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Abstract

A Banach space contains a nonseparable analytic image of a ball in
co(F) iff it contains an isomorphic copy of co(B), B uncountable.

Let r be an uncountable set. It is known that the (complex) space
co(T) has some interesting properties with respect to analytic maps.
For instance, every scalar-valued analytic map on co(T) factors

through a separable subspace of co(r) [8, 1]. Ail separable complex
Banach spaces X and the spaces X = 1P(B) for any B, 1 --5 p  oo have
the property that every nonempty open connected subset of X can be
filled densely with an analytic image of a ball in X [4, 5], while the
space co(r) does not have this property [9]. No space lp(B) (1 :5 p 
00) and no space with countable total set contains a nonseparable
analytic image of a ball in co(r) [8, 6]. In the present paper we

sharpen the last result by proving that a Banach space contains a
nonseparable analytic image of a ball in co(F) iff it contains an

isomorphic copy of co(B), B uncountable. This is known in the linear
case (see Remark 1 below).

Preliminaries

The scalar field (R or C) is the same for all Banach spaces
considered. We denote by N the set of all positive integers. If A is a
map we denote its image by R(A). Let r be an infinite set. By co(r)
we denote the Banach space of all scalar-valued functions on r which
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are arbitrarily small outside finite subsets of F, with sup norm. If

xEco(D we write supp x y Ei F: x(-y) 0 01. We denote by
fe(-y): y E F} the standard basis in co(r): e(-y)(3) = 1(1’ = 8), e(y)(8) _
0 (y 0 8). Given a metric space M we denote by dens M the density
character of M, i.e. the smallest cardinal of a dense subset of M. Note
that if Mi is a subspace of M then dens Ml _ dens M. Let X be a
Banach space. By BI(X) we denote the open unit ball of X and by X’
we denote the dual of X. If S C X we write sp S for the closed linear

span of S. Let Y be another Banach space and let n E N. A map
P : X- Y is called a bounded n-homogeneous polynomial if there is a
bounded symmetric n-linear map Q: X" ---&#x3E; Y such that P(x) = Q(x,
x, ..., x) (x E X). We use the term 0-homogeneous polynomial for
constant maps. A map A: BI(X) ----&#x3E; Y is called analytic if given any
xo E B1(X) there are an r &#x3E; 0 and for each n a bounded n-homo-

geneous polynomial Pn : X - Y such that A(x) =
1.’=o Pn(x - xo)(flx - xofl  r), the series being uniformly convergent for

lix - xofl  r [11]. When the scalar field is C then A is analytic iff for
each x E B 1(X ) the Fréchet derivative of A at x exists as a bounded

complex-linear map from X to Y, or equivalently, if A is G-analytic
and continuous on BI(X) [7].
Our main result is the following

THEOREM: Let Y be a Banach space and let d be any infinite
cardinal. Suppose that there exists an analytic map A from the open
unit ball of some co(r) to Y such that dens R(A) &#x3E; d. Then Y contains
an isomorphic copy of co(B) where card B &#x3E; d.

REMARK 1: In the special case when A is bounded linear map the
assumptions above imply that card ly e F;A(e(y» gé 01 &#x3E; d so for
some &#x26; &#x3E; 0 card ly G r : ))A(e(y)))) a 81 &#x3E; d and the assertion follows
by [12 p. 30, Rem. 1 ] ; see also [2, 3].

COROLLARY 1: A Banach space contains a nonseparable analytic
image of a ball in co(r) iff it contains an isomorphic copy of co(B) where
B is uncountable.

LEMMA 1: Let X, Y be two Banach spaces and let d be any infinite
cardinal. Suppose that there exists an analytic map A : :Bi(X)- Y
such that dens R(A) &#x3E; d. Then there are an n E N and a bounded
n-homogeneous polynomial P : X - Y such that dens R(P) &#x3E; d.
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PROOF: There is some r &#x3E; 0 such that

where for each n, Pn is a bounded n-homogeneous polynomial. With
no loss of generality assume that Po = 0.
By the analyticity of A given any x E Bl(X) and any u E Y’ the

scalar-valued map t- F(t) = (A(tx)) u ) defined on I = (t : 0 = t S 1)
has an analytic extension to an open subset of C containing I so by
the identity theorem F( t ) = 0 (0  t  r) implies that F( 1 ) = 0. B y the
Hahn-Banach theorem it follows that A(x) E sp{A(tx):O  t  r} so

Assume that dens R (Pn ) _ d for all n and for each n let Bn be a
dense subset of R (Pn ) satisfying card Bn  d. The set B of all vectors

y E Y of the form Y = 1 lc= 1 yi where y; e Bi ( 1  i :5 n) and n E N
satisfies card B _ d so dens sp B :5 D. On the other hand, by (1) and
(2) R (A) C sp B so dens R(A):5 d, a contradiction which proves that
for some n e N dens R(Pn) &#x3E; d. Q.E.D.

PROOF OF THE THEOREM: Let r be an infinite set, put X = co(r)
and let A : BI(X) --&#x3E; Y be an analytic map satisfying dens R (A) &#x3E; d. By
Lemma 1 there are an n E N and a bounded n-homogeneous poly-
nomial P: X &#x3E;Y such that dens R(P)  d. Let Q: Xn ___&#x3E; Y be a

bounded symmetric m-linear map such that P(x) = Q(x, x, ..., x) (x E
X). Let d C rn be the set of all those a = (ai, a2, ..., an) for which

Q(e(al), e(a2), ..., e(an» 0 0. We prove that card A &#x3E; d. To see this,
assume that card A :5 d. For i, 1 S i  n write Ai = {B Er: 13 = ai for
some a E A}. Clearly card di :5 card A d (1:5 i :5 n) so writing
OU = U 1=1 di we have card OU:5 ,do By the boundedness of Q it

follows that Q(e(y), X2, x3, ..., xn) = 0 for any y E r - OU and any

Xi E X (2 S i :5 n) so Q(y, X2, X3, ..., xn) = 0 for any Xi E X (2:5 i - n)
and any y E X, supp y nu = 0. Since Q is symmetric it follows that
P(x + y) = Q(x + y, x + y, ..., x + y) = Q(x, x, ..., x) = P(x) for any x,
y E X, supp y n OU = 13. Consequently P = P - L where L is the pro-
jection from X onto co(OU) defined by
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Now, card ô/1 ::5 d implies that dens co(’W):5 d and it follows that dens
R(P) ::5 d, a contradiction which proves that card s4 &#x3E; d.

By Remark 1 the proof will be complete once we have proved the
following

LEMMA 2: Let T be an infinite set and put X = co(r). Let Y be a
Banach space, let m E N and let d be any infinite cardinal. Suppose
that P X’ --&#x3E; Y is a bounded m-linear map such that the set

satisfies card A &#x3E; d.
Then there exist a set D, card D &#x3E; d and a bounded linear map

L : co(D)---&#x3E; Y such that L(e(&#x26;» gé 0 (8 E D).

PROOF: We prove the lemma by induction on m.

Now

and the assertion of the lemma for m = n follows by the induction
hypothesis.

In the sequel we assume that

Consider the class 16 of all nonempty subsets Q c s4 having the
following property
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Observe that (C is not empty since every set Q consisting of one
element belongs to ce. Partially order (6 by inclusion. Let {Q( i), i E Il
be a chain in ce. Put Q = U i,,:, Q(i), let k E N and let aj(l :5 j :5; k) be
distinct elements of Q. There are c; E 1 (1 --5 j :5 k) such that aj E Q(ij)
(1 :5 j :5; k). Since IQ(i), i E Il is a chain there is some jo : 1 :5; jo :5; k
such that U f=l Q(ij) = Q(iio). Since Q(iio) E ce and since ai E Q(iio)
(1 :5; j :5; k) it follows that aj satisfy (4) and consequently Q E le. By
Zorn lemma there exists a maximal element Q in ce.

Assume first that card Q :5 d. Write 00 = d - Q. Clearly card 2% &#x3E; d.

Given i, 1 s i :5 n denote Qi = 1,8 E f : /3 = ai for some a =

(a}, a2, ..., an) E Q}. Let b = (b}, b2, ..., bn) E /3. Assume that for

every decomposition {l, 2, ..., n} = A U B where A, B # 0: A n B =

0,

implies that g = (gt, g2, ..., gn) e d. This means that Q U {b} E ce
which contradicts the maximality of Q. This proves that given any
b EOO there is a decomposition {l, 2, ..., n} = A U B, A, B 0 0: A f1
B = 0, such that there is some g E d satisfying gi = bi (i E A) and

g; E Qi (i E B). Since the set of all possible decompositions is finite
and since card 00 &#x3E;A there is some fixed decomposition {1,2,.... ni =
A U B, A, B 0 0; A fl B = 0 and some set 001 c 00, card 001 &#x3E; d such

that for every b G 2%i 1 there is some g E d satisfying gj = b; ( j E A)
and g; E Qj (j E B). Write each b E ôA in the form b = PA(b)EBPB(b)
where PA(b) E IIjEAr and PB(b) E IIjEBr are defined by (PA(b»j = bj
(j E A) and (PB(b» = bj (j E B). We show that card PA(OOI) &#x3E; d. To

see this, assume that card PA(-O-e 1) - d. Since card 00 1 &#x3E; d it follows

that there is some 002 C OO}, card 002&#x3E; d and some u E lljEAr such that
u = PA(b) for all b E 002. In particular, there are an i E A and a y E r

such that y = bi for all b E 002 which contradicts (3) since card 002&#x3E; d.
This proves that card PA(,-9-el) &#x3E; d. For each uEPA(OOI) choose an
element from PÃl(u) n B1 1 and denote the set of all these elements by
S2- Clearly card 002 &#x3E; d and

Recall that for every b E 9JJ2 there is some g G s4 such that PA(b) =
PA(g) and such that gj E Qj (j e B). Since card Qcard Q - d
(1 Ç j  n) it follows that card IIjE!I Qj :5 d. Since card 9JJ2 &#x3E; d it fol-

lows that there is some ’,»3 C 9JJ2, card 9JJ3&#x3E; d and some v E IIjEB r
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such that for every b E B3 there is some g E d satisfying PA(b) =
PA(g) and PB(g) = v. By (5) it follows that there are an i E B and a

y E r such that card{a EE 4: ai = y} &#x3E; d which contradicts (3). Thus
we have proved that card Q &#x3E; d.

Since Q E Cf¿ it follows that

Put D = Q and define the map .0 from the basis

and it follows that

By (7) it follows that
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Consequently 0 admits a bounded linear extension L to all co(D).
Since card D &#x3E; d this completes the proof for m = n. Q.E.D.

COROLLARY 2: Let X = co(F) where r is an infinite set and let Y be
a Banach space. Suppose that the range of every bounded linear map
from X to Y is separable. Then the range of every analytic map from
BI(X) to Y is separable.

PROOF: If r is countable there is nothing to prove so assume that r
is uncountable. Suppose that there is an analytic map from B1(X) to
Y with nonseparable range. By Theorem there are an uncountable set
4 and a bounded linear map A: co(,à) ---&#x3E; Y which maps co(,à) isomor-

phically onto R(A). Since coC1) is up to isometry determined by card
L1 assume with no loss of generality that either 4 C r or r C L1. If

L1 C F define B : X ---&#x3E; Y by B = AoP where P is the projection from X
onto co(L1) defined by (Px) (y) = x (y) (y e à; x e X). B : X - Y is a

bounded linear map whose range R (B ) = R (A) is nonseparable, a
contradiction. Let r C 4. Since r is uncountable X is a nonseparable
subspace of co(,à) and by the properties of A, A(X) is nonseparable.
Consequently AIX: X ---&#x3E; Y is a bounded linear map with nonsepar-
able range, a contradiction. Q.E.D.

REMARK 2: Let r be an uncountable set and let 1 p (T) ( 1 _ p oo)
be the Banach space of all scalar-valued functions x on r such that

llxll = (Y,,.rlx(Y)lp)"p  -. Since every bounded linear map from 12(T)
to l’(T) is compact [10] it follows that the range of every bounded

linear map from 12(T) to 1’(F) is separable. On the other hand, the
range of the bounded 2-homogeneous polynomial P: 1’(F) ---&#x3E; 11(r)
defined by P(x) = y where y( 1’) = x( 1’)2 (1’ E r, x E 12(r» is non-

separable since P is surjective. This shows that Corollary 2 does not
hold in general. We ask under which conditions on a Banach space X
does the assertion of Corollary 2 hold.
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