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THE THREE SPACE PROBLEM FOR

LOCALLY BOUNDED F-SPACES

N.J. Kalton

Abstract

Let X be an F-space, and let Y be a subspace of X of dimension
one, with X/Y = lp (0 p oo). Provided p ~ 1, X ~lp; however if
p = 1, we construct an example to show that X need not be locally
convex.

More generally we show that Y is any closed subspace of X, then if
Y is an r-Banach space (0  r:5 1) and XI Y is a p-Banach space with
p  r S 1 then X is a p-Banach space; if Y and XI Y are B-convex
Banach spaces, then X is a B-convex Banach space. We give condi-
tions on Y and XI Y which imply that Y is complemented in X.
We also show that if X is the containing Banach space of a

non-locally convex p-Banach space (p  1) with separating dual, then
X is not B-convex.

COMPOSITIO MATHEMATICA, Vol. 37, Fasc. 3, 1978, pag. 243-276.
Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn
Printed in the Netherlands

1. Introduction

Let X be an F-space (i.e. a complete metric linear space) over the
real field. Then ([7]) X is called a espace if every short exact

sequence 0 --&#x3E; R --&#x3E; Z --&#x3E; X --&#x3E; 0 of F-spaces splits. The main aim of this
paper is to solve the problem raised in [7] of whether the spaces tp
(0  p ~ 1) are K-spaces. In fact we show that for 0  p  00, tp is a

X-space if and only if p # 1. Thus if X is an F-space whose quotient
by a one-dimensional subspace is isomorphic to e, then for p ~ 1, we
must have X ~ lP ; we construct an example to show that the result is
false for p = 1. This enables us to solve negatively a problem of Stiles
[12] by giving a subspace X of ep (0  p  1) such that lp/X ~ l1 but
X does not have the Hahn-Banach Extension Property.

This problem is studied via the so-called "three-space problem": if
0 --&#x3E; Y --&#x3E; Z --&#x3E; X --&#x3E; 0 is a short exact sequence of F-spaces, what pro-
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perties of Z can be deduced from those of X and Y. It is known that
X, Y and Z are Banach spaces, then if both X and Y are reflexive
then so is Z; if X and Y are super-reflexive then Z is super-reflexive
([4]); if X and Y are B-convex, then Z is B-convex ([5]). However X
and Y can be isomorphic to Hilbert spaces with Z not isomorphic to
a Hilbert space ([4]). Of course all these results apply only when it is

given that Z is a Banach space.
If X and Y are locally bounded, then so is Z (W. Roelcke, see

Theorem 1.1 below). We show in Section 2 that if X and Y are both
B-convex Banach spaces, then Z is locally convex (and hence a
B-convex Banach space, by Giesy’s theorem quoted above). In

Section 4 we show that X is a p-Banach space (i.e. a locally p-convex
locally bounded F-space) and Y is an r-Banach space where p  r «-5

1, then Z is a p-Banach space. We also construct in Section 4 a space
Z, such that Z/R ~l1 but Z is not locally convex, showing these
results cannot be improved to allow p = r = 1, (this answers a ques-
tion of S. Dierolf [3]).

In Section 3, we also consider pairs of F-spaces (X, Y) such that
every short exact sequence 0 --&#x3E; Y --&#x3E; Z --&#x3E; X --&#x3E; 0 splits; we then say
that (X, Y) splits. We prove that (fp, Y) and (Lp, Y) split if Y is an
r-Banach space with 0  p  r  1. We also give generalizations of
these results to Orlicz spaces.

Finally we are able to show, as a by-product of this research, that
the containing Banach space of any locally bounded F-space, which is
not locally convex, cannot be B-convex (Section 2). This answers a

question of J.H. Shapiro, by showing that the containing Banach
space of a non-locally convex locally bounded F-space cannot be a
Hilbert space.
We close the introduction by proving our first result on the three-

space problem. As a consequence of this theorem, our attention in
later sections will be restricted to locally bounded spaces. Theorem
1.1 is due to W. Roelcke (cf. [3]).

THEOREM 1.1: Let X be an F-space and let Y be a closed locally
bounded subspace of X ; if XI Y is locally bounded, then X is locally
bounded.

PROOF: Let U be a neighbourhood of 0 in X such that r(U) and
U ~ Y are bounded, where 17": X --&#x3E; X/Y is the quotient map. Choose
a balanced neighbourhood of 0, V say, such that V + V C U. Suppose
V is unbounded. Then there is a sequence (xn) in V such that (1/n xn) is
unbounded. Now nlr(Xn)--&#x3E;0 since r(V) is bounded. Hence there are
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Yn E Y such that + Yn --&#x3E; 0. For some N and all n ? N, 1/n xn + Yn E V
and hence Yn E V + V C U. Thus (yn) is bounded. Hence (1/n-xn) is
bounded and we have a contradiction.

2. Geometric properties of locally bounded spaces

A quasi-norm on a real vector space X is a real-valued function
x4lxIl satisfying the conditions:

(1) llxll&#x3E;0, x E X, x~0
(2) lltxll = Itl llxll t E R, x E X

(3) Ilx + yll:5 k(llxll + Ilyll) x, y E X

where k is a constant, which we shall call the modulus of concavity of
11-11. A quasi-normed space is a locally. bounded topological vector
space if we take the sets eU, e &#x3E; 0 for a base of neighbourhoods of 0
where U = {x: llxll  1}. Conversely any locally bounded topological
space can be considered as a quasi-normed space by taking the
Minkowski functional of any bounded balanced neighbourhood of 0.

If X is a quasi-normed space and N is a closed subspace of X, then
the topology of XI N may be determined by the quasi-norm

where w: X - XI N is the quotient map. If T : X --&#x3E; Y is a linear map
between quasi-normed spaces, T is continuous if and only if

Finally two quasi-norms H and 11-11 on X are equivalent if there exist
constants 0  m  M  oo such that

If 0  p  1, the topology of a locally p-convex locally bounded
space may be defined by a quasi-norm x --&#x3E; IIxII, such that llxllp is a

p-norm, i.e.

A fundamental result of Aoki and Rolewicz ([1], [10]) asserts that
every locally bounded space is locally p-convex for some p &#x3E; 0. We

note that in general if a quasi-normed space is locally p-convex there
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is a constant A such that

If X is a locally bounded space, let

The f ollowing is easily verified.

PROPOSITION 2.1:

(i) amn  aman, m, n E N ; 

(ii) if X is locally p-convex then sup n -1/p an  00.

We do not know if the converse to (ii) holds. We have only the
following partial results. We note that (i) is equivalent to Corollary
5.5.3 of [13].

PROPOSITION 2.2:

(i) X is locally convex if and only if sup n -1 an  00;

(ii) if 0  p  1, then lim n -1/p an = 0 if and only if X is locally
r-convex for some r &#x3E; p.

PROOF: (i) If an  Cn ( n E N ), then for lluill  1 ( 1  i  n ) and
ai &#x3E; 0 (1 sis n) with E ai = 1, define for each m EN, Ài,m to be the

largest integer such that À i,m  ma;
Then

and hence

Letting m --&#x3E; oo we have

so the convex hull of the unit ball is bounded.
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(ii) It is clear that if X is locally r-convex for some r &#x3E; p then

limn --&#x3E; oo n - 1/p an = 0. C onversely suppose limn --&#x3E; oo n -1/p an = 0. Then for
some m, m -1/p a.  1, so that for some r &#x3E; p, m -’tram  1. Thus for

any n with m k  n  m k+1,

Hence there exists N, such that for all n &#x3E; N

Select q &#x3E; 0 by the Aoki-Rolewicz theorem so that X is locally
q-convex and hence

for some constant A &#x3E; 1.

If Ilu;II 1, 1  i  l, a1 &#x3E; 0, 1  1  l and E ari = 1, we shall show
that

and hence X is locally r-convex.
We prove (*) by induction on e; it is trivially true for l = 1. Now

suppose the result is true for l- 1 where l &#x3E; 2. For k &#x3E; 0, let

uk = {i ; 2-k &#x3E; ai &#x3E; 2-(k+1) 1. If lakl  N for all k, then

as required.
If lukl &#x3E; N for some k, let v = I¡Euk a;u;. Then
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Hence we may apply the inductive hypothesis to deduce that

REMARK: We do not know if X is locally p-convex if and only if

sup n-1/Pan  00 f or p  1.

Next we define a sequence bn = bn(X) by

REMARK: A Banach space is B-convex if and only if lim n -1 bn = 0
([2], 5]).

PROOF: (i) If (x;; : 1 5 i  m, 1  j  n) is a set of mn vectors there
exist signs 0;; = ± 1 such that for each i,

and signs Ty, = ± 1 such that

Hence taking

(ii) is trivial.

LEMMA 2.4: If lim n--&#x3E; oo n -l/Pbn = 0 where 0  p « 1 thèn SUPN n -1/p an  00.

PROOF: First we observe that the quasi-norm on X may be
replaced by the Aoki-Rolewicz theorem by an equivalent quasi-norm
satisf ying
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Clearly it is enough to prove the lemma for this equivalent quasi-
norm. Let {X1 ... X2n} be a set of 2n-vectors with llxill  1. For some

choice of signs Ei = ± 1, 1  s 2n we have

Let A = {i: Ei = +1} and B = {i : Ei = - 1}. Without loss of generality we

suppose lAl  n. Then

and hence

and so

Hence

As (bn) is submultiplicative and monotone increasing, there exists
q &#x3E; p such that sup n-1/qbn = C  00 (cf. the proof of Propo sition 2.2),
and thus

Hence E Brn  00 and so (an) is bounded. It follows easily that

supn n - lip an  00.

THEOREM 2.5 : (i) For p  1, the following are equivalent
(a) lim n -l/p an = 0,
(b) lim n-l/Pbn = 0,
(c) X is locally r-convex for some r &#x3E; p.

(ii) lim n -’ b" = 0 if and only if X is isomorphic to a
B-convex normed space.
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PROOF: (i) Clearly (a) =&#x3E; (b). For (b) =&#x3E; (a), note that since (bn) is

submultiplicative lim n - 1/rbn = 0 for some r &#x3E; p. Hence sup n -1/ran  00
and hence lim n -1/r an = 0. (a) =&#x3E; (c) is Proposition 2.2(ii).

(ii) If lim n -1bn = 0 then sup n -1an  oo and hence X is locally
convex. X is then B-convex by definition. The converse is trivial.
We shall not be further interested in the condition lim n -1/Pbn = 0

for p  1, which was considered only for its analogy to B-convexity.
Our main interest in Theorem 2.5 is that lim n -1bn = 0 implies local
convexity. We now turn to the "three space problem" and give our
first result.

THEOREM 2.6: Let X be an F-space with a closed subspace Y such
that XIY and Y are both isomorphic to B-convex Banach spaces.
Then X is isomorphic to a B-convex Banach space.

REMARK: If we assume X is a Banach space, this is due to Giesy
[5]. Our main interest here is that the hypotheses force X to be
locally convex; we shall see later (Theorem 4.10) that the assumption
on Y may be weakened for this conclusion.

PROOF: Our proof closely follows the proof of Theorem 1 of [4].

First we observe that X is locally bounded and hence may be

quasi-normed. We suppose that the quasi-norm has modulus of

concavity k.
Next, for any locally bounded space Z define cn(Z) to be the least

constant such that

As observed in [4] it is known that if Z is a Banach space,

then Z is B-convex if and only if cn(Z) - 0. We observe that if Z is
isomorphic to a B-convex Banach space then cn(Z) --&#x3E;0 (since chang-
ing to an equivalent quasi-norm does not affect this phenomenon).
Thus in our case cn(X/Y) --&#x3E; 0 and cn( Y) --&#x3E; 0.
Now let (xij :  i  m, 1  j  n ) be a set of mn vectors in X.

Denote by 0ij (1  i  m, 1 :5 j :5 n ) the first mn Rademacher functions
on [0, 1],
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Denote by a1 ... çm the first m Rademacher functions on [0, 1]. By
symmetry

where

Let

Since ui is a simple X-valued function on [0,1] we may choose a
simple Y-valued function vi such that

where r: X --&#x3E; X/ Y is the quotient map. Then

Now

Hence
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Thus

In particular

As limm--&#x3E;oo[2kxc(X/Y) + 3k2cm( Y)] = 0, we conclude that for some

large enough m, cm (X) = a  1.

Thus for somme 

and so bm  am. As (bm) is submultiplicative lim m -’ bm = 0, and hence
X is a B-convex Banach space.

REMARK: (i) We shall show later that it is not true that if X/Y and
Y are isomorphic to Banach spaces then X is isomorphic to a Banach
space.

(ii) Results for p-Banach spaces (p  1) can be obtained by these
methods, but we will obtain better results in this case in the next
section by different techniques.

We conclude this section by showing that the containing Banach
space of a non-locally convex locally bounded space is never B-

convex.
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THEOREM 2.7 : Let X be a locally bounded F-space and T a
B-convex Banach space. Suppose T:X- Y is a continuous linear
operator. Suppose U is the unit ball of X and that co T (U) is a
neighbourhood of 0 in Y. Then T is an open mapping of X onto Y.

PROOF: For each n &#x3E; 1, let Un = {1/n (u1 + ... + un) : u; E U, 1 sis n}.
Then each Un is bounded and Un&#x3E;1 T (Un) is dense in co T (U). If
x E Um x = 1/n (u1 + ... + un), then for some choice of signs Ei = ± 1

where bn = bn(Y). Hence f or some k  1/2 n, and a set A of {l, 2,..., n}
width A l = k

Then

where B is the unit ball of Y.
As bn/n --&#x3E; 0, there exists p &#x3E; 0 such that bn  Cn’-p, n E N for some

C  00. Now let Vn = Uks2n Uk. Then

and so for m &#x3E; n

Choose E &#x3E; 0 so that EB C co T(U) and n so that 2CllTll2-nP(1-
2-p )-1 s E/4. Then
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and hence

where W=U(Wm:m &#x3E; 1).
However W is bounded. This is because Vn is bounded, and for

r &#x3E; 0, there is a constant A  oo, such that

Thus the map T is almost open, and it follows from the Open
Mapping Theorem that T is open and surjective.

If X is an F-space whose dual separates points, then the Mackey
topology on X is the finest locally convex topology on X consistent
with the original topology. This topology is metrizable and the

completion of X in the Mackey topology is called the containing
Fréchet space X of X. If X is locally bounded then X is the

containing Banach space of X.

THEOREM 2.8: If X is a locally bounded F-space whose dual
separates points and whose containing Banach space is B-convex,
then X is locally convex (and hence X = X).

PROOF: The natural identity map i:X--&#x3E;, X satisfies the conditions
of Theorem 2.7.

REMARKS: This resolves a question of J.H. Shapiro (private com-
munication) : is it possible to have a locally bounded non-locally
convex F space whose containing Banach space is a Hilbert space?
The above theorem shows that any locally bounded F-space whose
containing Banach space is a Hilbert space is locally convex (and
hence a Hilbert space). It is possible to give examples of non-locally
convex locally bounded F spaces whose containing Banach spaces are
reflexive ; see the ’pseudo-reftexive’ spaces constructed in [8] (these
were based on a suggestion of A. Pe,Yczynski). The author does not
know whether co can be the containing Banach space of a non-locally
convex locally bounded space.
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We conclude by restating Theorem 2.7 in pure Banach space terms.
Denote by cop U the p-convex hull of the set U.

THEOREM 2.9: Suppose X is a B-convex Banach space and U is a
balanced bounded subset of X such that co U is a neighbourhood of
0. Then for any 0  p  1, cop U is a neighbourhood of 0.

PROOF: Let V be the linear span of cop U ; then V is a locally
bounded F-space with unit ball cop U. Apply Theorem 2.7 to the

identity map i : V - X.

3. Lifting theorems

In this section, we shall approach the three space problem from a
different direction. We shall say that an ordered pair of F-spaces
(X, Y) splits if every short exact sequence of F-spaces 0 --&#x3E; Y --&#x3E; Z --&#x3E;

X - 0 splits, i.e. if whenever Z is an F-space containing Y such that
ZI Y = X then Y is complemented in Z and so Z X(j) Y.

THEOREM 3.1: The following are equivalent :
(i) (X, Y) splits ; 
(ii) whenever Z is an F-space containing Y and T : X --&#x3E; ZI Y is a

linear operator, there is a linear operator f : X --&#x3E; Z such that 1TT = T,
where ’TT : Z --&#x3E; ZI Y is the quotient map.

PROOF: Of course (ii) =&#x3E; (i) is trivial. Conversely suppose (X, Y)
splits and T : X --&#x3E; Z/Y is a linear operator. Let G C Y @ Z be the set
of (x, z) such that Tx = irz; then G contains a subspace Yo =
{(0, y): y E Y} isomorphic to Y. Clearly the map q1: G --&#x3E; X given by
ql(x, y ) = x is a surjection with kernel Yo. Hence there is a lifting
S : X --&#x3E; G such that ql 0 S = idx. Define t = q2° S where q2(x, y ) = y.
Then rt (x) = rq2S(X) = 7T(Z) where (x, z) E G. Thus rt (x) = Tx as
required.

REMARKS: If Y is a locally bounded space, then the pair (Lo, Y)
splits where Lo = Lo(O, 1) is the space of measurable f unctions on

(0, 1) (see [7]). It follows also from results in [7] that (w, Y) splits,
where w is the space of all sequences.

If X and Y are p-Banach spaces, then let us say that (X, Y)
p-splits if every short exact sequence 0- Y - Z - X --&#x3E; 0, with Z a
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p-Banach space, splits. Clearly (tp, Y) p-splits for any p-Banach
space Y, while (Lp, Y) p-splits provided Y is locally r-convex for
some r &#x3E; p or Y is a pseudo-dual space (see [7]). We remark also that
(l2, l2) does not 1-split ([4]).
Suppose X and Y are quasi-normed spaces. We denote by A (X, Y)

the spaces of all maps f : X --&#x3E; Y satisfying
(i) f(Ax) = Af(x), A E R, x E X
(ii) llf(x + y) - f(x) - f(y)II :5 M(llxll + llyll), x, y E X

where M is a constant, independent of x and y. We denote by A (f )
the least constant M in (ii).

LEMMA 3.2: For given X and Y, there exists r &#x3E; 0 and A  00 such

that for any f E A (X, Y) and x., ..., xn E X

PROOF: There exists 0  p  1 such that Y may be given an

quivalent quasi-norm |·| satisfying

and such that

for some C  00. Then

B y induction we have f or n = 2, 3 ...

Indeed (*) is trivial for n = 2. Now suppose it is known for n - 1.

Then
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Now let

By re-ordering, this inequality holds for all x, ... xn, and hence

PROPOSITION 3.3: Let X and Y be complete quasi-normed spaces
and let Xo be a dense subspace of X. Then the following conditions are
equivalent:

(i) (X, Y) splits ; 
(ii) if f E A (Xo, Y) there exists a linear map h : Xo - Y and L  00,

(iii) there is a constant B  00 such that for any f E A (X0, Y) there
exists a linear map h : X0 --&#x3E; Y with

PROOF: (i) =&#x3E; (ii). Let f E A (Xo, Y). Choose r &#x3E; 0 sufficiently small
and a constant C  00 such that for x 1, ..., xn E X, Yi, - - -, Yn E Y
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(The existence of such r, C follows from Lemma 3.2 and the Aoki-

Rolewicz Theorem.) Let Zo = X0 @ Y (as a vector space) and define
for (x, y) E Z0

where the infimum is taken over all m, n and xi ... xm E Xo, yi... y" E
Y such that

and

We observe:

and

then

but

Hence
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Thus

We also have

(1), (3) and (4) together imply that ll·ll is a quasi-norm on Zo. Let Z be
the completion of Zo. If we let P : Zo- Xo by P (x, y) = x, then P is

continuous by (4) and hence may be extended to an operator P : Z --&#x3E;
X. Condition (5) implies that P is open and hence P is open and

surjective.
Let N C Zo be the space {0}x Y ; by (2) and (3) N is isomorphic to

Y and hence is closed in Z. Suppose z E Z and Pz = 0; there exist
(xn, yj e Zo such that (xn, yn) - z and xn - 0. Then (0, yn - f(xn)) --&#x3E; z so
that z E N. Hence ker P = N = Y.
Now, by assumption (i), there is a linear operator T : X --&#x3E; Z such

that PT = idx. For x E Xo, P-1 {x} C Zo so that we may write Tx =
(x, h (x)) where h : Xo- Y is linear. Then

where L = C2(IITIIT + l)lIT.
(ii) =&#x3E; (iii). Let (ecr: a E si) be a Hamel basis of Xo, and let A0(X0, Y)

be the subspace of A (X, Y) of all f such that f (ea) = 0, a E A. Then
Ao(Xo, Y) is a vector space, under pointwise addition, and A is a

quasi-norm on Ao(Xo, Y). If x E Xo, then x = E Eaea for some finitely
non-zerô (Ea), and hence for f E A0(X0, Y)

where r, A are chosen as in Lemma 3.2. Hence the evaluation maps
f --&#x3E; f (x) are A-continuous. If (f") is a A-Cauchy sequence in Ao(X, Y),
then f (x) = limn--&#x3E;oo fn(x) exists for all x E Xo and it is easy to show that
A(f - fn)--&#x3E; 0. Hence A0, A) is complete.
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We also define for f E Ao

where the infimum is taken over all linear h. By assumption llfll*  00
for f E Ao, and it is clear that ll·ll* is also a quasi-norm on Ao(Xo, Y).
Clearly also A (f) 5 Cllfll*, for some constant C (depending on the
modulus of concavity of the quasi-norm in Y).
We shall show that (A0, Il.11*) is also complete. To do this it is

enough to show that if IIfnll*  2-n then £ fn converges. We observe
that there is a constant M such that if yn E Y and IIYnll  2 -n (n =

1, 2, ...) then Y, yn converges and

(cf. the proof of Theorem 2.7).
The series E fn converges to some f in (Ao, A). Choose linear maps

han so that

Then

and hence 2 hn converges pointwise to a linear map h. Now

and hence llf - WEni-i fill* --&#x3E; 0
Now by the closed graph theorem, there is a constant B  00 such

that 11/11*:5 !BA (f), f E A0. For general /eA(X,F), define a linear
map
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Then f - g E llo so that there exists a linear h such that

Since g + h is linear the result is proved.
(iii) =&#x3E; (ii) Trivial.
(iii) =&#x3E; (i) Suppose Z is a complete quasi-normed space and S : Z -

X is a surjective operator such that S-l(O) = Y. Let T : S-1(0) --&#x3E; Y be
an isomorphism.

Let p : X --&#x3E; Z be any, not necessarily continuous, linear map, such
that pS(x) = x, x E X. Since S is onto, there is a C  00 such that for
any x E X, there exists z E Z with Sz = x and llzll  Cllxll. Let : X -
Z be a map satisfying aS(x) = x, x E X, u(Ax) ku(x), k E R, x E X
and lla(x)ll  Cllxll. Now consider the map f : X - Y defined by

Then

where k is the modulus of concavity of the norm on Y.
Thus there is a linear map h : Xo- Y such that

Now define R : Xo- Z by

R is clearly linear and

so that

Hence
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Thus R is continuous and extends to a map R : X --&#x3E; Z. Clearly
SR = idx so that Z splits.
Let ( u; : i E 7), with I some index set, be an unconditional Schauder

basis of a quasi-normed space X. We shall say that (u¡: i E 1) is

p -concave if there is a constant C  00, such that whenever Il,..., In
are disjoint subsets of I, then

for all (t; : i El). The best constant C in this equation will be called
the degree (of p-concavity) of (ui : i El).

LEMMA 3.4: Let Y be a locally r-convex quasi-normed space and
let A  00 be a constant such that

for y,, ..., y. E Y. If p  r, and X is a quasi-normed space with a
p-concave basis (ui) with degree C, then for f E A (X, Y)

for (fi: i E I ) finitely non-zero.

PROOF: For y E Y define

Then ’yl:s Ilyll :S Alyl, and ’ylr is an r-norm on Y. We shall establish
first that if dim X = m  00 and f E A (X, Y)

for all (t; :  E I); of course in this case lIl = m.
Equation (t) is trivial for m = 1; we complete the proof by in-

duction. Suppose the result proved for 1:S m  n, and suppose
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then

Hence for some j, k E I, since lIl = n,

Now consider the subspace Xo spanned by {ui : i ~ j, kl and t;u; + tkuk.
Then dim Xo = n - 1 and Xo has p-concave basis, {ui, i~ j, k} U
{tjuj + tkuk}. Hence

However

Hence

and (t) is proved.
Hence if dim X = n

and the lemma follows trivially, since if dim X = 00, then each E tiui
with (ti : i E I ) finitely non-zero belongs to the subspace spanned by
(u¡: ti 9,4- 0).
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THEOREM 3.5 : Let X be a locally bounded F-space with a p-
concave unconditional basis, and let Y be a locally r-convex locally
bounded F-space. Then (X, Y) splits, provided p  r  1.

In particular (fp, Y) splits for any locally r-convex locally bounded
F-space Y, where r &#x3E; p.

PROOF: Combine Proposition 3.3 and Lemma 3.4.

Let F be an Orlicz function on [0, (0) i.e. a continuous, non-
decreasing function such that F(O) = 0 and F(x) &#x3E; 0 for x &#x3E; 0. F is

said to satisfy the A2-condition at 0 (respectively at ~) if

The Orlicz sequence space eF is the space of all sequences x = (xn )
such that Y, F(Itxn 1)  00 for some t &#x3E; 0. This is an F-space with a base
of neighbourhoods of 0 of the f orm rBF(E), r &#x3E; 0, E &#x3E; 0 where

Similarly Lp = LF(0, 1) is the space of measurable functions x = x(s) on

(0, 1) such that

for some t &#x3E; 0 with a base of neighbourhoods of the form rBF(E),
r &#x3E; 0, E &#x3E; 0, where

Let
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Then 0  aF  BF  oo and 0  aoo F  BooF oo. lF is locally bounded if

and only if aF &#x3E; 0 and LF is locally bounded if and only if a F &#x3E; 0; F
satisfies the à2-condition at 0 (respectively at oo) if and only if BF  o0
(respectively BF oo) (see [6], [11] and [13]).

If eF or LF is locally bounded, we may define the quasi-norm
x --&#x3E; llxll so that

or

THEOREM 3.6: Let F be an Orlicz function and let Y be an r-

Banach space. Then

(i) if 0  aF S I3F  r, (tF, Y) splits;
(ii) if 0  ap S I3p  r, (LF, Y) splits.

PROOF: (i) Select p so that I3F  p  r. The unit vectors (en) form a
basis of eF (this follows from the A2-conditions at 0). We show the
basis is p-concave. We clearly have that there exists a constant A  00
so that

Now suppose Ul ... Uk E iF have disjoint support and that v =

u + ... + uk. Then if ui = (ui(j))j=1’

(ii) Select p so that 13’;  p  r; then there is a constant A  00 such
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that

Now suppose u,, ..., uk are functions with disjoint support in LF, and
let v = u1 + ··· + uk. Let K = {s: F(lIvll-llv(s)I)  1}. For each i let

Mi = K n supp ui and Mi = ((0, 1)BK) n supp Ui. Then

where IL is a Lebesgue measure on (0, 1). Thus

but

Hence

For each n = 1, 2,..., let En be the 2"-dimensional subspace of LF
spanned by the characteristic function Xkn of the interval ((k - 1)2-",
k . 2-") for k = 1, 2,..., 2n. Let E = U En; then E is dense in LF (this
follows from the A2-condition at oo). Suppose f E A(E, Y). As each En
has a p-concave basis of degree (2A)"P, there is a constant C  00 such
that for each n, there exists a linear map hn : En --&#x3E; Y with

We shall show that limn --&#x3E; oo hn(x) exists for x E E. As Y is locally
r-convex there is a constant B  00 such that

for y,...ynE Y.
Consider Xkn E En, and suppose l &#x3E; m &#x3E; n. Then Xkn splits into 2"’-n
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disjoint characteristic functions of sets of measure 2-"’ in EM. For
each such set K,

and hence 2m s IIXKII-Pa, where F(a ) = 1.
Hence

Now

Hence

Thus limn-m hn (x) exists for x E U En and so there exists a linear h on
U En such that

It follows that (LF, Y) splits.

4. The three-space problem and espaces

As an immediate application of the results of §3, we have

THEOREM 4.1: Let Z be an F-space with a closed subspace Y, such
that Y and ZI Y are locally bounded; suppose Z/ Y is locally p-convex
and Y is locally r-convex where p  r S 1. Then Z is a p-Banach
space.

PROOF: That Z is locally bounded is Proposition 1. Since ZI Y is

locally p-convex there is a surjection S: lp(I) --&#x3E; Z/Y for some index
set I. Since (lp (I), Y) splits there is a lifting S : lP (I) --&#x3E; Z such that
1T8 = S where 1T : Z --&#x3E; Z/Y is the quotient map. Let U be the unit ball
of lp (I) and V a bounded absolutely r-convex neighbourhood of 0 in
Z. Then S(U) + V is absolutely p-convex and bounded in Z. If z E Z
there exists m such that 1TZ E mS( U), and hence z E mS( U) + Y;
thus there exists n &#x3E; m such that z E n (S( U) + V). The set S( U) + V
is therefore also absorbing and its closure is a bounded absolutely
p-convex neighbourhood of 0 in Z.
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REMARKS: Compare Theorem 2.6. We will show by example that
the theorem is f alse if p = r = 1.

In [7] an F-space X for which (X, R) splits is called a K-space.A
Kp-space is defined as a p-Banach space X for which every short
exact sequence 0 --&#x3E; R --&#x3E; Z --&#x3E; X --&#x3E; 0 of p-Banach spaces splits. From
Theorem 4.1, we have immediately:

THEOREM 4.2: If p  1, a p-Banach space is a Kp-space if and only
if it is a K-space.

Thus for p  1, the notion of a lhfp-space is redundant. For p = 1, it
is of course trivial - every Banach space is a K1,-space.

THEOREM 4.3: The following are -spaces :
(i) K where F is an Orlicz function satisfying 0  aF  BF  1 ;
(ii) LF, where F is an Orlicz function satisfying 0  a F  B F  1;
(iii) any B-convex Banach space;
(iv) Lo and w.

These results follow from Theorem 2.6, Theorem 3.6 and the

remarks at the beginning of §3. In particular the spaces lp, Lp (p  1)
are K-spaces, and (see [7]) any quotient of such a space by a

subspace with the Hahn-Banach Extension Property (HBEP).
Our main result in this section is that the space ti is not a K-space.

Let (en) be the usual basis of el and let En = lin(el, ..., en) and
E = lin(e1,..., en,...) = U E". For x = (xn) E E, with xn &#x3E; 0 for all n

define

where (in) is the decreasing re-arrangement of (xn ). We then extend f
to E by

where x n = max(xn, 0), x n = max(-xn, 0).

LEMMA 4.4: If x ? 0, y &#x3E; 0 then
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PROOF: For x a 0

where a runs through all permutations of N. Hence

for some a, and hence

For the opposite inequality consider first the case when x and y
have disjoint supports. For each n EN, there clearly exists Je, y E En
which maximize f (x + y) - f (x) - f (y) subject to

(a) llxll + llyll = 1
(b) x, y have disjoint support.
Let z = x + 00FF ; we may assume without loss of generality that

ZI 2: Z2 z-- - - - &#x3E; zn. Thus there are sets MI and M2 such that Mi ~ M2 =

0, M1 U M2={1,2,...n} and

C learly z solves the linear programme:

subject to

and

The extreme points of the feasible set are of the form ui = 1 / m,
1  i  m, ui = 0, m  i, where m S n.
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At such a point

since (mr)  2m for all r, 1 S r S m.

Hence for x, y E En, disjoint

as n is arbitrary we have the result for x, y with disjoint support.
For general x, y - 0, we proceed by induction on IMI where M =

{i: xiyi ~ 01. We have proved the result if IMI = 0. Now assume the
result proved for IMI = m - 1, and suppose that for given x and y,

IMI = m. Select j E M and choose k such that Xk = Yk = 0. Now define

Then by the inductive hypothesis

Let u and v be the decreasing rearrangements of x + y and x* + y.
Suppose x; + y; = ue, and that x; = v" and Yi = vN where we assume

without loss of generality that n  N. Clearly l  n, and
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Hence

Hence

LEMMA 4.5: 

so that

Now suppose in general z = x + y. We break N up into six regions:
M,={i:x;&#x3E;0, y;&#x3E;0}, M2={i:xi &#x3E; 0, y,0, Zi &#x3E; 0}, M3= {i: xi &#x3E; 0,
Yi  0, Zi  0}, M4 = {i: xi  0, Yi &#x26; 0, z, &#x3E; 0}, M5 = {i: x;  0, Yi &#x3E; 0, Zi 

0}, and M6 = {i : x;  0, y;  01. For u = x, y or z let ui be the restriction
of u to Mi. Hence

by the definition of f and
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Thus

Similarly

However

and hence

THEOREM 4.6: (l1, R) does not split, i.e. fI is not a X-space.

PROOF: Consider f : E --&#x3E; R. By Lemma 4.5 f E A (E, R). Moreover
if h : E --&#x3E; R is linear and

then lh(ei)l  B, so that lh(x)1:5 Bllxll, x E E. However

and we have a contradiction.

REMARK: Of course if 0 --&#x3E; R --&#x3E; Z --&#x3E; fI - 0 is an exact sequence then
Z is locally p-convex for every p  1 (Theorem 4.1).

THEOREM 4.7: Let X be a Banach space, containing a sequence Xn
of finite-dimensional subspaces such that

(i) dim Xn = m (n) --&#x3E; ~;
(ii) there are linear isomorphisms Sn : Xn --&#x3E; l1 m(n) with IlSnll:5 1 and

SupllSn-1ll  00;

(iii) there are projections Pn : X - Xn with IIPnll = o(log m(n)). Then
X is not a Y(-space.

PROOF: Identify l1m(n) with Em(n)C fI, and consider fn(x) = f (S"Pnx)
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If X is a espace, there is a constant L  00 such that for each n,
there is a linear map hn : X - R with

Now consider h *: n En(,,) --&#x3E; R defined by

Then

For the unit vectors ek, 1 S k S m(n) f (ek) = 0 and hence

Hence

but

Thus

By Stirling’s formula

and hence

which contradicts our assumptions.

EXAMPLE: e2(,e( 1 n » is not a X-space. This space is reflexive, so that
not every reflexive Banach space is a X-space.

Stiles [12] asks whether if X is a subspace of fp with p  1 such

that fplX is locally convex, does X have the Hahn-Banach Extension
Property. The above examples resolve this question negatively, for
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from results in [7], X has HBEP if and only if éplX is a X-space.
Thus we have

THEOREM 4.8: (i) If p  1 and tplx = el then X does not have the
HBEP ;

(ii) if p  1, and tplx is a B-convex Banach space, X does have the
HBEP.

We also note:

THEOREM 4.9: ép (0  p  oo) and Lp (0  p  oo) are X-spaces if
and only if p # 1.

PROOF: Lp (p &#x3E; 1) and ep (p &#x3E; 1) are B-convex.

The following theorem is a modification of a result of S. Dierolf ([3]
Satz 2.4.1). Note that we do not assume X to be locally bounded.

THEOREM 4.10: If X is an F-space with a closed locally convex
subspace L such that XI L is a locally convex X-space, then X is
locally convex.

PROOF: By Theorem 5.2 of [7], L has the HBEP. Hence, if IL

denotes the Mackey topology on X, then on L, 1£ agrees with the
original topology. If xnEX and xn --&#x3E; 0(u) then q (xn) --&#x3E; 0 (where
q : X - XIL is the quotient map) since X/L is locally convex. Hence
xn= un + vn, where Un --&#x3E; 0 and vn E L. Thus vn --&#x3E; 0(u,) and hence

v" --&#x3E; 0, so that xn --&#x3E; 0, Thus g agrees with the original topology.
Note that the above theorem applies when X/L is a B-convex

Banach space, which extends Theorem 2.6.

5. Open problems

We collect in this section some questions which arose in the course
of the paper.

PROBLEM 1: If X is a locally bounded F-space for which an =
0(n1/P), is X locally p-convex (p  1) (cf. Proposition 2.2)?

PROBLEM 2: Is there a non-locally convex locally bounded F-space
whose containing Banach space is co or loo?
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PROBLEM 3: In general, give a necessary and sufficient condition
for a Banach space to be a containing Banach space of a non-locally
convex locally bounded F-space.

PROBLEM 4: Is co or éoe a X-space?

PROBLEM 5: Give a necessary and sufficient condition for a Banach

space to be a X-space.

PROBLEM 6: Is Hp (0  p  1) a X-space?

PROBLEM 7: Does (fp, fp) (p  1) split? This seems unlikely, but the
author does not have a counter example. (Added in proof: the author
and N.T. Peck have shown that the answer is no).

PROBLEM 8: Does there exist an F-space X and a subspace Y of
dimension one such that X/ Y = l1 and such that the quotient map is
strictly singular? This is not true in our example.

NoTE: We are gratef ul to the référée for the information that

Theorem 4.6 has independently been obtained by M. Ribe [9]. (Added
in proof: a similar example has been found by J.W. Roberts).
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