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Abstract

Let Spec R be a rational surface singularity over C. Generalizing
work of Brieskorn, Artin, and others, we prove there is a smooth
irreducible component A of the moduli space of Spec R, consisting of
deformations which resolve simultaneously in a family after Galois
base change. Further, the group is a direct product of Weyl groups
associated to -2 configurations in the graph of R. We also prove that
for a determinantal singularity, A consists of the determinantal
def ormations.

0. Introduction

Let R be a two-dimensional normal local ring over C with a rational
singularity at the closed point, and X - Spec R the minimal resolu-
tion. The simplest examples are those of embedding dimension e = 3,
the rational double points (or RDP’s). These are the Kleinian

singularities C’IG, where G C SL(2, C) is a finite subgroup; they are
called An (G cyclic), Dn (binary dihedral), E6 (binary tetrahedral), E7
(binary octahedral), and E8 (binary icosahedral). The exceptional fibre
E in X is a configuration of non-singular rational curves, of self-
intersection -2, whose (weighted) dual graph is the Dynkin diagram
of the corresponding simple Lie algebra.

Brieskorn discovered ([5], [6], [7]) a relationship between the

deformation theory of such an R and the Weyl group W of the Lie

algebra. We say a deformation ’V--+ T resolves simultaneously if there

* Partially supported by NSF grant MCS74-05588-A02 AMS (MOS) subj. class.
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is a smooth map X --&#x3E; T, factoring through such that for each t E T,
,Vt--&#x3E;’V, is a (minimal) resolution of singularities. Atiyah observed in 

.

1958 [4] that the versal (analytic) deformation of AI resolves simul-
taneously after a Z/2-base change (i.e., X2+ Y2+ Z2= t2 resolves

simultaneously).

THEOREM (Brieskorn [7]): The versal deformation of a rational

double point resolves simultaneously after a Galois base change, with
group W.

This was proved independently by Tjurina [19] and (for An) Kas
[13], using Brieskorn’s earlier work.
There is a more precise picture of how the simple algebraic groups

G = SL(n), Sp(n), etc., themselves come into play, and not just the
Weyl groups [1], [7]. The idea (due to Grothendieck) is to study the
subregular elements of G ; in particular, one looks at the singular
locus of G --&#x3E; T/ W (T = maximal torus), sending an element of G to
the conjugacy class of its semi-simple part. (If G = SL(n), this sends
a matrix to its characteristic polynomial).

Artin and Schlessinger [2] generalized part of Brieskorn’s result
(and also a result of Huikeshoven [12]) to rational singularities of
higher multiplicity, and made it more algebraic; however, one must
work in a suitably localized algebraic category (e.g., algebraic spaces,
or local henselian schemes).

THEOREM [2]: There is a smooth space Res parametrizing defor-
mations of Spec R with simultaneous resolution, and a finite map
03A6 :Res-Def into the deformation space, whose image is an ir-

reducible component A of Def. (A = Artin component).

When e = 3 or 4, then Def is smooth, hence 0 is surjective.
However, Pinkham [16] showed that for the cone over P’--&#x3E; P4 (e = 5),
Def has one- and three-dimensional components; every deformation
is a smoothing, but simultaneous resolution takes place on only the
second component.
The main purpose of this paper is to prove

THEOREM 1: 0: Rets - Def is Galois onto A, with group W = nw¡,
the product of the Weyl groups associated to the maximal connected
-2 configurations in the graph of R. In particular, A is smooth.

This had been conjectured by Burns-Rapoport [8] and Wahl [21].
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The first authors had noticed that each -2 curve gives an automor-
phism of Res-Def (an "elementary transformation"). We proved
that the dimension of the kernel of the tangent space map of Res
Def is the number of -2 curves; in particular, if there are no -2’s,
then Res-2-+A [20]. It is recent work of J. Lipman [15] which

completes the proof.
The idea of the proof is rather simple. First, interpret Res as the

deformation space of X ([2], 4.6). Next, blow down the -2 configura-
tions in X to rational double points, obtaining X --.&#x3E; V - Spec R. This
gives blowing-down maps

Third, using Brieskorn’s rational double point theorem and Burns-
Wahl [9] on the relation of local to global déformations, one deduces
Def(X) - Def ( V) is Galois and surjective, with group W. Therefore, it
remains only (!) to show Def V injects into Def(R) (i.e., Def V is the
Artin component). In an earlier version of this paper (cf. [24]), we
used a cohomological argument to prove Theorem 1 in case the

fundamental cycle has multiplicity 1 at the -3 curves, e.g., for

determinantal or quotient singularities. Lipman proves the injectivity
directly; the point is that V is "canonically" obtained from Spec R,
even after déformation of each.
There is one case where the result is more concrete.

THEOREM 2: Let R be determinantal, of multiplicity d, hence

defined by the 2 x 2 minors of a 2 x d matrix. Then the Artin

component is the versal determinantal deformation.

That is, the deformations of R corresponding to perturbations of the
entries of the defining matrix form an irreducible component of Def,
equal to A. First, we observe that determinantal deformations yield
deformations of V, owing to the simple construction of V in this case
[23]. Then, we recognize the determinantal nature of R from a

morphism X ---&#x3E; P’ x P"-’; standard obstruction theory shows this map
lifts to each deformation X of X, whence T(Ox) is also determinantal.

In a forthcoming paper [25], we study the finer structure of Res
A, especially the irreducible components of the discriminant locus,
and the fact that the monodromy group over A is W.

In § 1, we define the action of W on Res; our treatment there is

influenced by a letter from E. Horikawa. We outline a proof of
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Lipman’s result in §2, while §3 discusses determinantal rational

singularities.

§l. The action of W on Res

(1.1) We assume known the basic facts about rational singularities
([3], [14]). Moduli spaces are minimally versal deformation spaces.
Spec R, and moduli spaces like Res and Def, are assumed local
henselian or local analytic spaces, in order to avoid the non-

separatedness of Res as an algebraic space.
(1.2) Interpreting Res as Def X, there is a blowing-down map

Def X - Def V arising from X - V ([17], [9]). Denote by p 1, ..., p, the
RDP’s on V, and by Si,..., S, their moduli spaces. The composition
Def X --&#x3E; Def V --&#x3E; IIS; factors via IIZ;, where Zi ---&#x3E; Si is the Res --&#x3E; Def

map for the RDP pi [9]. (Thinking of Zi as the deformation space of
some neighborhood Ui of the exceptional fibre of pi in X, one has

simply that deformations of X give deformations of each U;).

THEOREM 1.3: The diagram

is cartesian, ail spaces are smooth, the horizontal maps are smooth, and
the vertical maps are Galois (and surjective), with group W = nwi.

PROOF: The cartesian property is [9], 2.6 (it is assumed there that V
is projective, but this is not needed for the proof). All spaces are
obviously smooth (all global H2’s and local T2,S vanish). The top map
is .smooth by [9], 2.14; the bottom, because it is surjective on the
tangent spaces:

Finally, Brieskorn’s RDP theorem gives the Galois property of the
right-hand map; since the diagram is cartesian, these automorphisms
(and the Galois property) pull back to Def X Def V.

(1.4) Thus, Res/ W = Def 3Xl WIX Def V. Now, W = IIW is

generated by reflections; we give a more geometric picture of the
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action of a reflection a corresponding to Et, a -2 curve on X. This is
the "elementary operation" of [8], §7, or [11], Appendix B.

First, let Z --&#x3E; S be Res - Def for a single -2 curve (A1 -singularity),
with V --&#x3E; Z the total family. Here, dim Z = dim S = 1, and dim Y = 3.
Then the exceptional curve E C X C X has normal bundle

0(-1)610(-1) [11]. Let p : Y - X be the blow-up of E; then p -1(E)~ 
E is ir,: P 1 X P’--&#x3E; P’ = E, and the normal bundle of p-1(E) in Y is

(- diagonal). By [10], p -1(E) may be blown down in the direction of the
other ruling, yielding Y--&#x3E; X’--&#x3E;Z. By functoriality, X’--&#x3E; Z is obtained

from V--&#x3E;Z by an automorphism 03C3:Z~Z, of order 2 by construc-
tion.

For a general rational singularity, let VI be the space obtained from
X by contracting El, and consider the (cartesian) diagram

Let R1 C Def X be the fibre over the origin of Z; RI is a smooth,
codimension 1 subvariety corresponding to déformations of X to
which Et lifts. If X --&#x3E; Def X is the total space, and X1 --&#x3E; RI is the
induced déformation, one has a relative effective Cartier divisor
E C X1, which lifts E1. Blow up 6 C X, then blow down in another
direction as before, yielding again the reflection 03C3.

(1.5) Note that 03C3(Ri) = RI. In fact, for an RDP, the Ri’s correspond
to hyperplanes left fixed by a basis of the positive roots when one
views W as acting on the usual complex vector space as a reflection
group. To see the other hyperplanes as subvarieties of Res, and for
the generalization to all rational singularities, see [25].

(1.6) Curiously, the Weyl group of E8 cannot appear unless R is the
RDP E8. That is, an E8-configuration in the graph of a rational
singularity is necessarily the entire graph. In light of Lemma 1.7

below, this is because the fundamental cycle of E8 has multiplicity a2
at every component.

LEMMA 1.7: Inside a rational configuration, suppose L is a

reduced, connected curve intersecting an irreducible Et in one point ;
let E2 be the curve in L with El - E2 = 1. Then the multiplicity of E2 in
ZL, the fundamental cycle of L, is 1.

PROOF : We must have (ZL + El) - (ZL + Ei + K) -5 -2. Since
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ZL - (ZL + K) = El . (E, + K) = -2, we deduce ZL . E1~ 1. This implies
the result.

§2. Lipman’s theorem

(2.1) As mentioned in the introduction, the main theorem will

follow from the injectivity of the blowing-down map Def V - Def R.
The usual functorial argument shows that it suffices to prove in-

jectivity on the tangent spaces, since HO(9v)’:::; 9R ([22], 1.12). We will
sketch (a slight variant of) Lipman’s proof.

THEOREM 2.2 (Lipman [15]): Def V injects into Def R.

PROOF: We show first that V = ProjeH’(X, wx~n) (as schemes over
Spec R). Letting f : X - V, we have f *(tJx = wv (dualizing differentials
on V), so H’(X, wOn) = HO(V, ,On). We show wv is very ample f or
V- Spec R. By [14], 12.1, it suffices to show that (,wv - FI) &#x3E; 0, for
each exceptional curve Fi in V. Since f *wv = Wx ( V has only RDP’s),
this intersection number is (wx . E1), where El is a non-2 curve in X,
hence is positive. Using the F(£ù On) F(,W 0(- +n»
([14], 7.3), the claim now follows.

Next, if U = X - E = Spec R - {m}, we have

(2.2.1) follows from the exact sequence of local cohomology, since
H1È(OX) = 0 (Grauert-Riemenschneider - see [20], Theorem A), and
HÈ(tox) = 0 (dual to Hl(Ox) = 0). For (2.2.2), we use

The top row is surjective as above, and the right map is injective,
whence (2.2.2). Putting everything together gives that V is comput-
able canonically from U, viz.

Let V be a déformation of V over D = Spec C[e]/e2, and wv the
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relative canonical sheaf of V over D (this is the unique lifting of the
line bundle Cùv to V). We claim since a map
between déformations is automatically an isomorphism, it suffices to

If V blows down to a trivial déformation, then, as in [22], § 1, the
induced deformation !7 of U is trivial. Let (J)u = 03A92u/D. The barred
analogues of (2.2.1)-(2.2.3) are still true (use H°( V, v instead of
H’(X, tù 0"», again using [22], Theorem 0.4. Therefore, V~
Proj«D lm 03A6n). But since U is a trivial deformation, 03A6n is a product,
hence V is trivial. This completes the proof.

(2.3) One can identify directly the kernel of the tangent space map
of Def V - Def R as Ext1V(03A91 V/R, Ov). If f : X - V, this can be recom-
puted as Ext’x(f*f2’V/R, Cx), and a (non-obvious) reduction equates
injectivity with Hornx (f *f2’, (Jz(Z)) = 0, where Z is the fundamental
cycle. This should be viewed as a vanishing theorem analogous to
those of [20]. After computing f * f2’ v near the fibre of each RDP, we
identified "easy cases" (cf. [21]) in which the theorem was true -

determinantal singularities, and those with no -3 curves [24]. A more
careful analysis of bad cycles gives the result if Z has multiplicity 1 at
the -3 curves (e.g., for quotient singularities). Fortunately, Lipman’s
theorem proves injectivity in complete generality, and without our
long and complicated method.

§3. Determinantal deformations

(3.1) A determinantal rational singularity R has equations given by
the 2 x 2 minors of a 2 x d matrix, d = multiplicity of R (see [23], §3
for a full discussion). There is a smooth subvariety (or subfunctor)
Det of Def consisting of determinantal deformations; merely perturb
arbitrarily the entries of the given matrix defining R. We will show
Det = A, obtaining another proof of Theorem 2.2 in this case. Thus,
Det is independent of the matrix used. Assume d a 3.

THEOREM 3.2: For a determinantal rational singularity, Det = A;
i. e., the determinantal deformations are exactly those which, after
base change, simultaneously resolve in a family.

PROOF: Let X --&#x3E; V --&#x3E; Spec R be as usual. We show first that the
inclusion Det C Def factors via Def V, hence via A. Then we prove
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that Def X --&#x3E;A, which is surjective (as a map of spaces, not

functors), factors via Det.
Recall V has a simple construction [23]. Assume R is defined

(formally, say) by

where fi, gi are in a power series ring of d + 1 variables. Then V is the
closure of the graph of the rational map Spec R ~ P1 1 defined by the
columns. In fact, V C Spec R x pl is defined by sfi = tgi, where s, t are
homogeneous coordinates on P1. If now

defines a determinantal deformation Spec R, we may use sF = tG; to
define a deformation V of V. The verification that V is flat is done by
using, e.g., that at least d - 1 of the fi’s have linearly independent
leading forms ([23], 3.4). We omit the details. This shows Det C A.
On X, denote by Eo the -d curve, and by Ei (i &#x3E; 0) the other -2

curves; recall E° has multiplicity 1 in the fundamental cycle Z.
Pulling back 0(l) from Xi V ~ P1 gives an invertible sheaf Y on X,
with Y - Eo = 1, Y - Ei = 0 (i &#x3E; 0), and wx = IEfi!)(d-2). Note that h 1(L) =
0, h°(L~Oz) = 2 (use Riemann-Roch).
Suppose that Z . Eo  0 ; this means that the entries of the matrix

(3.2.1) generate the maximal ideal of R, or the strict tangent cone is 0.
Therefore, the rational map Spec R ~ Pd-1 (defined by the rows) is

well-defined after one blow-up; in particular, theré is a map X ~ Pd-1.
Denote by Al by pull-back of O(1). Since M is generated by its global

that numerically equivalent line bundles are isomorphic). Thus, the

give
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We claim (3.2.2) is surjective on completions, by showing the map of
gr’s is surjective. The map of n’ graded pieces is

But consider

The top and right maps are surjective, by [14], 7.3, whence so is

the bottom. This proves the claim. Note C is the generic 2 x d

determinantal singularity, and (3.2.2) shows how to write the matrix
(3.2.1) from 03C0 : X --&#x3E; P’ x Pd-1.
But Y and M lift uniquely to any déformation of X (since h 1( (O x) =

h2«(Jx) = 0), and the sections of HO(Y) and H°(M) lift as well (since
their H1,s are 0). Thus, the map X~P1 x Pd-1 lifts, and (3.2.2) lifts
after deformation (of course, C is rigid). This shows how to perturb
the entries of the matrix (3.2.1) after deformation of X. (We use

implicitly that a map between déformations is an isomorphism). Thus,
Def X maps into Det.

Next, suppose Z . Eo = 0; it is no longer true that the projectivized
tangent cone embeds in P 1X pd-1. Define inductively cycles Lj, Bj,
where Lo = E, Bo = Z, and

(i) L;+, = connected component of lEi C Lj | Bj . Ei = 01 containing
Eo

(ii) Bi,, = fundamental cycle of Li,,.
Eventually, Bk . Eo  0, some k. Let Zl = Bo + ... + Bk. Then Z, - Eo 
0, Bi. B; = 0, i~ j, so h°(Oz1) = k + 1, and h1(O(-Z1)) = 0. (Use Lemma
1.7 to show Z, - Ej ~0, all i ; e.g., end curves of Lj+l have multiplicity
1 in Bj,j). By construction, k + 1 = multiplicity of Eo in Z1 = number
of blow-ups of Spec R needed to drop the multiplicity (cf. [ 18]). Also,
H°(O(-Z1)) = I is the complete ideal, of colength k + 1, generated by
the entries of the matrix (3.2.1).
The rational map Spec R ~ Pd-1 is well-defined after k + 1 blow-ups

of Spec R (following the point of multiplicity d), hence there is a map
X ~ Pd-1. Let M be the pull-back of O(1). Then L~M is the pull-back
of O(1)0O(1) from X__&#x3E;plXpd-1; but by construction, this is 7Cx,
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where I is the ideal generated by the entries of the matrix. Thus,
again expresses the deter-

minantal nature of the projectivized tangent cone. There is a map

so that the map on the n th piece of the associated graded is

(compare to the preceding). In fact, the completion of (3.2.4) maps
onto C + I, a subring of finite colength in R. Nonetheless, we proceed
as before. Déformations of X carry the map into P 1x pd-1 (H1(IE) =
H1(M) = 0), hence (3.2.4) deforms, and one again knows how to

perturb the entries of the matrix defining R. This completes the proof
of Theorem 3.2.

EXAMPLE (3.3) (See [23], 5.5): A particular rational singularity of
multiplicity 4 with graph

may be written determinantally via the matrix

One computes that dim T1 = 10. The versal determinantal def or-

mation, of dimension 8, is given by

(Note tio is the "equisingular" parameter). Another four-dimensional
family (not obviously an irreducible component) can be read off the
2 x 2 minors of the symmetric 3 x 3 matrix:
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Now, the one-parameter subf amil00FF of (3.3.2) given by t4 = S2@ ts = S3,
t9 = S, tio = 0, has a f amily of -4 singularities along the section

xl = x2 = x3 = x4 = 0, X5 = s ; also, it intersects (3.3.1) only at s = 0. But
a check shows that (3.3.2) acts as the non-Artin component along the
s-curve. By local versality of Def, and Pinkham’s description [16] of
the moduli space f or -4, it follows that there is another component,
of dimension ~6, acting as the Artin component along the s-curve. In
fact, a computation shows Def has 4, 6, and 8-dimensional

components; the 6-dimensional one is singular, with smooth normal-
ization.

REMARK (3.4): For a general determinantal singularity, Det is not
an irreducible component of the moduli space; in fact, it will depend
on which matrix representation is used. For instance, the moduli

space of 4 lines through the origin in C4 is a cone over P11x p3 (hence
irreducible, but not smooth). Note, incidentally, that this singularity is
the affine form of the projectivized tangent cone in (3.3) above (i.e.,
set x5 = 0 in the equation).
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