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1. Introduction

For G a group, let GL = {Ag: g E G} denote the group of left

translations of G. Thus Àg is a permutation of the set G acting as
Àgjc = gx (x E G) for each g E G. The graph X is a graphical regular
representation (GRR) of G if the vertex set of X is V(X) = G, and
the automorphism group of X, Aut X coincides with GL. The problem
of determining which groups admit a GRR has been the object of a
great number of papers in the recent years (cf. [7] for a survey and

[1, 2, 4] for more recent development).
M.E. Watkins [5] defined the following classes of groups: Class I

consists of those finite groups which admit a GRR.
A finite group G belongs to Class II, if for each subset H C G,

satisfying H = H-’, there exists a non-identity automorphism 0 of G
such that OH = H. (This was originally required for generating sets H
only; but OH = H implies O(GBH) = GBH hence this formulation
yields the same class.)
A non-abelian group G is a generalized dicyclic group, if G has an

abelian normal subgroup A of index 2 such that for some (actually
any) b E G B A,

(a b denotes b -1 ab ).
Let us define Class III as the class of all finite abelian and

generalized dicyclic groups, except the elementary abelian 2-groups. -
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THEOREM 1: (Tekla Lewin and M.E. Watkins [5]). A finite group G
belongs to Class III if and only if there exists a non-identity
automorphism 0 of G such that -ox E {x, x-Il for any x E G.
This in turn implies that Class III is a subclass of Class II. It is

easily seen that Class 1 and Class II are disjoint ([5]). Watkins
proposed the following two conjectures:

CONJECTURE A (1970) [5, p. 97]: The union of Class 1 and Class II
includes all finite groups.

CONJECTURE B (1973) [6, p. 50]: There exists a positive integer N
such that if a non -abelian group G is in Class II, then G is a

generalized dicyclic group, or IGI:5 N.

Let zm denote the cyclic group of order m ; and Gm = G x ... x G

(m times).
As the abelian members of Class II are Z22, Z32, Z’ and the abelian

members of Class III ([3]), this conjecture can equivalently be
formulated as

CONJECTURE B’: There exists an integer N such that no group of
order exceeding N belongs to the difference Class IIBClass III.

Later Watkins recalled this conjecture in the following formulation:

CONJECTURE C (1975) [7, p. 518]: There exists an integer N such
that if IGI &#x3E; N then G is abelian or G is generalized dicyclic or G
admits a GRR.

This is clearly a strong conjecture; its solution would (at least in
principle) settle the GRR-problem. It is far from being equivalent to B.
In fact, it is clearly equivalent to the conjunction of B and the
following, somewhat weaker form of A:

CONJECTURE A’: The union of Class I and Class II contains all
finite groups of order exceeding some integer N.

From [7] we learn that Watkins "has been plagued intermittently
with doubts ever since" he has formulated B. Apparently, he found A’
to be more plausible. The aim of the present note is to prove B.
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THEOREM 2: If a non-abelian finite group G with lGl &#x3E; 4683
belongs to Class II then G is generalized dicyclic.

Equivalently, we assert that B and B’ hold with N = 4682. This
implies that A’ and C are equivalent (and, consequently, A implies C).

Let us close this section with conjecturing that the same holds if G
is an arbitrary non-abelian infinite group.

2. The proof

By the orbits of a permutation .p we mean the orbits of the cyclic
group 03C8&#x3E; generated by tp. Fixed letters are one-element orbits. The
following are straightforward:

PROPOSITION: (a) If a permutation 03C8, acting on some set K, has l
orbits, then the number of subsets of K, invariant under 03C8, is 2e.

(b) Setting IKI = k, the number of letters fixed by 03C8 is at least

2t - k..

We shall need the following lemma:

LEMMA 1: Let P be a set of permutations, acting on a set K. Let
IKI = k and log2 IPI = p. Assume that for any subset L of K there is a
member OL of P such that OLL = L. Then there is a member e of P
which fixes at least k - 2[p] letters.

PROOF: The proof is shorter than the lemma. K has 2k subsets,
hence there is a gi OE P such that at least 2k/lP 1 = 2k-p subsets are

invariant under ip. Let e denote the number of orbits of tp. Then,
clearly, .p has exactly 2’ invariant subsets, whence e k - [p]. This in
turn implies that e fixes at least 2t - k 2: k - 2[p] letters (Prop.
(b)). ·

COROLLARY: Let G be a group of order n. Set laut Gl = m + 1,
log2 m = q. If G belongs to Class II, then G has a non-identity
automorphism çb and a subset D such that lDl  4[q] and Ox E {x, x-’l
for each x e GBD.

PROOF: Let L denote the set of pairs {x, x-’I(x E G, x# e), and let
P be the set of those permutations of L induced by the non-identity
automorphisms of G. Clearly, lPl  m. Hence, an application of
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Lemma 1 yields a 03C8 E P fixing at least ILI - 2[q] letters. Let 03C8 be
induced by 0 E Aut G (O ~ id). By the definition of L this means that
cPx E {x, x-1} for all but at most 4[q] members x of G. ·

LEMMA 2: Let G be a group of order n and D C G a subset of size

IDI  n/4. Assume that for some (b E Aut G, Ox = x-’ for each x E
GBD. Then G is abelian.

PROOF: Let x E G BD. We prove that x belongs to Z(G), the
center of G. This in turn implies that G = Z(G) whence the lemma.
Assume to the contrary that lC(x)l  n/2 where C(x) denotes the

centralizer of x. Let y E G B(C(x) U D U x-1D). (The right-hand side is
non-empty, since IDI  n/4.) Now x, y, xy E hence Ox = x-’,
*y = y-’ and cP(xy) = (xy)-l. On the other hand, 0(xy) = (ox)(0y) =
x-Iy-l, whence (xy)-’= thus y E C(x), a contradiction with the
choice of y. ·

LEMMA 3: Let G be a group of order n and D C G a subset of size
 n/8. Assume that there exists a non-identity automorphism 0 of
G such thatox E {x, x-1} for each x E GBD. Then G belongs to Class
III.

PROOF: We break up the proof to a series of minor assertions. Let
A = {x : x E G, cPx = x}, and B = G B(A U D). We may assume that A
and D are disjoint.

I. A is a proper subgroup of G, hence  &#x3E; 3n/8 &#x3E; 31DI.
Il. If a E A, b E then ab = a-1. (ab stands for b-lab.)

PROOF: ab E  hence abe A U D. Thus ab E B, and (by the
definition of On the other hand, 0(ab)

= Comparing the results, ab = a-’ follows.

III. A is abelian.

PROOF: Let a,, a2 E A and b E BB(a 11D U a Ç’D LJ (a, a2)-’D). (The
right-hand side is non-empty by I.) Hence, by II, abi = a-’ 1 (i = 1, 2),
(a1a2)b = (a1a2)-1. On the other hand, (ala2)b = a;a2 = alla21, hence ai
and a2 commute.

IV. For any a E A and x E G we have ax E {a, a-1} and hence
lG : C(a)l  2. Moreover, a2 = e if and only if a E Z(G). (C(a) denotes
the centralizer of a in G and Z(G) the center of G.)



295

PROOF: Let Na denote the normalizer of the set la, a-’l in G. By
III, A -«5 N,,, and by II, B B a-1D C Na. We conclude that lNal &#x3E; 
lA U(B"-.a-lD)I;::: n -21DI &#x3E; n/2, hence Na = G. If a2 = e then C(a) =
Na proving that a E Z(G). If a2 # e then Na # C(a) by II, hence

(Na : C(a)1 = 2.

V. If lG: Al = 2 then G belongs to Class III.

PROOF: We assert that O x E {x, x-1} for each x E G. This, by Theorem
1, implies our statement. For x EAU B, Ox E {x, x-1} by definition. Let
x E D, b E B and a = b-Ix. Clearly, a E A. By IV, ab E {a, a-’l. If ab = a
then a E Z(G) (as G = A U bA), hence a = a-1 by IV. Thus ab = a-1
anyway. Hence Ox = (ob)(0a) = b-la = abb-1= a-lb-1= x-1, indeed.

VI. If IG: AI &#x3E; 2 then A is an elementary abelian 2-group.

PROOF: Assume that a2 # e for some a E A. By IV, IC(a)1 = n/2.
By III, A  C(a), hence IAI:5 n/4. By II, C(a) n(B"-.a-lD) = 0, hence
C(a) Ç A U D U a-1D. This implies n/2=IC(a)1:5n/4+21DIn/2, a
contradiction, proving that a 2 = e.

VII. If IG: AI &#x3E; 2 then G is abelian but not an elementary abelian
2-group.

PROOF: By VI, we have Ox = x-1 for any x E GBD. Now an

application of Lemma 2 proves that G is abelian. If G were an

elementary abelian 2-group, then A D GBD, a contradiction.

VIII. By V and VII, the proof of Lemma 3 is complete..

PROOF OF THEOREM 2: Let G be a group of order n, belonging to
Class II. Let d denote the minimum number of generators of G.

Clearly, d --5 [1092 n]. As any automorphism of G is fully determined
by its action on a generating set, we have the trivial estimate

laut Gl  (n - 1)... (n - d)  nd. Now an application of the Corollary
to Lemma 1 yields a non-identity automorphism 0 of G and a subset
D C G such that Ox E {x, x-11 for each x E GBD, and IDI  4d log2 n.
Hence we may apply Lemma 3, provided 4d log2 n  n/8; in particular
if [log2 n ]  n/(32 log2 n). This inequality holds for any n ? 4683. Then
by Lemma 3, G belongs to Class III, proving Theorem 2. ·
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