [28], 5.1 (iv) and (v)(b) yield

H l(Sv, A[n]) is the same for Sv the completion and S,

(1.0.2.4)

the henselization of S at v, when r - 2.

We mention this because, in the long global exact sequence of relative
cohomology in the flat topology, the natural relative cohomology
terms are those over the henselized base; we shall, however, make all
our local computations over the p-adic numbers, and this is legitimate
because of 1.0.2.4.

We have in mind the following proposition:

1.1. PROPOSITION: Let A denote either an elliptic curve over the
number field K or its Néron model over the integer spectrum Z =

Spec(OK). Let LI K be the field of p-division points of A/K : L =

K(A[p]); let S be the integer spectrum of L. Suppose A has good
reduction at all primes dividing p, and suppose G = Gal(LIK) has
order prime to p. Then, for ail n, the natural map 

is an isomorphism.

PROOF: Let T’(resp. T*) be the set of primes in Z(resp. S) of
residue characteristic p and let T"(resp. T "*) be the set of points in

Z(resp. S), of residue characteristic different from p, which ramify in

S(resp. over Z). We have the following diagram of exact local

cohomology sequences (the zeroes on the left by 1.0.2.2 and [28],
5.1, (v)(a)):
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Here T(resp. T *) is T’U T"(resp., T’* U T"*), and the local

cohomology groups may be taken over completed bases (by 1.0.2.4).
Since A[p"] is étale away from T and T*, the middle terms can be
considered to be étale cohomology groups, and then the Hochschild-
Serre spectral sequence ([45], VIII, 8.4) implies that Ker u(resp.
Coker u) is bounded by H’(G, A[p"])(resp. H2(G, A[p"]) which both
vanish because IGI is prime to p. Thus u is an isomorphism.
We now claim that, if v E T’, then

is an isomorphism. Upon completing 1.1.2 at v we obtain

The zeroes on the right appear because of local flat duality
[29]: A [p n] is finite and flat at primes dividing p ; and because

X-X’ is an exact functor on the category of abelian p-groups.
Now, r’ is an isomorphism, by the Hochschild-Serre spectral
sequence again; and local flat duality implies that the extreme terms
of each row are dual (because A[p"] is self-Cartier dual), and in

particular have the same order. Hence r" = fv is an isomorphism (by
diagram chasing).
We will be done if we can account for the contribution of the

v E T". Now, dv(resp. dw) factors through Hl(Kv, A[pn])(resp.
H’(Lw, A[p"]». We claim that, if v E T", then

(the former equality follows, once again, from Hochschild-

Serre) ; if we can show this, we will be done, by diagram
chasing. This is completely local, and we may use Shapiro’s lemma to
assume G = Gal(Lw/Kv). Over Lw, the sequence 0 - A[p] ----+

A[p"] A [p 0 is exact; by induction, therefore, we need
only consider the case n = 1. Since A[p] splits over Lw, H1(Lw, A[p])
- Hom(Gal(L.,/L.,), A[p]) - Hom(L’/(L’)P, A[p]); the latter
isomorphism follows from local class field theory. We shall show that
the inertia group G’ of Lw/Kv fixes no element of

Hom(L’/(L’)P, A[p]); thus we may assume LwlKv is totally ramified.
Since Lw contains a primitive p th root of unity, this implies that Kv
does as well. Thus G acts trivially on the (two-dimensional) Fp-vector
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space L’I(L’)P. It now remains only to show that G has no fixed
point in A[p]. But if it did, then, if g E G, it must have an

eigenvalue = 1, considered as an element of Aut(A[p]). But det(g) = 1,
since g fixes the p th roots of unity. So both eigenvalues of g are = 1,
and since G acts semisimply on A[p], G must act trivially on A[p].
But then Kv = Kv(A[p]) = Lw, which contradicts the assumption that
vET".

1.2. We apply the Proposition to the case K = Q, n = 1. Then,
letting Z = Spec(Z), S as in 1.1, we see that, in order to compute
H1(Z, A[p ]), it suffices to compute the G = Gal(L/Q) invariants in

H1(S, A[p ]). Let V be A[p], considered as a Galois module, and let
V* be the contragradient representation to V. Since V is self-Cartier
dual, the Galois modules V and V* (&#x26; pp are isomorphic; here Ncp is,
as usual, the group of p th roots of unity. For the remainder of this
section, p will be an odd prime.
Choose a basis of A[p](L) over Fp: this amounts to a map of the

generic fiber of the constant scheme/ S ZI p Q9 V into the generic fiber
of A/S. By the Néron property (1.0.2.1), this extends to a global map
of Z/p Q9 V into A[p]. The image of Z/p Q9 V is a finite flat subgroup
scheme of A (over S), by [37], 2.1; in particular, A[p] is étale and
constant at all points of residue characteristic different from p

(because all finite flat group schemes of order n are étale and constant

away from the support of n).

1.3. The Cartier dual of the map Z/p Q9 V --+ A[p] is a map A[p ] -
p,p Q9 V*; as above, this is an isomorphism away from residue
characteristic p, and (by notation) an isomorphism as G-modules. For
simplicity of notation, we set U = S - T’*, and let Sp = LI S", Lp =

VIP

ffi Lv. Composing the two maps in the first sentence of this paragraph,
obtain a commutative diagram of long exact local cohomology

sequences:
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By local flat duality, g is dual to H°(Sp, Z/p Q9 V) - I-I’(S,, il, Q9 V*),
and is thus an isomorphism. By global arithmetic flat duality [3],
f and f " are dual to one another. Since G is an exact functor in our
situation, this and diagram chasing imply

here dim means dimension as Fp-vector spaces.
We again complete 1.3.1 at p :

The zeroes on the right arise, as in 1.1.3, from the local flat duality
theorem, which also implies that the map j is dual to the map f ".
Now, over Lp, Z/p @ V-A(pl, and so H’(Lp, Z/p 0 V)o - &#x3E;

H’(Lp, A [p])G@ which is in turn isomorphic (by Hochschild-Serre) to
H’(Qp, A [p ]). This can be computed by means of the exact sequence
over Qp

whose cohomology exact sequence reduces, in dimension one, to

where, for any abelian group M, M[p] is the subgroup of M of
elements killed by p. Tate’s local duality theorem [46] implies that
the left-hand term of 1.3.4 is dual to the right-hand term. There are
two cases:

(1) If p is anomalous (Cf. [28]), then A(Qp) has a subgroup of
order p, which is unique because p # 2 (by Cartier duality). This is

mapped isomorphically onto the p-part of A[Fp] ; the kernel of

A(Q,) --- &#x3E; A(Fp) is a compact one-dimensional Lie group over Zp. Thus,
when p is anomalous, the ends of 1.3.4 have dimension 2, and so the
middle has dimension 4, as does the middle of each row of 1.3.3.

(2) If p is not anomalous, the same computation shows that only
the kernel of A(Q,) --&#x3E; A(F,) contributes to the p-part of A(Q p ), and
so in this case the middle terms in 1.3.4 and 1.3.3 each have dimension

2.
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We want to compute the end terms of 1.3.3; it suffices by local flat

duality to compute the left-hand terms, and even to compute

H1(Sp, Zip Q9 V)G. By Shapiro’s lemma, we may assume Sp is con-

nected. Since H’(Sp, Z/p) is, by local class field theory, isomorphic to
(setting 0 = OLp ) Hom(Lp I O", Z/p ), we see that

H1(Sp, Z/p 0 V)o HomG(L’/ 0’ V); G acts trivially on the valu-
ation group Lp/0", so HomG(Lp/0", V) has dimension equal to

dim VG, i.e., to one if p is anomalous for A, to zero if not. We may
rewrite 1.3.3, using dimensions only:

In either case, dim(ker f’o) = 2; by 1.3.2, this implies

f, 
But by definition, f G factors as H 1(S, Z/p ® V)G H’(S, A [p ])G
r 

---+ H’(S, V*)G; since all these groups are subgroups of

H’( U, A[p])G, both f’ and f" are injections. Now, by global class field
theory, 3H’(S, Z/p QS) V)20132013 HomG(CI(L), V), where Cl(L) is the ideal
class group of L. We denote by hv the dimension of Homc(Cl(jL), V),
which must be described diff erently according as V is or is not an
absolutely irreducible G-module. Taking into account 1.1, we have

proved

1.4. THEOREM : Let A be an elliptic curve over Q with good
reduction at p; let G = Gal(Q(A[p])/Q) have order prime to p. Let
Z = Spec(Z), and denote by A the Néron model of A over Z. In the
notation of 1.3, dim H1(Z, A[p]) = hv or hv + 1.

1.5. One knows that the group G is a subgroup of GL(2, Fp) of
order prime to p, p 0 2. Thus ([39], 2.6), either G’ is contained in the
normalizer of a Cartan subgroup; or else the image of G in

PGL(2, Fp) is A4, As, or S4. If one wants to compute H’(Z, A[p])
exactly, one has to do this case by case. We shall carry this out only
for curves which are supersingular at p ; the other cases are essen-
tially simpler, but may require more computation.
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1.6. We now assume, in addition to the hypotheses of Theorem 1.4,
that A is supersingular at p ; i.e., that it has no points of order p
which do not reduce to zero (mod p); i.e., that the formal group of its
reduction (mod p ) have height two. This implies that

Gal(Qp(A[p])/Qp) acts on A[p] as the normalizer of a non-split Cartan
subgroup of GL(2, Fp) ([39], Proposition 12: it cannot be contained in

the non-split Cartan subgroup itself, because there is no tamely
ramified extension of Qp of degree p’- 1). We let C be the non-split
Cartan subgroup; then C is the inertia group of Gal(Q,(A[.vl)/Q,); we
see that Qp(A[p]) is the maximal abelian tamely and totally ramified
extension of kp, where kp is the unique unramified quadratic extension
of Qp. Thus there is only one prime ir E L = Q(A[p]) which lies over
p.

Serre has computed the action of the unit group of kp on A[p],
given by the local reciprocity map Uk,---&#x3E;Gal(Llk,); here Ukp is the

group of elements of kp of absolute value one. His results are as
follows: By local class field theory, the local reciprocity map factors
as follows:

we have set 0=the integer ring in kp, and q = p’. Let 0- be the
fundamental character of F’, with values in Pq-l: 0(x) is the Teich-
muller representative of x in kp. Then, if t E L,, tq-1 = p, the theory of
the local symbol implies that, when x E Fq,

and, if V = t01T1 t201T’ where 01T is the integer ring in L,, then

modules, V and A[p are equivalent;

i.e., Fq acts on A[p] via the inverse of the fundamental character.
(For all this, Cf. [39], Propositions 3 and 12.) For future reference,
we remark that V is evidently isomorphic, as G-module, to

( 1 + t01T)/(l + t2o^); the two terms in this quotient are regarded as
subgroups of LÎ1.

Note that the V defined here is isomorphic to the V defined in 1.2.

1.7. With notation as in 1.3, we have the commutative diagram
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Thus, H’(S, A[p ])G is just the subgroup of H l(S, PP 0 v*)G which,
under the natural map to Hl(L7T’ A[p]), is taken to the image of
H l(S7T’ A[p])G. For the moment, then, we shall be concerned with the
computation of H1(S7T’ A[pl)’G.

1.7.2. We let t be as in 1.6. We let E be the group of units of L7T’
and set Ei = fx E E 1 x --- 1 (mod t’)I. This filtration induces a natural
filtration of E/EP, with associated graded Gr = EB Gri, where Grj =
EilEi,,EP. One computes easily (Cf. [38], Proposition 6) that Gri = 0
for i &#x3E; p(p + 1), and for i = mp, m = 0,..., p ; for all other i, Gri is of
dimension two, except for i = (p + l)p, in which case Gri is of

dimension one. Moreover, if 0 is as in 1.6, then the action of F’ on
Gri, when the former is identified (via p, as in 1.6) with Gal(L7Tlkp), is
given by (J-i = (x - (J(X-i)), for i prime to p. Now, since A[p is split
over L7T’ Hl(L7T’ A[p]) is just Hom(Gal(L7TIL7T)’ A[p]) = Hom(L§§,
A[p ]), by local class field theory. And Hom(L§§, A[p ])G can be written
as Hom(LÎI/(LÎI)P, V)G. Now, G acts trivially on the value group, so
the latter is just Hom(E/EP, V)’; only those i for which the action of

G on Gri is the same as that on V contribute to this latter group. But
we know that Gal(L7T1 kp) acts as 0-’ on V, and as 0-’ on Grl; and e-’
and 0-’ are the same representation over Fp if and only if either

i 1(mod q - 1): i.e., they are the same representation even over Fq;
or if they are conjugate over Fp; i.e., if and only if 1 - pi(mod q - 1).
For i  (p + l)p, this is possible only for i = 1, p, p2, and p2 +p_ 1;
since Gri is trivial for the middle two, we see that only Gri and Grp2+p-,
contribute to Hom(E/EP, V) Ga1(LJkp). Each of these contributes a two
dimensional subspace to the latter space; but Hom(Gri, V)G is of

dimension one only for i = l@P2+p _ 1. We summarize this com-

putation as follows:
1.7.3. The group H’(L,, A[p])G is of dimension two, generated by

the images of Hom(Gr;, A[p])G, where i = l@ p2 +p_ 1.
1.".4. We claim now that, under the above identification, Hl(S7T’

A[p ])° - Hom(Etf E2, A[p I)G@ of dimension one. We prove this by
reference to a result of Roberts [38].
Thus, let C be a cyclic subgroup scheme of A[p ], of order p. Since

A is supersingular at p, C is neither étale nor of multiplicative type; it
is therefore of type Ga,b, in the language of Oort and Tate [36], with
neither a nor b a unit in Li. Since, over L,, C has a generator, it must
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be of the form Ga,b with a and b equal to (p - l)st powers in L1T’ Note
that, in the Tate-Oort notation, a and b are two elements of L1T with
product p ; they can be chosen to be a = t(P-’)’, b = t(p-l)j, with
i + j = p + 1, and with ,j&#x3E;l. (Actually, it is easy to see, using the
discriminant, that we must have i = l, j = p, but we will not need
that.)

If C’ is any quotient of A[p of order p (e.g., its quotient by the flat
subgroup scheme C), then C’ must be of the form Gb,a. In fact, A[p]
is homogeneous under F’; thus all cyclic subgroups, and thus all

cyclic quotient groups, are isomorphic. Roberts’ Theorem 1 [38]
states that, under any map Gb,a - Pp, the induced map H1(S1T’ Gb,a) ---&#x3E;

H1(S1T’ pp) has image equal to the image of Epi in EIEP, where
a = t(P-’), and where H1(S1T’ pp) is identified with EIEP via Kummer
theory: taking cohomology of the exact sequence 0- Po - Gm
24 Gm &#x3E; 0, we obtain EIEP - :-- H1(S1T, pp), because H1(S1T’ Gm)
vanishes (S, is the spectrum of a ring with unique factorization). But
H1(S1T’ li,) is also identified with a subgroup of Hom(L§§, lip), by local
class field theory (the local norm residue symbol). Formula (6) of

Chapter 12, § 1 of [2] indicates immediately that under the norm

residue pairing EIEP Q9 EIEP - 1£,, the orthogonal complement of the
image of Ei is E;, where i + j = p + 1. Thus, H l(S,,, p,) -=-
Hom(L1 Ep(p+lh lip); and so the image of H1(S1T, Gb,a) in

Hom(Lx,Z/p) is equal, thanks to Roberts, to Hom(L1 EpÏ’ ZI P ),
where a = t’P-’li. (Warning: [38] contains a major misprint; for the
correct statement, Cf. [32]).

It follows, therefore, that if f E Hom(Lk, A[p]) comes from an
element of H1(S1T, A [p 1), then it must, under any map A[p] - C’, with
C’ cyclic of order p, vanish on Ep;, where j is some integer at most
equal to p. This says that Grp2+p-l cannot contribute to H1(S1T’ A[p ]),
and a fortiori cannot contribute to H1(S1T, A[p])G. But, by diagram
1.1.3, dim H1(S1r, A[pl)’ = 1/2 dim H’(L,, A[p ])° (we are using local
flat duality again), which equals one, by 1.7.3. Thus the image of
H1(S1T, A[pl)’ in H1(L1r’ A[p ])° is just the (one-dimensional) image of
Hom(Grl, A[p ])G.

1.8. Combining all this, wee see that, regarded idèlically,
H1(S,A[p])G is Hom(Lx/LxE2 x il U,, A[p ])G ; here L&#x26; is the idèle

vo"

group of L, E2 is as above, and Uv is the unit group at the place v. Let
B be the group on the left in the above Hom; then there is an exact

sequence (with E as in 1.7)
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here EL is the group of units of L, considered as a subgroup of E, and

CI(L) is the ideal class group of L. The subgroup of Hom(B, A[p ])°
vanishing on E has dimension hv, in the notation of 1.4. This will be
all of Hom(B, A[p])G, unless the following conditions are satisfied:

(1.8.1.1): The sequence 1.8.1., when tensored with FP, becomes a
split sequence of Fp-vector spaces; i.e., the map Hom(E/E2EL, F) -
Extz(C(L), Fp), coming from 1.8.1, is trivial.

(1.8.1.2) : E2EL4 E; i.e., there is no global unit in L congruent to 1

(mod 7r) which is not congruent to 1 (mod ’TT 2).

1.9. COROLLARY: Suppose, in the situation of 1.4, that A is super-
singular at p. Then dim H I(Z, A[p]) is h v or h v + 1, and is equal to the
latter if and only if conditions ( 1.8.1.1) and ( 1.8.1.2) are satisfied.

1.10. REMARK: Elliptic curves satisfying the hypotheses of the

corollary are easy to find: one need only consider elliptic curves with
complex multiplication over the imaginary quadratic field (with class
number one) k, and choose primes p which remain prime in k. One

expects, however (Cf. [30]), that there will not be many others.

§2. More tame descents: p = 2

2.0. We now assume p = 2; otherwise the assumptions are the

same: namely, A is an elliptic curve over Q, with good reduction at 2;
and G = Gal(L/Q) is of order prime to 2, where L = Q(A[2]). We
assume, moreover, that L# Q; the case L = Q has been treated in
[28]. Then G is a non-trivial subgroup of GL(2, F2), of order prime to
two; i.e., G is cyclic of order 3. Thus L is abelian cubic over Q, so
neither the real prime nor the prime 2 ramifies in L. If A were not
ordinary at 2, then A[2] would contain a subgroup scheme isomorphic
to the infinitesimal additive group scheme a2, which is impossible,
because a2 does not lift over unramified extensions of Q2 (Cf.
[35]). Thus, as in [39], the image of Gal(Q2/Q2) in GL(A[2]) is

contained in a Borel subgroup of the latter, hence is trivial, since G is
of order prime to 2. We record these facts:

2.1. LEMMA: A has ordinary reduction at 2, and 2 and the real prime
of Q split completely in L.

We denote the primes of L over 2 by the symbols iri, i = 1, 2, 3, and
the archimedean primes of L by ri, r2, r3.
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2.2. Unfortunately, for p = 2, the global arithmetic duality theorem
does not give an exact pairing between H and H2. However, we still
have diagram 1.3.1 in our case, and we still know that g is an

isomorphism, hence that

In diagram 1.3. l, dim(coker f) + dim(ker f") = dim(ker f’).
(2.2.1)

In our case, G has only two representations: V, and the trivial

representation I ; in particular, V = V*, so we shall suppress the

distinction between them.

Let Y be the group of (global) units of L. If L+ is the connected
component of the identity in L’, let W = LxlLx, i = 1, 2, 3, and let

3 

(D W . We distinguish two cases:
;=i 1

(a): The natural map Y - W is not surjective.
(2.2.2)

Case (b): The natural map Y---&#x3E; W is surjective.

In either case, the subgroup (± 1) of Y has non-trivial image in W, so
the image of Y is at least of dimension one. Since W is isomorphic to
the regular representation of G over F2, we see that in case (a),
dim(Im(F)) = 1, in case (b), dim(lm(Y» = 3. In terms of the idèles, let
D be the subgroup of LÂ, the idèles of L, positive at each ri and of

absolute value one at each finite prime. Then, by class field theory,
H’(S, Z/2) -:-- Hom(Lx/LxDZ/2). But there is a natural map

LxlLxD ---&#x3E; Cl(L), the ideal class group of L, and then the cokernel of
the induced map Hom(Cl(L), Z12) - Hom(Lx/LxD, Z/2) - :-. H’(S,
Z/2) is naturally dual to the cokernel of the map Y W described
above. Thus, if H = Hom(Cl(L), Z/2), then, as G-spaces,

2.2.4. LEMMA: HG = 0; i.e., as G-space H = Vh/2 , h = dim Cl(L)[2].

PROOF: We have only to prove that there is no unramified quadratic
extension K/L fixed by G. But if there were, then, since 2 and 3 are

relatively prime, K, being a Galois extension of Q, would descend to
an unramified quadratic extension of Q, which is impossible. The
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second assertion follows from the "classification of representations of
G"

2.2.5. COROLLARY: dim H is even.

2.3. Meanwhile, the Kummer sequence 0 &#x3E; 112 &#x3E; G m x2 &#x3E; G m

20132013&#x3E; 0 gives rise to the exact sequence of cohomology over S

As G-space YI y2 =::: V E9 1: In fact, the representation of G on Y/(-!-1)
is a non-trivial homomorphism G --- &#x3E; GL(2, Z); since G is of order 3,
this must be non-trivial (mod 2). Thus

2.4. Now, if C is either Z/2 or p2, then H’(S, Co V) - ,-
H’(S, C) ® V, as G-space. But dim(V@ V)o is evidently two,
and dim(I® V)’ = 0. Thus, in case (a) of 2.2.2, the map f G:
H1(S,Z/2Q!)V)GH1(S,#J.2(g)V)G (coming from 1.3.1) is an iso-

morphism ; hence so is each of the maps H’(S, Z/2 ® V)G .. &#x3E;
H’(S, A [21)G __&#x3E; H l(S@ U2 (D V)G. It follows from 2.2.3 that, if

h = dim C(L)[2], then

2.4.1. In case (a) of 2.2.2, dim H’(S, A[21)G = h + 2.

2.4.2. It follows from our construction that the composite map

is surjective in case (a) (here R is regarded as the unique archimedean

completion of Q, and the last isomorphism is Hochschild-Serre).

2.5. Assume now we are in case (b) of 2.2.2. Returning to 1.3.1, we
see (by 2.2 and 2.3) that coker (f) Hom(V (9 1, V), which is of

dimension 6. Now f’ is dual, by local flat duality [29], to the map
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But S,, = Spec(Z2), and the Kummer sequence gives H1(S1Tj’ p2) =
Z 2 /(Z 2 )2, f or all i ; since dim H’(S,,, Z/2) = 1 (there is only one un-
ramified quadratic extension of Q2), it follows (by counting) that

dim(coker f ’*) = dim(ker f ’) = 6. These two computations, combined
with 2.2.1, imply that the map f" in 1.3.1 is an isomorphism. We may
thus replace 1.3.1 by the following bigger diagram:

In this case, 2 is evidently anomalous for A (2 splits in L). Of course
dim H2(S2, A[21)’G = 1/2 dim H1(L2, A[21)6 (by 1.1.3 and local flat

duality), and is thus 2 in this anomalous case; by 1.3.5, the column of
H2 has dimensions (reading from top to bottom) 3, 2, 1. Thus dim

H’(S, A[2])° - dim H’(S, Z/2 Q9 V)G + 1 = h + 1, where h is as

above. Combining this with 2.4.1, and with 1.1, we obtain

2.6. THEOREM (preliminary version): Let A be an elliptic curve over
Q with A[2](Q) = 0, and square discriminant; let L = Q(A[2]); let

h = dim Cl (L)[2]. If ail the units in L whose norm (over Q) = 1 are

totally positive, then dim H1(Z, A[2]) = h + 2. Otherwise,
dim H1(Z, A[2]) = h + 1. ( We assume, as always, good reduction at 2).

PROOF: If the discriminant of A is a rational square, then so is

j(A) - 1728. To say that Gal(L/Q) is cyclic cubic is to say that A

comes from a rational point on a certain modular curve, namely the
double covering of the j-line whose function field is contained in the
field of modular functions of level 2; and it is known (Cf. [26]
Chapter 18, §6) that this double covering is parametrized by
1/ j - 1728. Thus our condition on A, that Gal(L/Q) is cyclic cubic, is
equivalent to saying that its discriminant be a square in Q. We have
only to remark that the condition that ail the units (of norm 1) be

totally positive is exactly our case (a) of 2.2.2.

2.7. Since L is totally real, A(R) contains ail the 2-division points
of A(C) ; i.e., A(R) has two connected components. In our case, we
have the exact sequence 1.3.4, with p = oo.
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Here A(R)° is the connected component of the identity in A(R), of
index two in A(R) ; thus Tate’s duality theorem (or the observation
that H1(R, A[2]) = Hom(Gal(C/R), A[2])) implies that the middle term
is of dimension two, and the right-most term of dimension one. Let
j:H’(Z, A[2]) = H’(S, A[21)G ---&#x3E; H’(R, A[2]) be the natural localiza-
tion map; we have seen (2.4.2.2) that j is surjective in case (a). Let
(3 = q - j: H’(Z, A[2]) - H1(R, A)[2]; then we have

(2.7.2) dim Ker f3 = b + 1 in case (a) of 2.2.2; in particular, the
dimension is odd.

We remark that the Selmer group is a subgroup of H’(Z, A[2])
contained in KerB (more or less); this we shall clarify in the sequel.

2.8. Assume now we are in case (b) of 2.2.2. We claim that, in this
case, the map H1(S, 11-2Q9 V)’o j’ &#x3E; H’(R, A [21) (defined because

A [21 :-- 92 0 V over R) is surjective, with kernel H1(S, Z/2 ® V)". In
fact, all the elements of the last group are unramified at infinity, and
codim(H 1(S, Z/2 (g) V)G in H’(S, a, Q9 V)G) = 2 (Cf. 2.5); thus, in
order to establish our claim, it suffices to show that j’ is surjective.
But we have the commutative diagram (arising from Kummer):

where Y and W are as in 2.2 (so the left-hand vertical map, and

consequently the right-hand vertical map, is surjective), and where
Soo = Spec(L Q9Q R). That j’ is surjective follows from the surjectivity
of r.

Let KIL be the class field corresponding to H1(S, P2) and let

gi E Gal(KIL) generate the inertia group (of order two) of the real

prime ri in L. The g;’s are distinct - they generate Gal(KIH), where H
is the Hilbert 2 class field of L, of index 23 = [H’(S, 92): H’(S, Z/2)] in
K - and are conjugate under the action of G. The kernel of q O j’ is

generated by ker j : H’(S, A [21)G --&#x3E; H’(R, A[2]), and by the

homomorphism e:Gal(K/H)---&#x3E;A[2]; described as follows: We know
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that H1(R, A[2]) == Hom(Gal(C/R), A[2])-Hom((±l), A[2]). The

kernel of q is then a homomorphism which takes -1 to a point e;
when L,; is identified with R, this point is called e;, and it is then

evident that the conjugation which takes n to r; takes ei to ej. The

homomorphism ç takes the element gi of Gal(K/H) to ei; this is

well-defined up to an element of ker j.
2.8.2. We want a more explicit description of the point e referred

to above. Now, if x E A(R) - A(R)o, then, in the notation of 2.7.1,
S(x), = a(x) - x’ E A[2], where 2x= x on A, x’ E A(C), o- E Gal(C/R).

. We may represent A over C as CIY, where 0 is the lattice generated
by {l,ï}; to say that A(R) gé A(R)o is to say that 112Y is fixed by
Gal(C/R); i.e., that T can be chosen to be purely imaginary. Then the
image of r/2 in C/.:£ is in A(R) - A(R)°, and &#x26;(,r/2), = T/2, for a the
generator of Gal(C/R). Thus e is the image of r/2.
One sees from this description that e is f unctorial with respect to

R-isomorphisms of elliptic curves.
2.8.3. Since the gi’s generate Gal(K/H), 91 + 92 + 93 4 0. There is

only one non-trivial G-orbit in Gal(K/H) == I® V with that property;
but the inertia groups of the 1T; , 2 also generate Gal(K/H) and their
generators also form a G-orbit; thus the sets coincide. Thus gi

generates the inertia group of some iri, and we shall say that ri and 1T;
are linked.

We let e be the element of H’(S, 1L20 V)’ described above; we
want to know when it comes from an element of H1(S, A[21)G, i.e.,
when it restricts to an element of H’(S,,, A[2]) for each i. Since E has
ordinary reduction at each 1T;, if I,, designates the inertia subgroup of
Gal(£,IL,), then

Certainly e restricts to an element of H1(S1Ti’ P2 x 1l2); and it takes gi,
the generator of inertia, to the point ei. Thus e E H1(S, A[2])G if and
only if e¡ reduces to the identity (mod 1T¡). That is,

2.6. THEOREM (Final Version): Let A, L and h be as in the preli-
minary version of 2.6. If all the units in L of norm (over Q) = 1 are
totally positive, then the kemel of the canonical localization map
f3 : H1(Z, A [2]) --&#x3E; H1(R, A)[2] is of dimension h + 1. Otherwise, ker f3 is
of dimension h + 1 or h, according as the following statement is or is
not true:
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(**) Suppose 7Ti and ri are linked, and ei is the point of 2.8.2

associated with r; ; then ei reduces to the identity (mod 1Ti).

If the designated dimension is h + 1, we say the curve A is

somewhat odd ; recall that h + 1 must be an odd number. When ker f3
is equal to the Selmer group, then the number of first 2-descents of
A/Q is odd, which should imply that A has an infinite number of
rational points. We elaborate upon this in the immediate sequel.

2.9. THEOREM: Let A/Q be as in Theorem 2.6, with discriminant

D2, DE Z. Suppose the following conditions are satisfied:
(a) If p is a prime such that p3f D, then p stays prime in L =

Q(A[2]).
(b) The prime 3 does not divide D.
(c) A has multiplicative reduction nowhere.
(d) A is somewhat odd.
(e) ill(A, Q) is finite, and ill(A, Q)[2] has F2 dimension s.

Then A has a rational point over Q of infinite order. In fact, if
p = dimQ(A(Q) Q9 Q), then p + s = h + 1, with h as in Theorem 2.6.

PROOF: We recall the properties of the classical Selmer group, or
group of first descents. If p is a prime, then there is an exact

sequence (Cf. [3]):

here A is any abelian variety over the number field K, Sp(A, K), the
Selmer group, is very close to H1(S, A[p ]), where S is the integer
spectrum of K, and llI(A, K)[p] has a non-degenerate Fp-linear sym-
plectic form (in particular, has even dimension), if m(A, K) is finite.
For simplicity, we let A be an elliptic curve, K = Q. We have the
following exact sequence over the étale site of Spec(Z):

The skyscraper sheaf F measures the 2-disconnectedness of the bad
fibers of A. Since A has good reduction at 2 and 3, (a) and (c) imply,
via the Kodaira-Néron list of possibilities for F (Cf. [47]) that F has
support at a set of primes in Spec(Z) which stay prime in L. At each
of these primes, F is a G = Gal(L/Q)-module isomorphic to V, the
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non-trivial two-dimensional representation of G: in fact, the points of
order two would otherwise not generate non-trivial extensions of the
residue fields at these primes. Thus HO(Z, F) = H’(Z, F) = 0
(cohomology of this skyscraper sheaf is nothing but Galois

cohomology over the residue fields at its support); this implies, thanks
to [28], Proposition 9.7 and Appendix), that S2(A, K) = Ker 13 C
H’(Z, A[2]), with 8 as in 2.6. By 2.6 and assumption (d), dim S2(A, K)
is odd; by assumption (e), dim lll(A, Q)[2] = s is even. Thus

A(Q)/2A(Q) has odd dimension; since we have assumed A(Q) has no
2-torsion, A(Q) must be infinite. The formula for p follows im-

mediately from 2.9.1.

2.10. COROLLARY: Suppose A satisfies (a)-(c) of 2.9, and that A(Q)
has a point (necessarily of infinite order) whose image in A(R) is not
in the connected component of the identity. Then A is somewhat odd.

PROOF: The assumption is that, in the following commutative
diagram:

(the top row is part of exact sequence 2.9.1, by assumptions (a)-(c) of
2.9), the map j" - j’, hence the map J, has non-zero image. It follows
from the computations of 2.7 and 2.8 that A must be somewhat odd.

2.11. EXAMPLE: Let A be the curve, in generalized Weierstrass
form,

Here the discriminant is D2, where D = 13.133. Away from 2, A can
be written

L is the splitting field of p(x) ; p(jc + 1) is an Eisenstein polynomial at
13, and p(x + 11) at 133, so both primes of bad reduction are ramified
in K, and indeed E has additive reduction at both 13 and 133, as the
Eisenstein polynomials demonstrate (they also demonstrate that A
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has no rational 2-division points over Q). Thus A satisfies conditions
(a)-(c) of 2.9. The point (x, y) = (- 2, 9) on A is not in the connected
component of the identity of A(R): in fact, for x = 0, p(x) is negative,
hence A has no points over R with x = 0. The point (- 2, 8) on 2.11.2,
corresponding to the point (- 2, 9) on 2.11.1, is thus to the left of the y
axis; but the connected component of the identity (= the point at
infinity) is to the right of the y-axis. By Corollary 2.10, A is

somewhat odd. This is scarcely of any interest in itself, as one sees
immediately (by reducing mod 2 and 3) that P = ( - 2, 9) is of infinite
order. However, we have the following:

2.12. PROPOSITION: Let de be a positive square-free integer con-
gruent to 1 (mod 8); let Ad be the twist of A by the unique element of
H1(Gal(Q(Vd)/Q), Aut(A)) ; Ad has equation

Then Ad is somewhat odd.

PROOF: Over Q(1/d), there is an isomorphism A = Ad, given (in the
coordinates of 2.11.2) by (x, y) -* (dx, d"2 Y). The assumption is that
this is already defined over Z2 and over R; it thus preserves the points
ei associated to the real primes of L in 2.8.2, and the points which
reduce to the identity (mod iri), the primes dividing 2 in L. It thus

preserves the condition (**), and the Proposition follows from our
knowledge that A is already somewhat odd.

2.13. COROLLARY: Let d be as in Proposition 2.12, satisfying further
that 3 / d (this condition is probably irrelevant), and that all primes
dividing d stay prime in Q(A[2]). Then either ill(Q, Ad) is of infinite
order, or Ad(Q) is of infinite order.

PROOF: The discriminant of Ad is D2, where D = 13.133 - d 3; Ad
evidently has additive reduction at primes dividing d, and by 2.12 it is
somewhat odd. The corollary follows from 2.9.

2.13.1. REMARK: Neal Koblitz programmed the computer to find a
point on A17; 17 is the first admissible d. The computer found the

following point: (x, y) 273 638).gp 4
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