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1. Introduction

The purpose of this note is to introduce and study metric spaces
which are uniform AR’s or ANR’s. Our definitions and results are

quite natural, and appear to be potentially rather useful. Theorems 1.1
and 7.2 will be applied in [14].

It should be remarked that our uniform ANR’s are not the same as

J. Isbell’s ANRU’s [8] [9]. They are, however, equivalent to the
uniform ANR’s introduced by the author in an abstract (see [11]) in
1955. In that abstract, uniform ANR’s were defined by means of
condition (c) of our Theorem 7.1, and Theorem 1.1 and Proposition
1.4 of this paper were indicated there (for that definition) without

proof .1
Recall that a metrizable space Y is an AR (resp. ANR) if and only

if, whenever X is metrizable and A C X is closed, then every con-
tinuous f : A ---&#x3E; Y extends to a continuous f’ : X - Y (resp. f’ : U - Y
for some open U D A in X). Analogously, we call a metric2 space
(Y, d) a uniform AR (resp. uniform ANR) if, whenever (X, p) is a metric
space and A C X is closed, then every uniformly continuous f : A ---&#x3E; Y
extends to a continuous f’ : X --&#x3E; Y (resp. f’ : U ---&#x3E; Y for some uniform

neighborhood U of A in X ) which is uniformly continuous at A. Here
U is called a uniform neighborhood of A in X if U D BE(A) for3 some
E &#x3E; 0, and f’ is called uniformly continuous at A if to every E &#x3E; 0

corresponds a s(E) &#x3E; 0 such that d(f’(x), f’(a» ,E whenever

p(x, a)  S(E) with x E X (resp. x E U) and a E A.4

’ After this paper was completed, R. Engelking and H. Torunczyk kindly informed the
author that much of Lemma 2.1 and Theorem 1.1 was already obtained by Toruncyzk
in [16, Section 2], and that some more precise estimates related to these results were
obtained by him in [17, Lemma 3 and Theorem 4).
2 We distinguish between a metric space (which carries a specific metric) and a
metrizable space (which does not).
3 BE(A) denotes {x E X : p(x, A) ,El.
4 Note that f’ is not required to be uniformly continuous on X (resp. U).
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It is clear that every uniform ANR is an ANR, and it is easy to

check (or to conclude from Theorem 1.1 below) that the converse is
true for compact spaces. In general, however, the converse is false.
For example, the subspace Y = f 1 / n: n E N 1 of the real line R is an ANR
(since it is discrete), but it is not a uniform ANR because My : Y - Y
cannot be extended to a continuous f’ : U ---&#x3E; Y for any neighborhood
U of Y in R - {O}. An example of a uniformly locally contractible
ANR which is not a uniform ANR will be given in Section 8.

THEOREM 1.1: The following properties of a metric space (Y, do) are
equivalent.

(a) Y is an AR (resp. ANR).
(b) There is a compatible metric d - do on Y such that (Y, d) is a

uniform AR ( resp. uniform ANR).

Let us now call a closed subspace Y of a metric space Z a uniform
retract (resp. uniform neighborhood retract) of Z if there exists a
retraction r: Z --&#x3E; Y (resp. r: U --&#x3E; Y for some uniform neighborhood
U of Y in Z) which is uniformly continuous at Y.’ Analogously to the
situation in the non-uniform case [4, Theorem 7.1], we now have the

following result, where we write Z I] Y to denote that Z contains Y
isometrically as a closed subset.

THEOREM 1.2: The following properties of a metric space Y are
equivalent.

(a) Y is a uniform AR (resp. uniform ANR).
(b) Y is a uniform retract (resp. uniform neighborhood retract) of

every metric space Z D Y.

(c) Y is a uniform retract (resp. uniform neighborhood retract) of
some normed linear space E::] Y.

REMARK: Observe that, by Theorem 1.2, every normed linear

space is a uniform AR. More generally, that remains true for every
convex subset of a normed linear space.

Some other characterizations of uniform ANR’s will be given in
Theorems 7.1 and 7.2.

PROPOSITION 1.3: The following properties of a metric space Y are
equivalent.
5 Such a retraction is called a regular retraction by H. Torunczyk in [16, p. 53]. See
Footnote 1.
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(a) Y is a uniform AR.
(b) Y is an AR and a uniform ANR.6

PROPOSITION 1.4: The following properties of a metric space Y are
equivalent.

(a) Y is a uniform AR (resp. a uniform ANR).
(b) If Y* is any metric space containing Y isometrically as a dense

subset, then Y* is a uniform AR (resp. uniform ANR).

We conclude this introduction by considering a concept which is
closely related to uniform ANR’s. Call a metric space X a weak
uniform ANR if to every E &#x3E; 0 there corresponds a 5 &#x3E; 0 such that, if
X is metrizable and A C X closed, then every continuous f : A ---&#x3E; Y
with diam f (A)  5 extends to a continuous f ’ : X ---&#x3E; Y with diam
f’(X) ,E.
The following characterization was essentially obtained by C. Pix-

ley in [15, Theorem 3.1].

PROPOSITION 1.5 (Pixley): The following properties of a metric

space Y are equivalent.
(a) Y is a weak uniform ANR.
(b) Y is an ANR and uniformly locally contractible. 7

THEOREM 1.6: Every uniform ANR is a weak uniform ANR, but the
converse is false.

Our paper is arranged as follows. After establishing two lemmas in
Section 2, we prove Theorems 1.1 and 1.2 in Sections 3 and 4, and

Propositions 1.3 and 1.4 in Sections 5 and 6. Section 7 is devoted to
some further characterizations of uniform ANR’s, and Section 8

proves Theorem 1.6.

2. Two lemmas

LEMMA 2.1: Let (Y, do) be a metric ANR embedded as a closed
subset of a normed linear space E, and let r : G -&#x3E; Y be a retraction

with G D Y open in E. Then there exists a compatible metric d &#x3E;_ do on

6 By a result of J. Dugundji [4, p. 366] and Theorem 1.1, the AR hypothesis can be
weakened to assuming only that all the homotopy groups of Y are trivial.
’ A metric space Y is uniformly locally contractible if to every E &#x3E; 0 corresponds a 8 &#x3E; 0

such that, for any y E Y, Bs ( y ) is contractible in B, (y).
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Y with the following property : To every E &#x3E; 0 corresponds a y(E) &#x3E; 0

such that, if S C Y with diam S  y(E), then conv S C G and diam
r(conv S)  e.

PROOF: Define a relation  on 2Y by saying that W  V if conv
W C G and r(conv W) C V. This  is a proper ordering on 2Y in the
sense of [6, Definition 1]. Our conclusion will now follow from [6,
Theorem 1], provided we can show that, whenever V is a neighbor-
hood of y in Y, then W  V for some neighborhood W of y in Y. But
such a W is easily found by picking an open, convex U C E such that
y E U C r-’(V), and letting W = U f1 Y. That completes the proof.

For use in future sections, we record here a result of R. Arens and
J. Eells [1] (see also [13]).

LEMMA 2.2: (Arens -Eells ). Every metric space can be embedded as
a closed subset in a normed linear space.

3. Proof of Theorem 1.1

We shall only prove the ANR case; the AR case is similar.
(a) ---&#x3E; (b). By Lemma 2.2, there is a normed linear space E D Y. Let

r : G --&#x3E; Y be a retraction, where G D Y is open in E. Now let d be the
metric on Y obtained in Lemma 2.1, and let us show that (Y, d) is a
uniform ANR.

Suppose, therefore, that (X, p) is a metric space, A C X closed, and
f : A - Y uniformly continuous. We must extend f to a continuous
f’ : U --&#x3E; Y, with U a uniform neighborhood of A in X, such that f’ is
uniformly continuous at A.
For each a E A, let

It is easy to check that (Va : a OE A) is an open cover of X - A, and it
therefore has a locally finite (with respect to X - A) partition of unity
{Pa: a E A} subordinated to it.

Since f is uniformly continuous, we can choose, for each E &#x3E; 0, a

j8(e) &#x3E; 0 such that d (f (a), f (a’)  e whenever a, a’ E A and p(a, a’) 
P(,E). Let y(e) be as in Lemma 2.1, and let 4 2 Let
U = {je E X : p (x, A)  8(1)1, and define f ’ : U --+ Y by
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It is easy to check that this f’ is well defined, extends f, is continuous
on X - A, and that d(f’(x), f ’(a»  e whenever p(x, a)  5(e) with
xEUandaEA.

(b) --&#x3E;(a). By Lemma 2.2, there is a normed linear space E --J Y. By
(b), Y is a neighborhood retract of E. Since E is an AR by Dugundji’s
extension theorem [4, Theorem 4.1], it follows that Y is an ANR.
That completes the proof.

4. Proof of Theorem 1.2

(a)---&#x3E; (b). Clear.
(b) ---&#x3E; (c). This follows from Lemma 2.2.
(c)--&#x3E;(a). Suppose that Y is a neighborhood retract of a normed

linear space E J Y. (The proof for retracts is similar). Then the given
metric d on Y satisfies all the conditions of Lemma 2.1, so the proof
of Theorem 1.1 (a)--&#x3E;(b) goes through unchanged to show that Y
must be a uniform ANR.

REMARK: The above proof shows that, in 1.2(b), the assignment
E ---&#x3E; &#x26; (,E) which makes the retraction r : Z ---&#x3E; Y (resp. r : U - Y) uni-

formly continuous at Y can be chosen to depend only on Y and not
on Z. Moreover, one can choose the &#x26;(,E) and U so that U J Bg(e)(Y)
for all e &#x3E; 0.

5. Proof of Proposition 1.3

(a) (b). By Theorem 1.1 (b) ---&#x3E; (a).
(b) (a). Suppose that X is a metric space, ACX closed, and

f : A --&#x3E; Y uniformly continuous. By (b), f extends to a continuous
g : U - Y, with U a uniform neighborhood of A in X and g uniformly
continuous at A. Pick a uniform open neighborhood V of A in X
such that VG U. Since Y is an AR, the map gl(V - V) extends to a
continuous h : X - V ---&#x3E; Y. Now define f ’: X ---&#x3E; Y by letting f g
and f ’IX - V = h. This f ’ is the required extension of f.

6. Proof of Proposition 1.4

Since (b) - (a) is trivial, it sufficies to prove (a)---&#x3E;(b), and we do
this only for uniform ANR’s. We will use the characterization in
Theorem 1.2(b).
So suppose that Y is a uniform ANR, and that Y* D Y isometric-

ally with Y dense in Y*. Suppose that Z J Y*. Let Z’ =
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Z - (Y* - Y). Then Y is closed in Z’, so there exists a retraction
r’: U’--* Y, with U’ a uniform neighborhood of Y in Z’ and r’

uniformly continuous at Y. Let U = U’ U ( Y * - Y), and define
r : U Y* by letting r(z) = r’(z) if z E U’ and r(,z) = z if z = Y* - Y.
It is easy to check that U is a uniform neighborhood of Y* in Z
(since U’ is a uniform neighborhood of Y in Z’), and that r is a

retraction which is uniformly continuous at Y*.

7. Further characterizations of unif orm ANR’s

Our first result in this section shows that being a uniform ANR is
equivalent to two properties which are formally quite a bit weaker.
Condition 7.1 (c ) is due to S. Lefschetz, who showed in [10, p. 83] that
it is equivalent to 7.1(a) for compact metric spaces. A non-uniform
version of the equivalence of 7.1(a) and 7.1(c) was obtained by J.
Dugundji in [5, Theorem 13.4]; our proof that 7.1(c) implies 7.1(a) is
similar in spirit to Dugundji’s proof of the analogous non-uniform
implication in [5].

THEOREM 7.1. The following properties of a metric space Y are
equivalent.

(a) Y is a uniform ANR.
(b) To every E &#x3E; 0 corresponds a normed linear space E JY and a

retraction r : U - Y of a uniform neighborhood U of Y in E onto Y
such that d(r(z), z)  e for all z E U.

(c) To every E &#x3E; 0 corresponds a 5 &#x3E; 0 such that, if K is a sim-
plicial complex and Le K a subcomplex containing all the vertices of
K, then every continuous8 f : L --&#x3E; Y such that diam f (u fl L)  à for
every simplex u of K extends to a continuous f’ : K --&#x3E; Y such that diam
f’(u)  E for every simplex u of K.

PROOF (a) ---&#x3E; (b): This follows from the easy part of Theorem 1.2,
since 7.1 (b ) is formally weaker than 1.2(c).

(b) --+ (c). Let E &#x3E; 0 be given. Choose E J Y and r : U ---&#x3E; Y as in (b ),
but with e replaced by 1,E. 2 Pick 5 &#x3E; 0 so that 5  1 2 E and conv S C U
whenever S C Y and diam S  8. Now let K, L C K, and f : L --&#x3E; Y be
as in (c). Since every convex subset of E is an AR [3, Theorem 4.1], f
can be extended (by induction on the dimension of the simplices of
K) to a continuous g: K --&#x3E; E such that g(u) C conv f (u fl L) for
every simplex (r of K. Then g(K) C U, and we define the required

8 
i.e., continuous on every (closed) simplex.
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extension f : K - Y of f by f’ = r o f. It is easy to check that this f ’ has
all the desired properties.

(c) --&#x3E; (a). By Theorem 1.2, we need only show that Y satisfies

1.2(b). So suppose that Z ] Y, and let us show that Y is a uniform
neighborhood retract of Z.
We begin by setting up the machinery used in the usual proof of

Dugundji’s extension theorem. For each z E Z - Y, let p(z) =
2d(z, Y). Let 6J1 = {Ua: a E AI be a locally finite (with respect to Z - Y)
open refinement of IBP(Z)(z): z E Z - YI such that U,,, 0 Up when
a gé 0. For each a pick Za E Z such that Ua C Bp(za)(Za), and pick
ya E Y such that d(Ya, z,,,)  3p(za). The following assertion is now
easily checked.

(*) If u, v E IIa for some a, then p(Za) ç d(Za, Y), d(Za, Ya) 
3d(u, Y), d(v, yj  4d(u, Y), and d(v, u) d(u, Y).
For each E &#x3E; 0, let &#x26; (,E) be as in (c). Choose sn &#x3E; 0 (n = 1, 2, ...) so

that sn+1 1  2 Sn and sn  1,6 8 (1 4 &#x26; (-nL» for all n. For all n, let

Note that, by the first assertion of (*) and the assumption Sn+l ! Sn,
rn n rm = 0 if m:;é: n.
For any fi C au, let N(fI) denote the nerve of If, and let No(fI)

denote the 0-skeleton of N(fI) (i.e., No(fI) = F).
Define f : No(W ) - Y by f(Ua) = Y«. By (*),

for each simplex u of N(6Un). We now apply (c), with K = N(’V,,) and
L = No(’V,,), to extend fINo(Vn) to a continuous f n : N (V,,) --&#x3E; Y such
that diam f,,(o-)  4 18(lln) for each simplex or of N(Vn).
For each n, define Ln C N(6Un) by

and define gn : Ln - Y by letting gnINo(OUn) = fINo(Oùn), gnIN(Vn) = f.,
and gnIN(Vn+l) = f n+1- Then
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for every simplex o- of N(U,,). Applying (c) with K = N (GlCn ) and
L = Ln, we can therefore extend g to a continuous hn :N(OUn) Y
such that diam hn(u)  lIn for every simple u of N(OUn).

Since GlC is a locally finite open cover of Z - Y, there is a canonical
map p : Z - Y -- N ( u ). Let W = {z E Z: d(z, Y):5 SI}, and define

r : W ---&#x3E; Y by letting r(z) = z if z E Y and r(z) = hn(P(z» if z E Tn.
Clearly W is a uniform neighborhood of Y in Z, and it is easy to

check that r is well defined and continuous, and thus a retraction
from W onto Y.

It remains to show that r is uniformly continuous at Y. Suppose
z E Tn. Let be a simplex of N(OUn) containing p(z) (so that every
vertex of o- contains z), and let Ua be a vertex of o-. Then, again
applying (*),

This implies that r is uniformly continuous at Y, and that completes
the proof.

THEOREM 7.2: The following properties of a metric space Y are
equivalent.

(a) Y is a uniform ANR.
(b) To every E &#x3E; 0 corresponds a y = y(E) &#x3E; 0 such that, if Z :1 Y,

if A is a closed subset of a metrizable space X, and if g:X--*Z is
continuous with d(g(x), Y)  y for all x E X, then every continuous
f : A - Y with d(f (x), g(x))  y for all x E A extends to a continuous
f’ : X - Y with d(f’(x), g(x))  e for all x E X.

Moreover, if Y is complete then (b) follows from (a) even if X is
only assumed collectionwise normal.

PROOF: (a) ---* (b). Assume (a). Let E &#x3E; 0 be given. By Theorem 1.2
and the remark following its proof in Section 4, we can find a f3 &#x3E; 0

such that, if E D Y, then there is a retraction r: Bg (Y)--&#x3E; Y with
d(z, r( z))  2 E for all z E B,9(Y). We may assume that (3  e. Let y = 2
and let us show that this y has all the properties required by (b).
Suppose that Z :) Y, A C X, g: X --&#x3E; Z and f : A - Y are as in (b).

By Lemma 2.2, we can embed Z isometrically in a normed linear
space E such that Y is closed in E. Let U = f z E E : d (z, Y)  Q),
where d is the metric on E. By choice of /3, there is a retraction

r : U - Y such that d(r(z), z)  iE 2 for all z E U. It will now suffice to
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extend f to a continuous h : X-E such that d (h (x), g (x»  -y for all
x E X, for then h(x)e U foralIxF-X and we can let f* = r o h. It is

easy to check that this f * will have the required properties.
To define the desired h : X --&#x3E; E, let f*(x)=f(x)-g(x) for x E A.

Let C = {z E E : IIzll  y}. Clearly f * is continuous and f *(A) C C.
Since C is a convex subset of E and X is metrizable, we can extend

f * to a continuous h* :X - C by Dugundji’s extension theorem [4,
Theorem 4.1] (If Y is complete, then we may assume that E is a

Banach space, hence C is completely metrizable, so by [3, Theorem
2] the above extension h * of f * exists even if X is only collectionwise
normal). We now define the required h : X --&#x3E; E by letting h(x) _
h * (x ) + g (x ) f or all x E X.

(b)- (a). Assume (b). By Theorem 7.1, we need only show that Y
satisfies 7.1(b). Let E &#x3E; 0 be given. Pick any normed linear space
E I] Y (see Lemma 2.2). Let y(E) be as in (b), and let U = B,(,)(Y).
Let g : U ---&#x3E; U be the identity map, and let f = g 1 Y. By (b), f can be
extended to continuous r : U- Y such that d(r(z),z)6 for all

z E U. This r satisfies the requirement of 7.1(b).

8. Proof of Theorem 1.6

That every uniform ANR is a weak uniform ANR follows from

Theorem 7.2, since being a weak uniform ANR is clearly equivalent
to the special case of 7.2(b ) in which Z = Y and g is a constant map
(the proof of 7.2(a) ---&#x3E; (b) can be shortened in this case). That the
converse is false follows (in view of Proposition 1.5) from the

following example.

EXAMPLE 8.1: There exists a locally compact, separable metric
space Y which is an ANR and uniformly locally contractible, but
which is not a uniform ANR.

PROOF: We take Y to be a dense open subset of Borsuk’s example
[2, Theorem 11.1] of a compact metric space Y* which is locally
contractible but not an ANR.

Let Q = I’, metrized by

Clearly Yn is homeomorphic to an n-cube; let Én be the boundary of
the cube Yn (i.e. Yn consists of all y E Yn such that yi E f2 -n2-(n - 1) 1 or
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yi e fO, Il for some i with 1  1 s n). Let Y = U,’=, Yn. We will show
that this Y has the required properties.

First, Y is locally a finite dimensional polytope, hence locally an
ANR, and thus an ANR by [7, Theorem 19.3] (or [12, Proposition
4.1]). Next, Borsuk shows in [2, p. 125] that the closure Y* of Y in Q
is not an ANR, so Y cannot be a uniform ANR by Proposition 1.4
and Theorem 1.1(b)---&#x3E;(a). It therefore remains to show that Y is

uniformly locally contractible.
Let e &#x3E; 0 be given. Pick n &#x3E; 1 so that 2-"  5 1,E, and let

Now S is a finite polytope, and thus uniformly locally contractible;
pick y &#x3E; 0 so that, if x E S, then By (x ) fl S is contractible over

B.(jc)US. Let 5 = min(y, 2-ln+ll). We will show that, if x E Y, then

Bô (x) is contractible over Be (x).
Let V=B5(Jc). Then diam V _ 2-n, so V C S or V C T. If V C S,

then our claim is true because 03B4 = y. So we may suppose that V C T.

Let A={yeQ:y.=0}, B={yEQ:y.=l}. Then d(a,b):--2 -n
whenever a E A, b E B ; since &#x26; :5 2-(n+1), it follows that V f1 A = 0 or
vnB = 0. Suppose vnB = 0; the case V H A = 0 is similar. For

each y E T, define y’ E T and y * E Yn by

We now contract V to x by moving each y E V to x along five
line-segments, namely from y to y’ to y* to x * to x’ to x. It is easy to
check that each of these segments lies in Y, and that the distance
between its end points - and thus its diameter - is _2-n. Hence the

entire path lies in Y, and, since 2-" ! E, it lies in Be (x ). That

completes the proof.
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