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Introduction

Let gî,,(K) be the Lie algebra of all n x n matrices over the
algebraically closed field K and let W(#) be the variety of all pairs
(x, y) of elements of q such that [x, y] = 0. We call 16(,4) the commut-

ing variety of g. Gerstenhaber [6] has shown that lg(,q) is an irreduci-
ble algebraic variety. In this paper we shall generalize Gerstenhaber’s
result to reductive Lie algebras and simply connected semisimple
algebraic groups, both over algebraically closed fields of charac-

teristic zero. Our basic result states that every commuting pair of
elements in a reductive Lie algebra (resp. simply connected semisim-
ple algebraic group) can be approximated by a pair of elements
belonging to a Cartan subalgebra (resp. maximal torus). Precisely, for
Lie algebras we prove the following theorem:

THEOREM A: Let g be a reductive Lie algebra over the algebraically

closed field K y] of characteristic zero and let W(#) =
{(x, y) E g x g ( [x, y] = 01. Let (x, y) E W(#) and let N be a neighbour-
hood of (x, y) in 9(g). Then there exists a Cartan subalgebra $ of g
such that N meets b x fj.
The conclusion of Theorem A implies that i#(#) is an irreducible

algebraic variety. We remark that if K is the field C of complex
numbers, then N can be taken to be an arbitrary neighbourhood of
(x, y) in the topology of 16(,4) as a complex space.
We also prove similar theorems for semisimple Lie algebras and

algebraic groups over the field R of real numbers or, more generally,
over a local field of characteristic zero. In this case, there may be
more than one conjugacy class of Cartan subalgebras or Cartan
subgroups, so that the analogue of the irreducibility statement

concerning (6(,4) does not hold.
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Now for a few words about the proofs. We consider the case of Lie
algebras. By an inductive argument using the Jordan decomposition
of elements of g, we can quickly reduce the proof to the case of
commuting pairs (x, y), where x is a nilpotent element of q whose
centralizer does not contain any non-zero semisimple elements. In
the recent paper [1] of Carter and Bala on the classification of

nilpotent conjugacy classes in semisimple Lie algebras, such elements
x are called distinguished nilpotents. A key technical result of [1]
states that distinguished nilpotent elements are of parabolic type (for
definition, see §4). For commuting pairs (x, y) where x is a nilpotent
of parabolic type, the argument is more delicate. It uses an idea of

Dixmier [5], who shows that such an x is the limit of semisimple
elements a such that dim )a = dim gx.

§ 1. Preliminaries

Our basic reference for algebraic groups and algebraic geometry is
[2]. Ail algebraic varieties will be taken over an algebraically closed
field K of characteristic zero and we shall identify an algebraic
variety X with the set X (K) of its K-points. We shall denote the Lie
algebra of an algebraic group G, H, U etc., by the corresponding
lower case German letter g, $, u etc. If G (resp. q) is a group (resp.
Lie algebra) and if x E G (resp. x eq), then Gx (resp. gx) denotes the
centralizer of x in G (resp. g). An affine algebraic group G is reductive
if G is connected and the unipotent radical of G is a torus. If H is an
algebraic group, then H° denotes the identity component of H.

§ 2. Proof of Theorem A

Let q be a reductive Lie algebra over K. We let Z(,q) be the set of
all pairs (s, t) E g x g such that there exists a Cartan subalgebra $ of g
which contains both s and t. Let W(,q) denote the closure of Z’(,q) in
W(,q). Clearly W(,q) is contained in 16(,q). To prove Theorem A we must
prove that W(,q) = lg(,q). The proof is by induction on dim g. The proof
is clear for dim,4 = 0. We assume dim g &#x3E; 0 and we make the in-

ductive hypothesis that if k is a reductive Lie algebra with dim 
dim g, then W(k) = (C(k).

Let c denote the centre of g and let d [g, Then d is a semisimple
Lie algebra and g is the direct sum of c and f.
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The proof of Lemma 2.1 follows immediately from the fact that
every Cartan subalgebra $ of g is of the form $ = c + a, where a is a
Cartan subalgebra of d.

PROOF: i is a semisimple Lie algebra and dim d  dim g. Hence by
the inductive hypothesis 19(d) = Z(d). It follows immediately from
Lemma 2.1 that C(g) = Z(g).
Lemma 2.2 reduces the proof to the case of semi-simple g. For the

rest of the proof, we assume g to be semisimple.

LEMMA 2.3: Let (x, y) E q¿(g) and assume that either x or y is not
nilpotent. Then (x, y) E 6(#).

PROOF: Let x = xs + xn be the Jordan decomposition of x ; here xs is
semisimple, xn is nilpotent and [xs, Xnl = 0. Assume that x is not

nilpotent, i.e. that xs 0 0. Let k = gxs. Then k is a reductive Lie algebra,
dim k  dim g and (x, y) E fi#(k). By the inductive hypothesis, W(k) =
q¿(k). But every Cartan subalgebra of k is a Cartan subalgebra of g.
Therefore W(k) C 6(#). Consequently (x, y) E Z(g). Since (x, y) E ?E(g)
if and only if (y, x) E Z(g), we also see that (x, y) E Z(g) if y is not

nilpotent.

LEMMA 2.4: Let (x, y) E W(#) and assume that there exists a non-
zero semisimple element s E gx. Then (x, y) E 6(#).

PROOF: For t E K, let at = ty + (1- t)s. Then (x, a,) E %(#) for

every t E K. Let D denote the set of t E K such that at is not

nilpotent. Then D is an open subset of K and D is non-empty since
0 E D. By Lemma 2.3 we have (x, at) E Z(g) for every t E D. Since

W(g) is a closed subset of W(g) and D is dense in K, we see that
(x, at) E Z(g) for every t E K. Thus (x, y) = (x, al) E Z(g). This proves
Lemma 2.4.

Following [ 1 ], we say that a nilpotent element x of g is dis-

tinguished if the centralizer gx does not contain any non-zero

semisimple elements. Lemma 2.4 reduces our proof to the case of
commuting pairs (x, y ) with x a distinguished nilpotent element. It will
be shown in §4, Corollary 4.7, that if (x, y) is such a pair, then
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(x, y) E E(g). This completes the proof of Theorem A, modulo the
proof of Corollary 4.7. (In the interests of brevity, it is more con-
venient to give our arguments involving distinguished nilpotent ele-
ments in g and distinguished unipotent elements in a semisimple
algebraic group in the same §. For this reason, we have postponed our
proof of the result mentioned above until §4.)
As a corollary to Theorem A, we have:

COROLLARY 2.5: Let g be a reductive Lie algebra. Then C(g) is an
’irreducible algebraic variety.

PROOF: Let G be the adjoint group of G and let b be a Cartan
subalgebra of g. Define a morphism

Since any two Cartan subalgebras of g are conjugate under G, we see
that the image of n is 6’(#); consequently g’(g) is irreducible. It

follows immediately that %(#) = 6(#) is irreducible.

REMARK 2.6: It is easy to give examples of solvable Lie algebras g
such that %(#) is not an irreducible variety.

§3. Commuting varieties of reductive groups

THEOREM B : Let G be a reductive algebraic group and let %(G) =
{(x, y) E G x G , xy = yx) be the commuting variety of G. Let (x, y) E
fi#(G) and assume that there exists z belonging to Z(G), the centre of
G, such that zy E Gi. Let N be a neighbourhood of (x, y) in fi#(G).
Then there exists a maximal torus T of G such that N meets T x T.

The proof of Theorem B will be given in a séries of lemmas. We let
6’(G) be the set of ail (s, t) E G x G such that there exists a maximal
torus T of G which contains both s and t. Let 6(G) dénote closure of
6’(G) in fi#(G). To prove Theorem B, we must show that if (x, y) E
%(G) and if there exists z E Z(G) such that zy E Gi, then (x, y) E
6(G). The proof will be by induction on dim G. It is clear for

dim G = 0. We assume dim G &#x3E; 0 and that Theorem B holds for

reductive groups H with dim H  dim G.
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PROOF: Define a morphism T : G x G - G x G by T(a, b) = (za, wb);
T is an automorphism of the algebraic variety G x G. If T is a

maximal torus of G, then Z(G) C T and hence T(T x T) = T x T. It
follows immediately that T(6(G)) = E(G). This proves Lemma 3.1.

LEMMA 3.2: Let (x, y) E (C(G) with y E G°. Let x = xs.xu and y =
ysyu be the Jordan decompositions of x and y. Assume that either

x,,É Z(G) or y,JÉ Z(G). Then (x, y) E g(G).

PROOF: Assume first that x, JÉ Z(G). Let H = G2s. Then H is a

reductive group and dim H  dim G. By standard properties of the
Jordan decomposition we have Gx C Gxs ; hence y E H. Clearly xs E H.
Since we are in characteristic zero, xu E H. Therefore x = XsXu E H.

Consequently (x, y) E %(H) and y E H° = G’. By the inductive hypo-
thesis (x, y) E 6(H). Since every maximal torus of H is a maximal
torus of G, we see that 6(H) C 6(G) and hence that (x, y) E Z(G).
Assume now that xs E Z(G) and y,JÉ Z(G). By Lemma 3.1 we may

reduce to the case in which x is unipotent. Hence we have (y, x) E
C(G) and, since x is unipotent, x E G°. By the argument given above,
(y, x) E E(G). But clearly if (y, x) E E(G), then (x, y) E E(G). This
proves Lemma 3.2.

It follows from Lemmas 3.1 and 3.2 that we need only consider
pairs (x, y) E C(G) with x and y both unipotent. In this case both x
and y belong to the derived group of G, which is semisimple. Thus we
can, and shall, assume that G is semisimple.

LEMMA 3.3: Let (x, y) E W(G) with x and y both unipotent and
assume that Gx contains a non-trivial torus A. Then (x, y) E C(G).

PROOF: Let Y = (g E G21 1 gré Z(G)I. Then Y is an open subset of
Go. (Recall that Z(G) is finite since G is semisimple.) Moreover Y is
non-empty since if a E A and aÉ Z(G), then a E Y. Thus Y is dense
in G2. If g E Y, then it follows from Lemma 3.2 that (x, g) E E(G).
Therefore (x, b) E 6(G) for every b E Go. In particular (x, y) E W(G).
This proves Lemma 3.3.

We say that a unipotent element u of the semisimple group G is
distinguished if the connected centralizer Go is a unipotent subgroup
of G. We see from Lemma 3.3 that, in order to prove Theorem B, it
suffices to prove that if (x, y) E C(G) with (i) x and y both unipotent
and (ii) x a distinguished unipotent, then (x, y) E E(G). But according
to Corollary 4.14, if the commuting pair (x, y) satisfies (i) and (ii), then
(x, y) E E(G). Thus the proof of Theorem B is not complete, modulo
the proof of Corollary 4.14.



316

REMARK 3.6: The following example shows that it is not necessarily
the case that 6(G) = C(G). Let G be the special orthogonal group
S03(K), let x = diag(l, -1, -1) and y = diag(- l, -1, 1). Then (x, y) E
C(G) but it is not difhcult to show that (x, y) e e(G). However, such
examples do not exist if G is simply connected, as is shown by the
following theorem:

THEOREM C: Let G be a simply connected semisimple algebraic
group, let (x, y) E W(G) and let N be a neighbourhood of (x, y) in

IC(G). Then there exists a maximal torus T of G such that N meets
T x T. Consequently C(G) is irreducible.

The basic property of simply connected semisimple groups which
we use in the proof is that the centralizer of a semisimple element in
such a group is connected. For a proof of this, see [11, pp. E-31-E-
37].

PROOF OF THEOREM C: We must prove that fi#(G) = Z(G). Let
(x, y) E C(G). Since G is simply connected, we see that H = Gy, is

connected, hence reductive. Clearly (x, y) E C(H), y, E Z(H) and

Yu = y -1 y e Ho. Thus, by Theorem B, (x, y) E ’t(H). Since E(H) C
E(G), we see that (x, y) E E(G). The proof that C(G) is irreducible is
similar to the proof of Corollary 2.5 and will be omitted.

§4. Nilpotent and unipotent elements of parabolic type

Let G be a semisimple algebraic group, let P be a parabolic
subgroup of G and let U denote the unipotent radical of P. It is

shown in [10] that there exists x E u (resp. u E U) such that cp(x)
(resp. Cp(u)), the P-conjugacy class of x (resp. u) is a dense open
subset of u (resp. U). This motivates the following definition:

DEFINITION 4.1: Let G be a semisimple algebraic group and let x
(resp. u) be a nilpotent (resp. unipotent) element of A (resp. G). Then
x (resp. u) is of parabolic type if there exists a parabolic subgroup P
of G with unipotent radical U such that cp(x) (resp. CP (u)) is a dense
open subset of u (resp. U).

REMARK 4.2: (i) For g (resp. G) of type An, all nilpotent (resp.
unipotent) elements are of parabolic type. If g (resp. G) is not of type
An, then there exist nilpotent (resp. unipotent) elements which are not
of parabolic type.
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(ii) Let G, P, U be as above and let x E u (resp. u E U) be such that
cp (x) (resp. Cp(u)) is a dense open subset of u (resp. U). Then it is
shown in [10] that px = gx (resp. that Pf = Gou).

(iii) Let x be a nilpotent of g and let S be the set of semisimple
elements s of A such that dim gs = dim gx. Then it is shown in [5] that
x is of parabolic type if and only if x belongs to the closure of S.
Now let G, P, U be as above, G 7é P, and let M be a Levi subgroup

of P ; thus P is the semi-direct product of M and U. Let A = Z(M)°.
Then A is a torus and R = A U is the solvable radical of P; the Lie

algebra r = a + u is the radical of p. In particular R and r are stable
under the action of P. Let a’ _ {a E a ga = mi; a’ is a dense open
subset of a. The following result is proved in [5].

4.3: Let r = a + v with a E a’ and v E u. Then r is P-conjugate to a.
In particular r is a semisimple element of g, p r = g r and dim p =
dim rrt.

Now let m = dim m, and let r’ = {r E r 1 dim p r = m}. Then r’ is a

P-stable dense open subset of r and a’+ u = {a + v a E a’, v E u} is
contained in r’. Let x E u be such that the P-conjugacy class of x is a
dense open subset of u. Then x Et’.

LEMMA 4.4: Let e = {(r, t) E r’ x P 1 t E r} and let n: R - t’ denote
the restriction to R of the projection r’ x p - r’. Then n is an open

mapping.

PROOF: Let c E r’ and let b = pc. Let Grm(,,) denote the Grassmann
variety of m-dimensional vector subspaces of p; Grm(p) is a projective
algebraic variety. Let f be a vector subspace of p such that p is the
direct sum of b and f . Let Y be the subset of Grm(p) consisting of all
m-dimensional subspaces b such that b n f = {O}; g is an open subset
of Grm(,,). For every T E HomK(b, f), let a(T) be the vector subspace
{d + T(d) dEb} of p. Then a(T) E y and a : HomK(b, f ) --&#x3E; g is an
isomorphism of algebraic varieties; Y is a "big Schubert cell" on
Grm(p) and, if one represents elements of HomK(b, f ) by matrices,
then a-1 gives "Schubert coordinates" on Y.

It is easy to see that the map r - pr of r’ into Grm (p) is a morphism
of algebraic varieties. Let r" = {r E r’ pr E I}; r" is an open neigh-
bourhood of c in r’. We define a morphism T : r" x b ---&#x3E; e as follows:

let r Ei r"; then pr is a point of Y; let Tr = a-l("r); then Tr E

HomK(b, f ) and "r={d+Tr(d)ldEb}; we define T(r,d)=
(r, d + Tr(d». It is a straightforward matter to check that T defines an
isomorphism (of algebraic varieties) of r" x b onto 1T-I(t").
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Using the morphism T, it is now easy to check that if d E b = p,,
then 7r maps every neighbourhood of (c, d) in e onto a neighbour-
hood of c in r’. This proves Lemma 4.4.

In Proposition 4.5 and Corollary 4.7 below, we use the notation of
§2. We assume the inductive hypothesis made at the beginning of §2
and Lemmas 2.1-2.4.

PROPOSITION 4.5: Let g be semisimple and let (x, y) E C(g), with x a
nilpotent element of parabolic type. Then (x, y) E c¡; (g).

PROOF: Let G be the adjoint group of g. Choose a parabolic
subgroup P of G, with unipotent radical U, such that the P-conjugacy
class of x is dense in u. Let the notation be as above. Let N be an

open neighbourhood of (x, y ) in 16(g) and let N’ = N n e. By Lemma
4.4, 7r(N’) is an open subset of r’. In particular ir(N’) meets a’ + u.
Hence, by 4.3, Tr(N’) contains a semisimple element s. Thus there

exists t E ps such that (s, t) E N’. By Lemma 2.4, (s, t) E Z(g). We
have shown that every neighbourhood of (x, y) meets W(A). Since W(g)
is closed, (x, y) E Z(g).

The following result is proved in [1, Prop. 4.3]:

4.6: In a semisimple Lie algebra, every distinguished nilpotent
element is of parabolic type.

COROLLARY 4.7: Let (x, y) E W(g), with x a distinguished nilpotent
element. Then (x, y) E Z(g).

We now wish to prove the analogues of Proposition 4.5 and

Corollary 4.7 for a semisimple algebraic group G. We have to be a bit
more careful here because of the possibility of non-connected cen-
tralizers of elements of G. Let P, U, M, A and R be as defined earlier
in this §. Since the centralizer of a torus in a reductive group is

connected, we see that ZG(A) = M. Let A’ = f a E A Ga = M}. It

follows from the argument given in [2, Prop. 8.18] that A’ is a

non-empty open subset of A. The following result is proved in [7,
Lemma 1.3]:

4.8: Let r = av with a E A’ and v E U. Then r is P-conjugate to a.
In particular r is semisimple, dim G, = m, G, is connected and Gr =
Pr.
Now let R’ = f r ER dim P, = m}. Then R’ is a P-stable dense open
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subset of R and R’ contains A’U. If u E U is such that Cp( U) is

dense in U, then u E R’.

LEMMA 4.9: Let éB = {(r, g) E R’ x P g E PJ. Let 7r : éB - R’ denote
the restriction to R of the projection R ’ x P - R ’. Let (r, g) G éB be
such that g E P0r. Then 7r maps every neighbourhood of (r, g) in R
onto a neighbourhood of r in R’.

Lemma 4.9 is a spécial case of the f ollowing result:

PROPOSITION 4.10: Let the algebraic group H act morphically on
the irreducible normal algebraic variety X and assume that all orbits
of H on X have the same dimension. Let V =

{(x, h) E X x H 1 h . x = x} and let ’TT: V - X denote the restriction to

’Ji of the projection X x H - X. Let (y, g) E ’Ji be such that g E H§.
Then 7r maps every neighbourhood of (y, g) in V onto a neighbour-
hood o f y in X.

REMARK 4.11: In Proposition 4.10 it is not necessarily the case that
7r is an open mapping.

We shall postpone the proof of Proposition 4.10 for the moment.
In Proposition 4.12 and Corollary 4.14 below, we use some of the

notations of §3. We assume the inductive hypothesis of §3 and

Lemmas 3.1-3.3.

PROPOSITION 4.12: Let G be a semisimple algebraic group and let
(u, v) E «6(G) with u a unipotent element of parabolic type and
v E Gu0. Then (u, v) E E(G).

PROOF: We continue with the notation introduced earlier. We may
assume that u E U and that Cp(u) is a dense open subset of U. By
Remark 4.2. (ii), Gu0 = Pu0. Thus ( u, v ) E R. Let N be a neighbourhood
of (u, v) in C(G) and let N’ = N n éB. By Lemma 4.9, 7r(N’) is a

neighbourhood of u in R’. Hence Tr(N’) meets A’U. But by 4.8, if

r E A’ U, then r is semisimple and Gr is connected. Thus N’ contains
a pair (r, g) with r semisimple and g E G5= P5. By Lemma 3.4,
(r, g) G 6(G). We have shown that every neighbourhood of (u, v)
meets 6(G). Thus (u, v) E ’t( G). This proves 4.12.
The following result is proved in [1, Prop. 4.3]:

4.13: Every distinguished unipotent élément in a semisimple al-
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gebraic group is of parabolic type.
As an immediate consequence of 4.12 and 4.13 we have:

COROLLARY 4.14: Let (u, v) E f5( G) with u and v both unipotent
and u a distinguished unipotent. Then (u, v) E W(G).

It remains to prove Proposition 4.10.

PROOF OF PROPOSITION 4.10: By an argument given in [9, p. 64],
there exists a non-empty, smooth H-stable open subset Y of X such
that ir-’(Y) is a smooth subvariety of H x Y and the restriction of 17’

to 17’ -l( Y) is a submersion. Since 17’ -l( Y) is smooth, the irreducible

components of ir-’(Y) are the same as the connected components.
Let A’ be the irreducible component of 17’-l(y) which contains

Y x fel and let A denote the Zariski closure of A’ in V. Clearly A is
an irreducible variety and X x le} C A. Let p : A --+ X denote the

restriction of 7r. We note that dim A = q + dim X, where q is the

common dimension of the stabilizers Hx, x E X. Let x E X. Then

p-I(X) C ir-’(x) = {x} x Hx. Since (x, e) E A, we see from the standard
theorem on the dimension of fibres of a morphism [2, p. 38] that

(i) p-I(X)::&#x3E; {x} x Hx° and that (ii) if (x, h) E p-’(x), then ixl x hH 0x C
p-I(X). In particular we see that each irreducible component of each
fibre p-1(x), x E X, has dimension q. By a theorem of Chevalley [2, p.
81 ], the map p : A - X is an open map.
Now let (y, g) e Y with g C: Ho y and let N be a neighbourhood of

(y, g) in V. Then (y, g) E A by (i) above and N’ = N n A is a neigh-
bourhood of (y, g) in A. Since p is an open map, p (N’) is a neigh-
bourhood of y in X. This proves Proposition 4.10.

§5. Preliminaries on varieties over local fields

We recall that a local field is a (commutative) non-discrete locally
compact topological field. We denote by k a local field of charac-
teristic zero and we let K be an algebraically closed extension field of
k. It is known that, to within isomorphism, k is either the field R of
real numbers, the field C of complex numbers, or a finite extension
field of a p-adic field Qp, for some rational prime p.

If V is a finite-dimensional vector space over k, then we always
consider V as a topological space with the topology determined by
the topology of k. Thus if (eh..., en) is a basis of V, then the map
(ah..., Cln) -£?=i aiei is a homeomorphism of k" onto V. Subsets of
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V are given the induced topology. In particular, if 6 is a finite-

dimensional Lie algebra over k, then the commuting variety fi#(6) is

given the induced topology as a subset of 6 x g. More generally, if X
is an algebraic variety defined over k, then the set X(k) of k-rational
points of X is given the topology determined by the topology of k, i.e.
the topology of X (k) as an analytic space over k. If G is an algebraic
group defined over k, then G(k) is a locally compact topological
group.

If X is an algebraic variety defined over k, we shall need to

consider the Zariski topology on X, the Zariski k-topology on X and
the topology on X(k) as an analytic space over k. In order to avoid
confusion, in §6 and §7 all topological terms which refer to the Zariski
topology will be given the prefix Zariski. Thus an open set (resp.
k-open set) in the Zariski topology is Zariski-open (resp. Zariski-k-

open).

§6. Reductive Lie algebras over local fields

In this section we wish to prove the analogue of Theorem A for a
reductive Lie algebra i over the local field k. The reader should bear
in mind, however, that there are two differences with the situation of
Theorem A:

(i) The topology on the commuting variety fi#(6) is stronger than
the Zariski-k-topology on 16(d); and

(ii) It is not necessarily the case that all Cartan subalgebras of f are
conjugate. (However, it is known that there are only a finite number
of conjugacy classes of Cartan subalgebras of 6 [3, 8].)

THEOREM D: Let d be a reductive Lie algebra over the local field k of
characteristic zero and let

(x, y) E C(d) and let N be a neighbourhood of (x, y) in W(6). Then
there exists a Cartan subalgebra b of i such that N meets b x b.

The proof of Theorem D will be given in a series of lemmas. The
lines of the proof are the same as those of Theorem A. One just needs
to check that all of the constructions made in that proof can be
carried out over the field k. We let 6’(6) be the set of all (x, y) E 6(0)
such that there exists a Cartan subalgebra of i which contains both x
and y. Let 6(6) be the closure of 6’(6) in 16(d). We must prove that
Z(d) = 16(d). The proof is by induction on dim d. We assume that
dim 6 &#x3E; 0 and that Theorem D holds for reductive Lie algebras of
dimension less than dim i.
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LEMMA 6.2: Assume c 0 101. Then W(d) = Z(d).

Lemmas 6.1 and 6.2 reduce the proof to the case of semisimple d.
For the rest of the proof we assume that 6 is semisimple.

and assume that either x or y is not

LEMMA 6.4: Let (x, y) E ce(f) and assume that there exists a non-
zero semisimple element in dx. Then (x, y) E Z(d).

The proof s of Lemma 6.1-6.4 are the same as those of Lemmas
2.1-2.4.

Lemmas 6.1-6.4 reduce the proof of Theorem D to the case of pairs
(x, y) E 9(6) where x is a distinguished nilpotent element of d. To

show that the arguments of §2 can be carried out over the field k we
need the Jacobson-Morosov Theorem.

DEFINITION 6.5: Let k be a semisimple Lie algebra over a field F of
characteristic zero. Then a triple of elements (x, h, y) in k, distinct

from (o, 0, 0), is an f(2(F)-triple if they satisfy the following com -
mutation rules :

6.6. (Jacobson-Morosov Theorem): Let k be a semisimple Lie
algebra over F and let x be a non-zero nilpotent element of k. Then
there exists an $12(F)-triple (x, h, y) containing x.
For more details on dt2-triples, see [4].
We now return to the proof of Theorem D. Let x be a non-zero

nilpotent element of d and let (x, h, y) be an $12(k)-triple in 6. It follows
easily from the representation theory of f[2(k) that all the eigenvalues
of adih are integers. We say that x is an even nilpotent if all the

eigenvalues of adfh are even integers. (This is independent of the
choice of ;[2(k )-triple with first element x.) The following result is a
key technical result in the paper [1] by Carter and Bala on the
classification of nilpotent conjugacy classes in semisimple Lie al-

gebras :
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6.7: Every distinguished nilpotent element of a semisimple Lie
algebra is an even nilpotent.
For the proof of 6.7, see [1, Thm. 4.27]. The proof is complicated

and involves classification. It would be of interest to have a more

elementary proof.
In order to be able to use the results of §4 it will be convenient to

change our point of view slightly. Let A = f @kK. Then A is a

semisimple Lie algebra over K with k-structure f = g(k). If V is a
vector subspace defined over k of the K-vector space g, we set

V(k) = Vng(k)= Vnf.
Now let x be a distinguished nilpotent element of 6 and let (x, h, y)

be an f[2(k)-triple in 6. We consider (x, h, y) as an f[2(K)-triple in g.
For each (even) integer j, let gj be the j-eigenspace of adgh. Then g is
the direct sum of the gj’s. Let p = Eje-eo g;, let m = go and let u = Ej&#x3E;o 
Let G be the adjoint group of the semisimple Lie algebra g. Then
there exists a parabolic subgroup P of G with unipotent radical U
and a Levi subgroup M of P such that p (resp. u, rn) is the Lie algebra
of P (resp. U, M); P, M and U are all defined over k. It is shown in
[1, Prop. 4.3] that cp(x), the P-conjugacy class of x is a dense

Zariski-open subset of u. (Warning: If P(k) denotes the group of
k-rational points of P, then the P (k)-orbit of x is not necessarily dense in
u(k).)

Let a denote the centre of m and let r = a + u; r is the radical of p.
As in §4, we define r’ = f r E r ) dim p, = dim m) and tl’=

f a E 41 ga = m}. Then r’ and a’ are Zariski-k-open subsets of r and a
respectively.

(ii) every element of a’(k) + u (k) is semisimple; and
(iii) a’(k) + u (k) is a dense open subset of r(k).

PROOF: Let a E a’(k) and v E u(k). By 4.3, a + v is P-conjugate to
a. This proves (i) and (ii). The proof of (iii) is elementary.

r’(k) denote the restriction to f1l of the projection r’(k) x p(k) - r(k).
Then n is an open mapping.

The proof of Lemma 5.9 is almost exactly the same as the proof of
Lemma 4.4, except that we work in the category of analytic spaces
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over k instead of algebraic varieties over K. We omit details of the
proof.

LEMMA 6.10: Let (x, z) E C(d), with x a distinguished nilpotent of d.
Then (x, z) E W(d).

The proof of 6.10 is essentially the same as that of Proposition 4.5.
Lemma 6.10 completes the proof of Theorem D.

§7. Reductive groups over local fields

Let G be a reductive linear algebraic group defined over the local
field k of characteristic zero. A subgroup A of G(k) is a Cartan

subgroup of G(k) if there exists a Cartan subalgebra b of the k-Lie
algebra g(k) such that A = fg E G(k) 1 (Ad,g)(x) = x for every x E $);
equivalently A is a Cartan subgroup of G(k) if there exists a maximal
torus T of G, defined over k, such that A = T(k). It follows from the
second definition that a Cartan subgroup of G(k) is abelian. It is

known that G(k) has only a finite number of conjugacy classes of
Cartan subgroups (This follows from the corresponding result for
Cartan subalgebras of g(k).)

THEOREM E: Let G be a reductive linear algebraic group defined

over a = 
local field k of characteristic zero and let C(G(k)) =

f(x, y) E G(k) x G(k) xy = yxl be the commuting variety of G(k). Let
(x, y) E C(G(k)) be such that there exists z E Z(G)(k) such that zy E
(G’)(k) and let N be a neighbourhood of (x, y) in C(G(k)). Then there
exists a Cartan subgroup A of G(k) such that A x A meets N.

The proof of Theorem E will occupy most of the rest of this

section. Roughly, the proof goes as follows: By arguments similar to
those in the proof of Theorem B, we reduce to the case of a

commuting pair (x, y), where x and y are distinguished unipotent
elements of G. To treat the case of a pair of distinguished unpotent
elements, we use Theorem D and the exponential and log maps.

It follows from [2, Prop. 1.10] that we may assume that G is a

k-subgroup of GLn(K); in order to simplify our exposition we shall
make this assumption. Thus G(k) = G rl GLn(k) and g(k) = g n g[n(k).
We let E’(G(k)) be the set of all (x, y) E C(G(k)) such that there

exists a Cartan subgroup A of G(k) which contains both x and y. We
let E(G(k)) denote the closure of E’(G(k)) in C(G(k)). We must prove
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that 6(G(k)) = W(G(k». The proof is by induction on dim G. We
assume dim G &#x3E; 0 and that the theorem holds for reductive k-groups
G’ with dim G’  dim G.

PROOF: We note that Z(G)(k) is contained in the kernel of the

adjoint representation of G, hence in every Cartan subgroup of G(k).
The rest of the proof follows in exactly the same manner as that of
Lemma 3.1.

The proof of Lemma 7.2 is essentially the same as that of Lemma
3.2. We omit details.

B y Lemmas 7.1 and 7.2, we see that it suffices to consider pairs
(x, y) E (C(G(k) such that x and y are both unipotent. If x and y are
both unipotent, then they are contained in the derived group of G,
which is a semisimple k-group. Hence we may assume that G is a
semisimple k-group. For the rest of the proof of Theorem E, we shall
make this assumption.

LEMMA 7.3: Let (x, y) E IC(G(k» with x and y unipotent and
assume that Gx contains a non-trivial torus. Then (x, y) E iC(G(k».

PROOF: Let D = GO; D is a connected k-subgroup of G and y E
D(k). Since D contains a non-trivial torus, D is not a unipotent group.
Let D’= {d E D 1 dsé Z(G)); since Z(G) is finite, D’ is a non-empty
Zariski-k-open subset of D. It follows easily that D’(k) is a dense

open subset of D(k). Thus there exists a sequence (dn) of elements of

D’(k) such that dn - y. By Lemma 7.2, (x, dn) E 6(G(k)) for every n.
Thus (x, y) E E(G(k)). This proves Lemma 7.3.
We have now reduced the proof of Theorem E to the consideration

of pairs (x, y) E C(G(k)) such that x and y are both distinguished
unipotent elements of G. Let (x, y) be such a pair. Let .N(g(k)) be the
set of all nilpotent elements in the Lie algebra g(k) and let U(G(k)) be
the set of all unipotent elements in G(k). Let IL : Y(g (k» --&#x3E; OU (G (k» be
the map given by the usual exponential power series; p,(x) =
lî=o (x"/n !). Since the elements of JV(#(k)) are nilpotent, IL is poly-
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nomial map. It is well-known that g is a homeomorphism of X(g(k»
onto IM(G(k». Let À:’U(G(k)-X(g(k» be the inverse homeomor-
phism ; À is also a polynomial map, given by the log series. Let

a = À(x) and b = À(Y). Then a and b are distinguished nilpotent
elements of g(k) and [a, b] = 0.
We let (a, h, c) be an $12(k) triple in g(k). For each integer j, let g(k)j

denote the j-eigenspace of adg(k)h. Let b = 3lj&#x3E;o g(k);. Let a be the
threedimensional subalgebra of q(k) spanned by the triple (a, h, c);
since a is a distinguished nilpotent element of g, it follows that the

centralizer of a in g is 101. (See [1, Cor. 2.15].) Since [a, b] = 0, this
implies b E b . Clearly we have a E b.

Corresponding to the inclusion homeomorphism of a == 52(k) into
g(k) c g(n(k), there is a compatible homomorphism of groups

p : SL2(k) -&#x3E; G(k). (See [4, p. 73].) To simplify our notation, let pt =
p(diag(t, t-l» for t E k - 101. It is not difficult to see that if z E g(k)j,
then (Adg(k)pt)(z) = t’z. Hence if v E b, we have limt-.o(Adg(k)Pt)(V) = 0.
Now there rexists an open neighbourhood J of 0 in g(k) such that

the exponential map exp (given by the usual power series) converges
in J and defines a homeomorphism of J onto an open neighbourhood
L of e in G(k). Since a, b E b, we see that after conjugating by
Adg(k)Pt, f or an appropriate t, we may as sume that a, b E J.

Thus we see that a and b are commuting elements of g(k) which
belong to J. It follows from Theorem D that there exists a sequence
of pairs (an, bn) in J x .T satisfying the following conditions: (i)
(an, bn) - (a, b): and (ii) for each n there exists a Cartan subalgebra $n
of g(k) such that an, bn E $n. Since an and bn belong to the Cartan
subalgebra bn, it is clear that exp(an) and exp(b") belong to the Cartan
subgroup

In particular, (exp(an), exp(bn» E 6(G(k)). Now since ( an, bn) - (a, b),
we see that (exp(an), exp(b.» --&#x3E; (exp(a), exp(b)) = (x, y). Thus (x, y) E
6(G(k)). This completes the proof of Theorem E.

THEOREM F: Let G be a simply connected semisimple algebraic
group defined over the local field k of characteristic zero. Let (x, y) E
W(G(k)) and let N be a neighbourhood of (x, y) in C(6(G(k». Then
there exists a Cartan subgroup A of G(k) such that N meets A x A.

The proof of Theorem F is essentially the same as that of Theorem
C.
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REMARK 7.4: Let k = R and K = C and let G be a semisimple
k-group. Then the hypothesis of Theorem F requires only that the
complex Lie group G be simply connected. This does not necessarily
imply that the real Lie group G(R) is simply connected. For example,
let G = SLn (C) and G(R) = SLn(R); then G is simply connected, but
G(R) is not simply connected.
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