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CLASS NUMBERS OF REAL CYCLIC NUMBER FIELDS

WITH SMALL CONDUCTOR

JOHN MYRON MASLEY

COMPOSITIO MATHEMATICA, Vol. 37, Fasc. 3, 1978, pag. 297-319
Sijthoff &#x26; Noordhoff International Publishers-Alphen aan den Rijn
Printed in the Netherlands

By an algebraic number field F we shall mean a finite extension of Q,
the field of rational numbers. The class number h (F) of F is the order of
C(F), the group of ideal classes (non-zero fractional ideals modulo

principal ideals) of F. The discriminant of F will be denoted d(F). The
Kronecker-Weber Theorem says that the abelian extensions of Q are
the subfields of all the full cyclotomic fields C(m) = Q(exp 21Ti/m) where
m is a positive integer. If K is an abelian extension of Q, the least
positive integer f with C(f) D K is called the conductor of K and is
denoted f (K). Since C(2f ) = C(f ) for odd f, f (K) is either odd or

divisible by 4.
Hasse compiled many results about class numbers of abelian ex-

tensions of Q in his monograph [9]. In particular, for K an abelian
extension of Q, h (K) = h *(K)h (K’) where K’ is the maximal real

subfield of K and the quotient h(K)lh(K’) = h*(K), the relative class
number of K, is an integer. When K = C(m) we shall abbreviate
h(C(m)) to h(m) = h*(m)h’(m) with h’(m) = h(Q(cos 21Tlm». Hasse
shows that h *(K) is very easy to compute and he lists the relative
class numbers of all imaginary abelian extensions of Q whose
conductor does not exceed 100. In [8] Hasse calculated h(K) for real

cyclic KI Q of degree 3 and 4 where f (K):5 100.
Hasse’s student Leopoldt took up the attack on the class number of

real abelian extensions of Q in a series of papers [13-17]. In parti-
cular, he showed that, essentially, one need consider only the class
numbers of the real cyclic extensions and some information on units.
Bauer [1] used a computer to calculate the class numbers of most of
the real cyclic extensions of Q of conductor 5 100 via methods

derived from Leopoldt’s results.
In previous work [18-21], we have determined explicitly all positive
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integers m with h(m):5 10. One ingredient needed in that work

was various knowledge about the class numbers of real cyclic
number fields with small conductor. Reference was made to

[1] which covered most of the needed facts. Unfortunately Bauer’s
paper is merely a report and does not give any details of how he
applied Leopoldt’s results. A later computational paper of Bauer [2]
does contain errors, so we wish to show that the results of [1] which
we used are correct. We are able to verify the results of Bauer’s
computations for all but 5 fields. We are also able to compute the
class numbers of 13 fields for which Bauer’s computations were
incomplete. In particular, we show that the class number of any real
abelian field of prime power conductor less than 71 has class number
one.

1. Root-discriminants and Odlyzko bounds

In this section we develop the theory of the root-discriminant and
illustrate its application to class number problems.

DEFINITION: Let F be an extension of Q of finite degree n and
discriminant d(F). Then the root-discriminant of F, denoted rd(F), is

ld(F) 1/n 1. 
PROPOSITION 1.1: Let E D F both be algebraic number fields. Then

rd(E) &#x3E; rd(F). Furthermore, equality holds if and only if no prime
ideal of F ramifies in E.

PROOF: Let d(EI F) be the absolute norm from F of the relative
discriminant ideal for E/F. By the relative discriminant formula for

the tower EDFDQ, we have Id(E)1 = d(EIF)ld(F)IIE:FI. Now

D(EIF) k 1 with equality if and only if no prime ideal, i.e. no finite

prime divisor, of F ramifies in E. The result follows upon taking
JE:QL = JE:FL - IF:Ql-th roots

COROLLARY 1.2: Let F be an algebraic number field and let E be any
intermediate field between Fand the narrow Hilbert class field of F. Then
rd(E) = rd(F). In particular, the Hilbert class field of Fhas the same root
discriminant as F.

PROOF: The narrow Hilbert class field of F, N(F), is the maximal
abelian extension of F unramified at all finite prime divisors of F. By
(1.1) we have rd (N(F)) &#x3E; rd (E) &#x3E; rd(F) = rd(N(F)). In particular,
N(F) contains the Hilbert class field of F.//
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EXAMPLE 1.3: All the fields in the infinite Hilbert class field tower

of Q(9699690l/2) have root discriminant 6228.9-.

EXAMPLE 1.4. We put rd(m) = rd(C(m)) and rd’(m) = rd(C’(m)). If
at least two distinct primes, p and q say, are ramified in C(m), then
rd(m) = rd’(m). This follows from (1.1) since C(m) = C’(m)C(p) =
C’(m)C(q) shows that, on the one hand, at most prime ideals above p
are ramified in C(m)/C’(m) and, on the other hand, at most prime
ideals above q can be ramified. (If p = 2, use C(4) instead of C(2).)

PROPOSITION 1.5: Let F and K be algebraic number fields with

relatively prime discriminants and let E be the compositum of F and
K. Then rd(E) = rd(F) rd(K).

PROOF: This follows from the relation

PROPOSITION 1.6: The root-discriminants rd(m) of C(m ) and rd’(m )
of Q(cos 21rim) are given by

for the prime power pa # 2 where [x] is the greatest integer in x, and
rd(m) = rd’(m) = npDllmrd(pa) whenever at least two primes ramify in
C(m). 

PROOF: It is well-known that d(C(pa» = :tpalp(pD)-lp(pD)/(P-l). Also (use
the conductor-discriminant formula) we have that [p/p -
1] . p. d (C’(p a ))2 = ±d(C(p")) so the root-discriminant values in the
prime power case follow easily. For m = p ;1 p 22 ... p 1 t note that

C(m) = C(prl)C(p22) ... C(p at) and apply (1.5) and (1.4)
To connect root-discriminants and class number bounds we need a

new concept.

DEFINITION: An increasing arithmetical arithmetical function g :N --&#x3E;
{x E R l x &#x3E; 01 is called a class number bound function (for totally real
fields) if for all positive integers n we have g(n) -«5 inf rd (F) where the
infimum is taken over all totally real number fields of degree n.

Since all the fields in the Hilbert class field tower of Q(96996901/2)
have the same root-discriminant (1.3), a class number bound function
is necessarily bounded. The best bound is not known. Optimal values
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of a class number bound function are known only for n = 1,2,... ,7
[27]. The best known class number bound functions for class number
problems have been constructed by Andrew Odlyzko in a recent
series of articles [23-26] and preprints dealing with lower bounds for
the absolute values of discriminants of number fields. We have

indicated in [22] how the results of Odlyzko apply to number fields
which are not totally real. For most of our purposes the following special
case of Odlyzko’s work will be sufficient.

THEOREM 1.7: There are explicit ordered pairs of positive real

numbers (A,E) for which g(A,E)(X) = Ae-Elx is a class number bound
function. The function G(x) = SUP(A,E) g(A,E)(X) is also a class number
bound function.

PROOF: The reader is referred to [23-26] and also to the survey
article [27].//
We give a small table of values of G(x) which we used in our work

in the appendix. We can now give the main result of this section.

THEOREM 1.8: (Class Number Bound) Let F be a totally real number

field and let g(x) be a class number bound function. Then g(x) &#x3E; rd(F)
implies h(F)  xIIF:QI.

PROOF: Let H(F) be the Hilbert class field of F. We have g(x) &#x3E;

rd(F) = rd(H(F» 2: g(IH(F):Qf) = g(h(F) .IF:Qf) and g is in-

creasing.//
Since g(x) is necessarily bounded (Example 1.3), Theorem 1.8 is

useful only for fields with small root discriminants. The best known

upper bound for g(x) is 1058.5+ and is due to Martinet [31].

2. Some general theorems.

In this section we give some general results about the class

numbers and ideal class groups of extensions E/F of number fields.
We shall illustrate the results with abelian number fields, especially
those which are (totally) real. Of special interest will be Q(cos 21rim)
which we shall denote by C’(m), the maximal real subfield of C(m).
The discriminant and class number of C’(m ) will be denoted by d’(m )
and h’(m) respectively. We shall also use the notation F(n,f) to
denote an n -th degree cyclic extension of Q with conductor f. When n
and f do not determine a unique field, we shall be considering all the
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fields with a given n and f at the same time. We will mention other
ways to distinguish them when necessary.

For a number field F, the Hilbert class field H(F) is the maximal
unramified abelian extension of F. Since the Galois group of H(F)/F
is canonically isomorphic to C(F), IH(F):FI = h(F). The letter p
shall always denote a prime number.
The following theorem enables one to characterize the relative

class number h *(m ).

THEOREM 2.1: Let E/Fbe an extension of number fields. The following
are equivalent :

(i) For any unramified abelian extension H of F, E n H = F.
(ii) The norm map N: C(E) - C(F) is suilective.
If (i) and (ii) are satisfied for EIF, then C(F) is isomorphic to a

subgroup of C(E). In particular, h(F) divides h(E) and the order of the
kemel of N is h (E)/ h (F).

PROOF: By class field theory, the unramified abelian extensions of
F which are contained in E correspond in an inclusion-reversing
manner to the subgroups of C(F) which contain the image of the
norm map N : C(E) - C(F).
When (i) and (ii) are satisfied, C(E)/ ker N is isomorphic to C(F).

Since a finite abelian group A is isomorphic to its dual, any factor

group of A is isomorphic to some subgroup of A.//
If the equivalent conditions of Theorem 2.1 are satisfied for the

extension E/F, then one sees directly that h (F) =
JH(F):Fl = JEH(F):El divides IH(E):EI = h(E) since EH(F) C
H(E). We incorporate this weaker result in

COROLLARY 2.2 (Pushing up): Let EIF be an extension of number
fields. Then IH(F):H(F) nEI divides h(E) and h(F) divides

IE:Flh(E). In particular, if for any unramified abelian extension H of
F we have E nH = F, then h (F) divides h (E).

PROOF: We have JH(F):H(F) nEl = JEH(F):El I dividing
JH(E):EI.4e

We call an extension EI F totally ramified if no subextension of EIF
except F itself is unramified over F.

COROLLARY 2.3: Suppose EIF is totally ramified. Then h(F) divides
h(E).
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PROOF: For any unramified abelian extension H of F, E fl H = F
since any extension of F contained in E is totally ramified.//

EXAMPLE 2.4: Let F C E C C(p a ) Then h (F) divides h (E).

COROLLARY 2.5: For the cyclotomic fields we have h’(m) divides
h(m), h’(m) divides h’(km), and h(m) divides h(km) for any positive
integer k.

PROOF: The extensions C(m )/C’(m ), C’(km)/C’(m), and

C(km)/C(m) are totally ramified.//

The preceding results give information on the class group of a

number field which is "pushed up" from the class groups of certain
subfields. We can also "push down" information. The following
lemma is fundamental.

LEMMA 2.6: Let EIF be a non-trivial p-extension which is un-

ramified outside the (possibly empt) finite set S of prime divisors of
F.

If S is empty, F has an unramified cyclic extension of degree p.
If v E S, put S’ = S - ivl. If p divides h (E), then F has a cyclic

extension of degree p which is unramified outside S’.

PROOF: Any proper subgroup of a p -group is contained in a normal

subgroup of index p.
Let S be empty. Then Gal(E/F) contains a normal subgroup A of

index p and the subfield of E fixed by A satisfies our requirements.
Suppose v E S. Since p ) h(E), P(E), the maximal unramified abel-

ian p -extension of E, is a proper extension of E. If s is any

embedding of P(E) into an algebraic closure of F which restricts to
the identity on F, then s(E) = E since EIF is normal and

s(P(E»Is(E) is an unramified abelian p-extension. B y maximality,
s (P (E)) = P(E) so P (E)/F is Galois. Let G = Gal(P (E)/F).

Now let T be an inertia group for a prime w of P(E) lying above
v. Since P (E) # E and P (E)/E is unramified, T is a proper subgroup
of G. Let N be a normal subgroup of G containing T with IG:NI = p
and let K be the subfield of P(E) fixed by N. The inertia group
T’ C G of any prime of P(E) lying above v is conjugate in G to
T, hence is contained in N. It follows that KIF is unramified at v.

Since P(E)IF is unramified outside S, KIF is then unramifiid outside
S’./
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We now have the following

THEOREM 2.7 (Pushing down): Suppose EIF is a p-extension with at
most one ramified prime divisor of F ramified in E. Then p divides h(E)
only if p divides h(F). If EI Fis totally ramified, then p divides h(E) if and
only if p divides h(F).

PROOF: By Lemma 2.6, H(F), the Hilbert class field of F, contains
a cyclic extension of degree p over F. Hence p divides h (F) _
JH(F):Fl.

If E/F is totally ramified, Corollary 2.3 shows that h(F) divides
h(E) so p in h (F) would push up to h(E).Il

EXAMPLE 2.8: If p divides h(pa), then p divides h(p).

EXAMPLE 2.9. Let p, q be primes with p = 1 mod 2q. Then

h(F(q,p)) is prime to q. In particular, for p  = 1 mod 4, Q(p 1/2) has odd
class number.

THEOREM 2.10: Suppose f = 4p, pq, or 2aq with a * 3, p and q odd
primes, and q = 3 mod 4. Then the maximal real abelian 2-extension K
of Q with conductor f has odd class number.

PROOF: By our assumptions, there is a finite prime v of Q which is
fully ramified in K/Q. If h (K) is even, Lemma 2.6 gives us a quadratic
extension LI Q, unramified at v, with L contained in P(K), the Hilbert
2-class field of K. By looking at v we see that KnL = Q so that
K C LK C P(K). However, then LK is a real abelian 2-extension of
conductor f properly containing K.//

EXAMPLE 2.11: The field C’(68) has odd class number.

EXAMPLE 2.12: The totally real fields F(4, 87), F(4, 91), and F(4, 95)
have odd class number since 7 = 19 = 3 mod 4.

EXAMPLE 2.13: The maximal real abelian 2-extension K of

conductor 65 has odd class number. Theorem 2.10 and this result are

special cases of results of Frohlich [4]. We prove that K has odd class
number directly. Since Q(51/2) has a unique prime above 13, Lemma
2.6 can be used to produce a quadratic extension L/Q(51/2) ramified
only at the prime above 5 if h(K) is even. Since the only non-abelian
2-group which is a subgroup of the symmetric group on 4 elements is
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D, the dihedral group of order 8, N = the Galois closure of Lover Q
has Galois group D. However, then an inertia group for the rational

prime 5 cannot be cyclic of order 4 or 8.
The following theorem gives information on the structure of ideal

class groups. By the p-rank of a finite abelian group C we mean the
dimension of the vector space Z/pZ0zC = C/{cp 1 c EE CI over the
field Z/p Z. The p-rank of C is thus the number of cyclic factors in an
elementary divisor decomposition of the p -Sylow subgroup of C.

Analogously, for q = p a, a any positive integer, we define the q-rank
of C to be the number of cyclic factors in an elementary divisor
decomposition of the p-Sylow subgroup of C whose order is divisible
by q. Then we have

THEOREM 2.14 (Structure): Let EIF be a cyclic extension of degree n
and let p be a prime which divides neither n nor h(É) for F C É C E.
Let q = p a for some positive integet a. Then the q-rank of C(E) is

divisible by f, the order of p modulo n.

PROOF: Assume the q-rank of C(E) is not zero. We identify C(E)
with Gal(H(E)/E) via the Artin reciprocity law and put L = the
subfield of H(E) fixed by Cq = {cal c E C(E)}. The group G =

Gal(E/F) acts naturally on C(E) and, from properties of the Artin
symbol, this action corresponds to group theoretic conjugation of
Gal(H(E)/E) by G. Now Cq is G-invariant so it is a normal subgroup
of Gal(H(E)/F), L/F is Galois, and G acts on B = Gal(LI E) =
C(E)/Cq.
To prove our theorem, it suffices to show that the action of G on

B - {1} is faithful. For then the orbits of a generator of G will each
have n elements so card B = 1 mod n and, consequently, the order of
B = B(q) is a power of pf. The p-rank of C(E) is just the exponent
r = r1 with p’ = card B(p). For a &#x3E; 1 and q = pa, the q-rank of C(E) is
the exponent r = ra with pr =card B(p’)/card B(pa-’). By induction
on a we will have f ) ra f or any positive integer a. In particular, the
p-Sylow subgroup of C(E) is then the f -fold direct sum of an abelian
p -group with itself.

To show G acts faithfully, take g E G and let S be the subgroup
generated by g. For b E Blet gb denote the result of the action of g
on b and extending this action by additivity consider B as a Z[G]-
module. Assume now that g 0 1. We will be done if we show that

(g - 1)B = B for then g - 1 acts surjectively on a finite set and thus
injectively. The injectivity shows that G acts as desired.
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Let É be the subfield of E fixed by S. Now (g - 1)B is a subgroup
of B on which S acts and hence is a normal subgroup of Gal(L/E).
Then L, the subfield of L fixed by (g - 1)B is a normal extension of É.
We put A = Gal(LIE) and we have B = BI(g - 1)B = Gal(LIE). Now
A/B = S and S acts trivially B.

Since the order of S is prime to the order of B, the group extension
A/B splits and we have the direct product A = B x D where D = S.
Let K be the fixed field of D so that Gal(L/K) = D and Gal(K/E) =
A/D = B. Suppose B is non-trivial. Let P be any prime divisor of L
with inertia group T for L/É. Since L/E is unramified at all prime
divisors, T nB = 1. The groups B and D have relatively prime orders
so it follows that T is contained in D. This shows that K/E is
unramified at all prime divisors. Hence K C H(É) and so p h (É)
contradicting our hypothesis. Thus B = 0 and we are done.//

COROLLARY 2.15 (Rank): Suppose E/Fis a cyclic extension of degree n.
Let p be a prime which does not divide h (2) forany field É with F C É CE
and which does not divide n. If p l h (E) then the p-rank of C(E) is a
multiple of f, the order of p modulo n, and pf ) l h(E).

EXAMPLE 2.16: If a prime p ~ 29 divides h’(59), then p f where f is
the smallest positive integer with pf = 1 mod 29 also divides h’(59).
Since h’(59) is prime to 29 by the Pushing Down Theorem (2.7), we
see that h’(59) = 1 or h’(59) ? 59. However, d’(59)  51.27 so (1.8) and
the class number bound function value (Table 1 in the Appendix)
G(340) = 51.328 shows that h’(59)  340/29. Hence h’(59) = 1.

EXAMPLE 2.17: From the Odlyzko class number bound function, it
is easy to see that h (F(3, 67))  4 and h(F(11, 67 ))  13. The Pushing
Down Theorem eliminates 3 and 11 respectively from these class
numbers. The Rank Corollary (2.15) shows that h(F(3, 67)) = 1 or 4
and also shows that if 11 ~ p  13 divides h (F( 11, 67)) then so does a
power p f &#x3E; 13. Hence h (F(11, 67)) = 1. Applying the Rank Corollary
now to C’(67) shows that if p ~ 2, 3, 11 and p ;h’(67) we must have
pf &#x3E; 199 and pf a factor of h’(67). (We have used here the fact that
67 X h’(67), [30].) Since the Pushing Down Theorem eliminates 3 and
11 from h’(67), we see that h’(67) is a power of 2 (possibly 20) or a
power of 2 times a number greater than 198.
We have seen in (2.5) that h(m) = h *(m )h’(m ) for a natural number

h*(m) called the relative class number. When m = p there is a

classical closed formula for h *(p ),
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where the product runs over all primitive, odd (i.e. X(-I) = -1)
Dirichlet characters X of conductor f (X) dividing p. This formula was
known to Kummer and he called this the f ormula for the first factor

hl(p) of the cyclotomic class number of p-th roots of unity. By
replacing p by m in our definition, one obtains Kummer’s general
formula for the first factor h,(m) of the cyclotomic class number of
m -th roots of unity, m ~ 2 mod 4, m odd. For m divisible by 4, the 2
outside the product should be dropped also. Correspondingly the
second factor h2(m ) was for Kummer the quotient h(m)/h1(m), When
m is a prime power pa, then hl(p’) = h*(pa) and so h2(P’) is the class
number of C’(pa). However, when more than one rational prime
ramifies in C(m), h*(m) = 2h1(m ) and, thus, h2(m ) is twice the class
number of C’(m). Kummer, however, considered the second factor to
be the class number of C’(m ) because his class group was ideals
modulo ideals generated by an element of positive norm. For Kum-
mer and some others then the first factor of the cyclotomic class
number is not necessarily an integer but only a half-integer. In this
paper we use exclusively the relative class number which is an

integer.
The first factor hl (p) = h *(p ) enabled Kummer to tell whether a prime

was regular (i.e. p§ h(p)) or irregular (p 1 h(p)), because he proved
that p divided h2(p ) = h’(p ) only if p divided h*(p). This generalizes
as follows;

THEOREM 2.19 (Kummer Criterion): Let F be a totally real algebraic
number field and let p be an odd prime. Suppose that adjoining a p-th
root of a root of unity in FC(p) to FC(p) never gives an unramified
extension of FC(p) of degree p. Then p divides h(F) implies that p divides
the quotient h (FC(p ))/ h (FC’(p )).

PROOF: Let K = FC(p) and K’ = FC’(p). If p l l h(F), then the Push-
ing Up Corollary (2.2) shows that p lh(K’) since pt IK’:FI and so K’
has a cyclic, unramified (totally real) extension L of degree p. Since L
and K are both abelian extensions of L fl K = K’, we see that LKIK’
is a cyclic extension of degree 2p. If s generates Gal(LKI K) and J is
the automorphism of LK induced by complex conjugation, then
sJ = Js is a generator of Gal(LK/K’).
As a Kummer extension of K, LK = K(a1/p) for some non-zero

a E K which is not the p -th power of an element in K. Let a = a 1/P be
a fixed p -th root of a and let (Ja)"P = Ja. Now sa = (la and s(Ja) =
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(2Ja where Ci, C2 are primitive p -th roots of unity. But C2Ja = s(Ja) =
J(sa) = C-11 Ja so s (aJa ) = (sa)(sJa) = aJa. It f ollows that a (Ja ) is a
p -th power in K. Since b = alJa = a 2I aJa we get LK = K(a) =
K(a2) = K(b"P). Furthermore the ideal (b) generated by b in K must
be bP for some fractional ideal b of K (since LKI K is unramified)
with Jb = b-1 because bJb = 1. The ideal class of b then is in the

kernel of N : C(K) --&#x3E; C(K’) so by (2.1 ) we will be done if we prove that b
is not a principal ideal.

If we had b = (d) with d E K, then b2p = bP/(Jb)P = (dlJd)P = (u)P
where u = dlJd. Then (b 2) = (up) so v = uPlb2 = (dP/a2)IJ(dP/a2) is a

unit of K, all of whose conjugates have absolute value one. But then
the unramified extension LKI K is just K(v 1/P)/ K with v a root of
unity in K contrary to hypothesis.//

COROLLARY 2.20 : Let Mbe the least common multiple of m and the odd
prime p. Then p divides h’(m) only if p divides h*(M).

PROOF: When M = m, the result follows immediately since h(m) =

h (M) = h *(M)h’(M) and (2.19) shows that p l h *(M). When m = p this is
the case of Kummer’s original criterion.
When p X m, p h’(M) whenever p l h’(m) by (2.5). We may argue

then as above.//

We remark that h *(p ) l h *(M) (see [21]) so an irregular prime can
never be eliminated from h’(m ) via (2.20).
There is a result analogous to (2.20) for the case p = 2.

THEOREM 2.21 (Parity check): Let EIF be a ramified quadratic
extension of number fields with no capitulation, that is no non-

principal ideal of F becomes principal in E. Then h(F) is even only if
h(E)lh(F) is even. In particular, h’(m) is even only if h*(m) is even.

PROOF: Suppose c E C(F), c2 = 1, c ~ 1. By hypothesis C(F) in-
jects into C(E) so we may consider c E C(E), c  ~ 1. Now by (2.1) the
norm map N : C(E) --&#x3E; C(F) is surjective and since Ne = c2 = 1 the
kernel of N has even order equal to h (E)I h (F). In particular,
C(m )IC’(m ) is ramified at the infinite primes and by a theorem of
Kronecker [12] no non-principal ideal of C’(m ) becomes principal in
C(m )./

THEOREM 2.22 (Cyclotomic spiegelungsatz): Let p be any prime
number and let M be the least common multiple of m and p. Then p
divides h’(m) only if p divides h *(M).
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PROOF: Since C(M) = C(m) when p = 2, this is just a restatement
of (2.20) and (2.21).//

EXAMPLE 2.23: For conductors f - 100, h*(f ) is even ([9], [29]) only
for f = 29, 39, 55, 56, 65, 68, 77, 87, 91, and 95. Consequently h’(f ) is
odd for all other conductors f S 100. In particular h’(pa) is odd for

p a  100 since (1.8) can be used to show h’(29) = 1.

EXAMPLE 2.24: The relative class number h *(3p ) is prime to 3 for
p = 71, 79, 89, and 97 (see [29]). Hence h’(p) is prime to 3 for p = 71,
79, 89, 97, and by (2.4) the class number of any real abelian number
field with conductor 71, 79, 89, or 97 is also prime to 3.

Besides eliminating possible class number divisors one can some-
times also find class number divisors. For abelian number fields there

is a generalization of the theory of genera for quadratic fields. For K
an abelian extension of Q, the genus field of K, G(K), is the maximal
subfield of C ( f (K)) such that G(K)/K is unramified at all finite

primes. For K of prime power conductor then G(K) = K. In that case
or for K of odd degree or for K non-real, G (K) is the maximal

subfield of H(K) which is still abelian over Q. In these cases then
non-trivial factors of l G(K):Kl are also factors of h(K) = l1 H (K): KI.
In the remaining cases we may have K totally real and G(K) totally
imaginary so G(K)I K is ramified at infinite primes. However, the
maximal real subfield G’(K) of G(K) is contained in H(K) so

lG(K):Kl = lG(K):G’(K) l 1 G’(K):KI divides 2h(K).
Unlike the quadratic field theory, however, only a lower bound on

the p-rank of C(K) for K a cyclic extension of degree p is possible via
genus theory. For example, the genus field of an F(3, 79.97) has
degree 3 over that cubic field but the 3-rank of C(F(3, 7663)) is 2 for
both of those cubic fields ([6]). Bauer [1] mentions that in each field K
for which he successfully determined the class number there is only
one class per genus. What is meant by this is that G’(K) is the same as
H(K) for those K.
The genus field of an abelian extension K is easily determined via

the Dirichlet characters attached to K. Since K C C(f (K», Gal(KIQ)
may be viewed as a factor group of (Zif(K)Z)’, the multiplicative
group of units mod f(K). The dual of Gal(K/ Q) is then a subgroup H
of the group of characters of (Zlf(K)Z)X. The characters in H may
then be identified with a subgroup of the Dirichlet characters modulo
f (K). A Dirichlet character Xf mod f is a product of (not necessarily
primitive) Dirichlet characters Xpa modulo pa, p a ll f, where we call Xpa
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the p-primary component of Xf. One also gets a product decom-
position of Xf by replacing each p -primary component by the Dirich-
let character modulo f which it induces. Now we can characterize

G(K).

THEOREM 2.25: Let K be the abelian number field of conductor f
corresponding to the subgroup H of the group D of Dirichlet characters
modulo f. Let G be the subgroup of D which is generated by all the
characters of D which are induced from a p-primary component of any
character in H. Then the abelian field G(K) of conductor f corresponding
to G is thegenus field of K, the maximal abelian extension of K unramified
at all finite primes which is still abelian over Q.

PROOF: The reader is referred to [131.,e

EXAMPLE 2.26: Let p; - 1 mod q, i = 1, 2 where p1, p2, and q are
distinct primes. Any of the q - 1 fields F(q, P IP2) corresponds to a
cyclic group H generated by a Dirichlet character Xp1 Xp2 of order q
where each component is non-trivial. The group G generated by
the q-power characters mod pi, 1, 2 is a (q, q) group corresponding to
the field G(F(q,PIP2) = F(q, p l)F(q, P2). In particular q l h(F(q, PlP2»
if G(F(q, P1P2)) is real.

REMARKS: The Pushing Down Theorem (2.7) and the Rank

Theorem (2.15) are generalizations of results of Iwasawa [10], [11].
Frôhlich derived 2.7 in [5]. Our proof is more direct. Frôhlich also
proves a type of Structure Theorem in [3]. The proof of Kummer’s
Criterion (2.19) is Greenberg’s [7] though he states the result in a less
general f orm.

3. The prime-power conductor case.

In this section we apply the results of the preceding sections to
calculate the class numbers of most of the real cyclic number fields of
prime power conductor less than 100. Our results are compiled in Table 2
which we explain below. The class number was one for all the fields for
which we were able to make a complete computation. This is not the
general case as, for example, h’(257) is divisible (2.4) by the class
number of Q(2571/2) which is 3.
Given any prime power pa, C’(pa)/Q is cyclic so the degree of a real

abelian field of conductor p a determines a unique field. In Table 2 we
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list for each field its conductor, its degree, and its root-discriminant
rounded up. If b is the value listed in the rd column for F(n, f ) then
b - .01  rd(F(n,f))  b. We ignore quadratic fields since methods of
determining their class numbers are well-known. The values of the
class number bound function G(x) in Table 1 are truncated, so to

reproduce our work one should find the minimal x with G(x) &#x3E; b in
order to apply the Class Number Bound Theorem (1.8). The bound we
obtained using that theorem is listed in the column headed "h :5". We
used a more complete table of values of G(x) so for a few fields the
value in the "h  " column will be less than that obtained by using
Table 1. A blank in the "h -.5 " column indicates that (1.8) does not

apply since the root-discriminant exceeds all values of G(x).
In the column marked "elimination" we indicate how possible

prime divisors of h(K) are eliminated for the field K. We saw (2.23),
for example, that h’(pa) is odd. We have indicated this by 2PC since
the Parity Check Theorem (2.21) was used. From (2.4) we see that all
proper subfields of C’(p a ), p a  100, also have odd class number since
a 2 "pushes up" to C’(pa). We use PU to denote that the Pushing Up
Corollary (2.2) was used. Because F C E C C’(pa) implies that EIF
has a unique ramified prime, the Pushing Down Theorem (2.7) can
often be used. This is indicated by PD. The use of the Rank Corollary
(2.15) is indicated by R. We do not, however, indicate which auxiliary
fields are used when a prime is eliminated via PU, PD, or R. We also
remark that there may be more than one way to eliminate a prime.
One other method used in this section is the generalized Kummer
Criterion (2.19) or its corollaries for which we use the notation K (see
(2.24)). For diagrams of the fields involved in our considerations the
reader is referred to the tables at the end of [9].

EXAMPLE 3.1: In example 2.17 we saw that F(11, 67) had class
number one and that F(3, 67) had class number 1 or 4. However, 2 in
h (F(3, 67)) pushes up to h’(67) which violates the Parity Check
Theorem. We also saw that 3 and 11 in h’(67) can be eliminated via
the Pushing Down Theorem. From the Odlyzko Bound Theorem
h’(67)  136 and 67 is the only prime power less than 137 which is
congruent to 1 mod 33. Since 67 X h’(67), the Rank Corollary now
shows that h’(67) = 1.

Our results give the following:

THEOREM 3.2: Any real abelian number field of prime power
conductor less than 70 has class number one.
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We conjecture that 70 may be replaced by 100. If this conjecture is
false, then we would have a zero of the Dedekind zeta function of a
number field whose real part would be greater than 2. This would
occur because Odlyzko has produced a class number bound function
g(x) with lim g(x) = 185+as x goes to infinity by assuming that
Dedekind zeta functions of totally real fields have no zeroes ß + iy in
a bounded region contained in 1/2  ß  1. Using our techniques we can
use this improved but conditional class number bound function to
replace 70 by 100 in theorem 3.2.
A blank in the "h = " column of Table 2 indicates that Bauer [1]

computed h, but we know of no independent verification. A question
mark indicates that we are unaware of any computation of h. We

need to refer to [8] to eliminate 5 for the fields F(4, 89) and F(4, 97).

4. The non-prime-power conductor case.

In this section we show how to calculate the class numbers of most

of the real cyclic number fields whose conductor is not a prime power
and does not exceed 100. Our results are compiled in Table 3. Table 3
is very similar to Table 2. In this case, however, there may be more
than one field with a given degree and conductor. In some cases, the
root-discriminants can distinguish the fields. When this is not the

case, there is a double entry to indicate that there are two fields with
the same conductor, degree, and root-discriminant. Although such
fields can have different class numbers (for example, the two F(3,
79 - 97)’s, see [6]), this does not occur for conductors less than 100
except possibly for F(12, 91).
Another difference is the presence of genus factors. As we remar-

ked in section 2, we must have G(K) = K for f (K) = p a. This is no
longer the case when f (K) is not a prime power. Hence the column
between "h  " and "h = " is headed "divisors". A G indicates that

the divisor is present from IG’(K):KI (see 2.21). In all other cases a
reason is indicated why a possible prime divisor of the class number h
is eliminated. The notation is the same as in Table 2 with the addition
of F to denote that Fr~hlich’s results were used (see 2.10-2.13).
The genus factors are always taken into account first. For example,

knowing that h(F(3,91))  6 does not allow us to eliminate 2 by the Rank
Theorem. However, since 3 / h(F(3, 91 )) by (2.26),4.X h (F(3, 91)). The
following result was also used.

PROPOSITION 4.1: Let E/F be an extension of number fields with
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F C E C H(F) and h(E) prime to p. Then h(F) and JE:FL are

divisible by the same powers of p.

PROOF: Apply 2.2.//

EXAMPLE 4.2: Since h *(85) = 6205, the Parity Check Theorem
shows that C’(85) has odd class number. The extension

C’(85)I C’(5)F(4, 85) is totally ramified so by the Pushing Up Corollary
the fields C’(5)F(4,85) and C’(5)C’(17) also have odd class number.

Proposition 4.1 now shows that the class numbers of F(16, 85) (both
fields), F(8, 85), and F(4,85) are divisible by 2 but not by 4.

EXAMPLE 4.3: We have rd’(80)  26.75 so by (1.8) h’(80) = 1. By
(2.2) then the maximal real subfields of the genus fields for all the

F(4, 80)’s have class number one and so 4 X h(F(4, 80)).

EXAMPLE 4.4: The maximal real 2-extension of C(65) is G’(F(4, 65)).
Its class number is odd by Example (2.13). The Rank Theorem applied to
C’(65)/G’(F(4, 65)) shows that 4 ) h’(65) if h’(65) is even. However, (1.8)
yields that h’(65) s 2 so h’(65) = 1. Now C’(65) = G’(F(12, 65)) so the
class numbers of the two F (12, 65)’s and the two F(4, 65)’s are all twice an
odd number. Since they are all less than 6 by (1.8), they are all equal to 2.

We summarize our results.

THEOREM 4.5: Let K be a real, cyclic number field whose conductor
does not exceed 100 and is not a prime power. Then G’(K), the
maximal real subfield of the genus field of K is the Hilbert class field
of K except possibly for the following : the twelfth degree extensions of
conductor 91 with root-discriminants greater than 30, the extensions

of conductor 95 whose degrees are 12 and 36.
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Appendix
TABLE 1: Lower bounds for root-discriminants of

totally real number fields of degree x ([26])

Any totally real field of degree greater than or equal
to x has root-discriminant greater than or equal to G(x).
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TABLE 2: Real cyclic fields of prime power conductor  100
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TABLE 2: (continued)

f = conductor, n = degree, rd = root-discriminant, h  = upper bound
for class number using (1.8), h = = the class number if computed; See
section 3 for explanation of Elimination.
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TABLE 3: Real cyclic fields of conductor :5 100 with more than one
ramified prime
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TABLE 3 (continued)
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TABLE 3 (continued)

See Table 2 and section 4 for an explanation of the table.
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