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In [4] the following theorem is announced. Given an elliptic curve E
defined over a number field K, we say that E is t-deficient if the field
we obtain by adjoining the é-division points of E has degree over K
which is not divisible by e. Then we have

THEOREM: Given K finite over Q and é&#x3E; 3 prime, there exists

N(é, K) E R+ such that if E is an é-deficient elliptic curve over K and
t E Etor(K), the group of K-torsion points of E, then Itl  N(t, K).

Before beginning the proof we present a little historical back-

ground. There is the following long-standing boundedness conjecture.

BOUNDEDNESS CONJECTURE: Let K be a finite extension of Q. Then
there exists a positive real number N(K) with the following property :
if E is an elliptic curve defined over K then the group Etor(K) of
K-rational torsion points has order less than N(K).

The above theorem is a weak version of this conjecture. The
techniques used in the proof are derived from ideas of Hellegouarch
[3] and Demyanenko [l, 2]. Hellegouarch showed how to associate to
points on modular curves points in other algebraic varieties. Demy-
anenko conceived of the idea of using height arguments to prove the
boundedness conjecture. Also using height arguments, Manin [6] suc-
ceeded in showing that the p-primary part of the torsion is universally
bounded.

Manin’s result

Let K be a finite extension of Q. Let p be a prime number, then
there exists a positive real number N(K, p) with the following pro-
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perty: if E is an elliptic curve defined over K the p-primary part
of Et.,(K) of K-rational torsion points has order less than N(K, p).

Mazur [7] has proved the following strong version of the bounded-
ness conjecture for K = Q.

Mazur’s result

Let E be an elliptic curve defined over Q. Let t belong to Etor(Q).
Then if t has order N, the modular curve Xl(N) has genus 0.

Now we begin the proof of the theorem.
The proof of this result is given in [4, theorem II.6.2] for the cases

when K is imaginary quadratic or Q. We now would like to give the
proof of the result for K arbitrary. We follow the proof in [4] and
need only supply arguments for the Archimedean absolute values of
K which had not been included.

By Manin’s result on the universal bound of the p-primary part of
the torsion group we may suppose that t is a torsion point of prime
order p. We set a = 2 t and choose b belonging to the group generated
by t such that 0 #- b #- ± t, b ± a. Such b may be found if p &#x3E;7.

There will be a nonsingular model of E of the form y2 =
x3 + rx2 + sx + v where r, s, v belong to K. We set

We note that ua,6, Va,b do not depend on the model chosen for E. We
have ua,b + Va.b = 1. We know [4, theorem II.4.5] that the fractional
ideals (U,,,b), (V,,,,b) are eth powers and there is a finite extension K’ of
K, which depends only on K and e such that ua,b, V,,,b are eth powers
in K’. If we select x, y E K’ such that x e = ua,b, Ye = vab then Xl + ye =
1.

What we do is to fix t and a and vary b. As seen in [4] if b #- b’

then (U,,,b, Va,b) 7é (Ua.b" Va,b) and we can produce (p - 5)/2 distinct pairs
(Ua,b, Va,b).
We may then produce (p - 5)/2 distinct K-points on the curve

Xl + yl = 1 as above. We will show that the height of these points
grows too slowly if p is large. We will let M(K) denote the set of
absolute values of K, and M(K’) denote the set of absolute values of
K’. We choose as our height function
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So we need information about IUa,bva,bl. This is provided in [4] (K) for
the non-Archimedean valuations. To quote [4, proposition II.6.6] :

PROPOSITION: Let [ 1 be a non-Archimedean absolute value of K

In the second case we have the inequality

where Il " is the standard Euclidean norm.
We wish to extend this result to the Archimedean case. How is this

result obtained? We think of u, v as modular functions as we vary the

elliptic curve E. Thus u, v are thought of as belonging to the function
field of the scheme Xl(p). If j represents the j-function then, in fact, u
and v belong to the integral closure of the ring Z[j] and are actually
units in the ring. The proof of (1) is thus obvious. If [ 1 is a

non-Archimedian valuation and jj(E)j -5 1 then the ring Z[j] is mapped
into the integers of the completion of K, under specialization at E. Since
u, v were units in the integral closure of Z[j], their images under
specialization will go to units in the completion of K which implies i.

The proof of (2) uses the Tate model. We may think of ua,b, va,b as
functions of the Tate parameter q [4, §1I.2] and the second part of the
proposition is merely giving information about the order of the zero
of the q-expansion of ua,bva,b as b varies. So the natural thing to do in
the Archimedean case is to look at the Archimedean q-expansion and
read off the relevant information.

Lest 1 be an Archimedean valuation of K. We may now think of K
as being contained in R or C. Let T belong to the standard fundamen-
tal domain D of F = SL(2, Z)/±l inside 4, the upper half plane, such
that j(T) = j(E).
We may represent t, a, b respectively by
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where tI, t2, ai, a 2, bl, b2 E (1/p )Z, and we may normalize so that

Then

where p is the Weierstrass function

Here z = ziT + Z2 and q" = e21Ti", qz = e21Tiz.
In order to get the relevant information, we must determine which

terms in the q-expansion dominate. As i-F-+ i- clearly the term

q [zl(zl-1)]12 will dominate. This was the only information which was
relevant in the non-Archimedean case since the other terms are then

units. Part (2) of the proposition is merely a statement about the
order of the zero of ua,bva,b at ioo which we translate as follows into
our present language.

PROPOSITION 2: Let Vioo(Ua,bVa.b) be the order of the zero of Ua.bVa,b at

Euclidean norm.

The proof is as follows. We first calculate the order of the zero of
p(x, [T, 1]) - p(y, [T, 1]) at foc where x = xiT + X2, y = Y17’+ Y2- If t E R,
define (t) to be the residue of t mod 1 if the residue is less than or

equal to 2, and otherwise the residue of - t. Then we claim that the
order of the zero of p(x, [T, 1]) - p(y, [T, 11) equals min((xi), (yi)) if

x ± y. This follows immediately from (7). For since p is even we
may assume that 0jci2.0yi2 and we then just look at the
given q-expansion.
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Now in the setting of Proposition 2 if ti = 0 then a = 0, bi = 0,
which proves with the above remark the first assertion. For the

second assertion one calculates from the above that Vioo(Ua,bVa,b) =
min((al), (te)) + min((bl), (tl») - 2 min((al), (bl») and from this one
easily verifies all statements, keeping in mind that (ai), (bl), (ti) are
now distinct [4, proposition II.6.6].
We now examine the other terms in (7). Since le 2’i’2(ll-1)121 = 1 this

may be ignored. The denominator 1-1 Î (1 - q ,)2 may be ignored since it
will cancel in (6).
We note that we may actually normalize t so that 0 5 ti 2, since

we may replace t by - t if necessary. Likewise we may assume

tinuous on this region and as T- icn the value of the function

approaches 0.
We now analyze the last term, (1 - qz).

PROPOSITION 3: Let p be a prime number. Then 3 C &#x3E; 0 such that

Clearly the only way that the left side of the equation can be large is

If Zl = 0, 1- qzl 1 is minimized for Z2 = - 1 IP in which case 11 - q, =
2 sin(wlp) which, say for p -- 3, exceeds (2wlp) cos(w13), that is 7Tlp.

Let hv(b) == Illoglu(a, b)v(a, b)III where the subscript v denotes the
given absolute values 1 1. We may write

where é)(b) is the contribution f rom the zero at ioo of
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the contribution from terms of the form (
contribution from the product : 

«

So we have the estimates, if

where Ci, C2&#x3E; 0 are universal constants. Now by the product formula
we have

We define S C M(K) as follows. If v is non-Archimedean, v E
S iff)j(E)) &#x3E; 1 and 1 Ua,bVa.b 1 1 for each a, b as in Proposition 1. If v is

tributions in h2 will come from Archimedean absolute values. For
such a value we have

where C &#x3E; 0 is some universal constant. For the term h2(b) we get the

following inequality.

where C&#x3E; 0 is some universal constant. If v is Archimedean and

v E S we have
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We now order our (p - 5)/2 points by increasing height. Since e 5
the curve xe + ye = 1 has genus greater than 1 and we may apply
Mumford’s criterion [4, §II.6.3.M]. We index the points by b. Then
there exists an N independent of p such that h(b(N)) &#x3E; 1 and

h(b((p - 5)/2))  C[«P-5)/2-N)/N]h(b(N)) &#x3E; 0 where C &#x3E; 1 is the constant
in Mumford’s theorem and depends only on K and e. Substituting
from the above inequalities we have

Dividing by p 2 and letting p increase we must have hi(b«p - 5)/2)) &#x3E;

p2 so we may assume hi(b((p - 5)/2))/4p &#x3E; 1 and then we get

Dividing by h1(b«p - 5)12))14p we find 4p + C’p log p &#x3E; C[«p-5)/2-N)/N]
which is absurd for p large enough. This concludes the proof of the
theorem.

In conclusion we note that if e = 2 or 3 then the theorem does not

apply since the relevant Fermat curves have genus 0 and 1 respec-

tively. However since the curves X4+ y4= 1, x9+ y9= 1 have genus
exceeding one, by the above techniques we have the following.

THEOREM 1: Given K finite over Q there exists a constant C(K) &#x3E; 0
such that if E is an elliptic curve over K whose 4-division points
generate an extension field whose degree over K is not divisible by 2
then the order of Etor(K) is less than C(K).

THEOREM 2: Given K finite over Q there exists a constant C(K) &#x3E; 0
such that if E is an elliptic curve over K whose 9-division points
generate an extension field whose degree over K is not divisible by 3,
then the order of Etor(K) is less than C(K).
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