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0. Introduction

The main result is a structure theorem for the generic cut locus for
a compact manifold M in dimensions 2, 3, 4, 5, and 6. We give a
procedure which works for any stable cut locus in any dimension but
the generic cut locus is stable only in dimensions  6. (See our earlier
paper [1]). We actually carry out the computations in dimensions 2
and 3. The result is as follows.

THEOREM: If dim M = 2 and p E M then the picture near a point q
on a stable cut locus with respect to p is (i) a straight line through q or
(ii) a straight line starting at q or (iii) three straight lines meeting at q
any two of which have regular intersection (see section 3 for the
definition of regular intersection). See figure [1].

If dim M = 3 and p E M then the picture near a point q on a stable
cut locus with respect to p is (i) a plane through q or (ii) three planes
meeting along a line through q, any two of the planes having regular
intersection or (iii) the picture of 6 planes meeting along 4 lines all
meeting at q obtained by viewing q as the barycenter of a tetrahedron
and joining it to the 4 vertices or (iv) a half plane with q in the

boundary or (v) a quarter plane glued onto a surface. See figure [2]

As a curious byproduct of this theorem we obtain in Section 4 a
decomposition theorem for compact 3 manifolds:

THEOREM: Any compact differentiable 3 manifold has a compact
subset which is locally homeomorphic to (i), (ii), or (iii) of figure [2]
such that the complement of the compact subset is an open cell.

This is related to a standard geometric topological procedure in
Section 4.
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Figure 1.

Next we discuss the relationship of our calculations and results to
those of other authors.

In his paper [12] Thom gives (without proof) the picture described
above for a 2 manifold for a fixed metric and for generic point p on
the manifold i.e., one allows the origin of the cut locus to be variable.
(However the genericity appears to be contradicted by the result of
Singer and Gluck [17] that there exists in R3 a strictly convex surface
of revoltion having cut locus C(p) nontriangulable for a nonempty
open set of points p.)

D. Schaeffer in [ 11 obtains a similar local picture as in figures [ 1 (i)],
[l(ii)], and [ 1 (iii)] for the shock waves for hyperbolic conservation law
equations (for 1 space variable. There is no higher dimensional

analogue). In a sense the role of stability in our work is played by an

Figure 2.
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assumption of uniform convexity together with a restriction to

generic initial data in the work of Schaeffer.
In his review article [3] J.J. Duistermaat has given a global treat-

ment of unfoldings and a multitransversality condition for globally
stable unfoldings. Our multitransversality condition is a ’right-left’
version of Duistermaat’s ’right’ version. (Right and left refer to

allowing composition with diffeomorphisms on the right and on the
left). We proved our multitransversality condition in an earlier paper
[1] ] and the extra work involved beyond Duistermaat is not in-

significant. We learnt right-left techniques from G. Wasserman [13].
Historically, the cut locus was first introduced by Poincare [10] for

compact simply connected surfaces of positive curvature. In 1935,
Summer B. Meyers [7], [8], and J.H.C. Whitehead [15] both studied
the cut locus. Whitehead showed that any compact n-dimensional
Riemannian manifold decomposes into the cut locus and an open cell
with the cut locus as the cell boundary. Meyers showed that for
compact analytic surfaces the cut locus is a graph, for simply
connected surfaces the graph is a tree, the end points of which are
conjugate to the origin of the cut locus and are cusps of the locus of
first conjugate points. This result of the cut locus for a compact
analytic surface being a graph has been extended to arbitrary dimen-
sions in a separate paper of ours [2] where the cut locus is proved to
be a simplicial complex. In a recent paper V. Ozols [9] analyzed the
local structure of the cut locus near cut points which are not con-
jugate to the origin of the cut locus. His local picture (for arbitrary
metric) is that of hypersurfaces intersected with half spaces (of which
our figures [ 1 (i)] and [ 1 (ü)] and [2(i)], [2(ii)], and [2(iii)] are examples).
However, he does not obtain a finite classification and there is no

general statement of regular intersection because there is no restric-

tion on the metric. Of course to obtain a local picture near a cut point
which is also a conjugate point without some restriction on the metric
is not very likely.

After these calculations were carried out it was pointed out to us by
D. Meyer and A. Bellaiche that the above pictures are amongst the
pictures in Dubôis, Dufour and Stanek [16] in their study of catastro-
phes. Nevertheless that the above pictures in dimensions 2 and 3 (and
others which can be derived similarly in dimensions 4, 5 and 6) are
actually the generic cut locus pictures appears to be new. Moreover
our methods are rather different.

Finally we wish to thank D. Meyer and A. Bellaiche for catching an
error in the original version of this paper in which picture (v) was
missing.



106

1. The Morse theory approach to the cut locus

Let M be a compact C°° manifold without boundary and let p be a
point in M. The space of metrics will be viewed as the space of

sections of the bundle of positive definite symmetric matrices over M
and will have the Coo Whitney topology. If a is a metric on M then

C(p, a) will denote the cut locus in M with respect to p and the

metric a i.e. the set of those points q in M which are joined to p by a
length minimizing geodesic which fails to minimize the length to points
beyond q on the geodesic. The piecewise smooth paths on M, starting
at p, will be denoted by f2(M) (the parametrization is on the closed

interval [0, 1]). For any choice of metric a the following defines a
distance function in the space J1(M)

where Il lia is the norm associated to a and d« the distance function in
M associated to a. This topology will be called the a-topology. With

respect to this topology the energy function

is continuous.

In [1] we constructed a finite dimensional model of the path space
which permits the study of E(a) for variable a (thus generalizing the
well known construction in Morse theory for a fixed metric). To be

precise, for a fixed metric ao, we constructed
(a) an open subset U of the space of metrics containing ao
(b) a manifold B1 (finite dimensional) without boundary (an open

subset of the product of M with itself a certain number of

times)
(c) for each a E U a topological embedding j(a ) : B 1 f? (M) (a(M)

having the a-topology). The image j(a )(B 1) consists of certain
piecewise geodesics (with respect to the metric a)

(d) a submanifold B of B, which is compact, has boundary and is
zero codimensional

(e) a map Pr:.Bi-&#x3E;M which is a submersion and such that Pr(B) =
M

The above constructed entities were shown to enjoy the following
properties

(i) H(a):= E(a)-j(a) is smooth on BI
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(ii) the following diagram is commutative

where 1T is the endpoint projection map.
(iii) if q e M then the minima of E(a ) along 7r-’(q) are in j(a)(B)

and these minima correspond via j(a) to the minima of H(a) along
Pr-1(q).

Moreover, we proved two further facts
(1) C(p, a) = f q E MIH(a)IPr-1(q) has a degenerate minimum or at

least two minima}
(2) We can assume there is a closed interval 1eR such that

H (a )(B ) C I for all a E U. Denote the projection M x R - M by 1T1.

Then if dim M S 6 the composition of maps

is a stable composition for a in a residual subset of U. This means

that there is a neighborhood Y of H(a) 1 B in Coo(B, R), continuous
maps

with Ai (H (a ) I B ) = identity such that for f E Y the following
diagrams commute
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To save breath, we shall refer to a metric in the above mentioned
residual set as a cut-stable metric. The reason for this is that as a

consequence of the stability of the pair ((Pr, H(a)) B, 1T1’ M x I ) it

is easy to see that C(p, a) is structurally stable i.e. if 8 is near a then
there is a diffeomorphism 0: M ---&#x3E; M such that cP( Ccp, a )) = Ccp, (3)
(in fact 0 = A3(H ({3»). Moreover 0 depends continuously on (3.

REMARK: It is not claimed that the converse is true i.e. it is not

claimed that structural stability of C(p, a ) implies a is a cut-stable

metric. However if C(p, a) is structurally stable then C(p, a) is

diffeomorphic (via an ambient diff eomorphism 0: M - M) to C(p, a’)
where a’ is a cut-stable metric (in dimensions 2, 3, 4, 5 and 6).
Consequently it is enough to compute the structure of those C(p, a)
associated to cut-stable metrics.

2. The local and global structure of the energy function for cut-stable
metrics

It will be assumed from now on that a is a given fixed cut-stable
metric. Suppose now that f : (IR n, 0) -&#x3E; (R, 0) is a COO germ and F : (IR n x

R -, (0, 0» --- &#x3E; (R, 0) is a Coo germ such that F(x, 0) = f (x). Then F is
called an unfolding of f. If G:(IRn X R ’, (0, 0» --&#x3E; (R, 0) is an unfolding
of g : (IR n, 0) - (R, 0) then G is said to be equivalent to F if there is a
germ 0 : (R " x R ’, (0, 0» ---&#x3E; (Rnx R ’, (0, 0» such that 0(x, y) =
(-O(x,y), (y)), a diffeomorphism (R’,O)---&#x3E;(R’,O), 0(x,O) a

diffeomorphism (R n@ 0) (R n@ 0), a germ k : (R ’ x R, (0, 0)) - (R, 0) with
a,k/dt(O, 0) &#x3E; 0, where t is the real variable, such that

If K: U C R" X R’ ---&#x3E; R is a Coo map and (xo, yo) e U then K(xo + x,
yo + y) - K(xo, yo) is an unfolding of K(xo + x, yo) - K(xo, yo). Denote
the germ of this unfolding by K(xO’yo). The unfolding F of the germ f is
said to be stable if there is a representative Ê: V -&#x3E; R of F (V some

neighborhood of (0,0)) and a neighborhood W of fi in C’(V, R) such
that given G in V there is (xo, yo) Ei V such that F is equivalent to

G (xo,yo).
The germ of H(a) - H(a)(b) at any b E Int B (the interior of B) is

a stable unfolding. To be precise, let b E Int B and observe that, since
Pr is submersive, B has a local product structure at b with respect to
which Pr is projection. The claim is that the germ of H(a) - H(a)(b)
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at b is a stable unfolding with respect to this product structure. This
can be established as follows: let Dr = open disc of radius r in IR q

centered at 0 E IR q. Let f = a C°° function defined on D3 and let

Jk( U, R) denote the k jets of functions from U to R. If A C Jk(D2, R)
is an open set containing the k jets j’‘f (x) for all x E D2 and if

g E C°°(D2, R) then g Di can be extended to g E C°°(D3, R) such that
g Do3 - D2 = f 1 D3 - D2 and such that j’g(D2) C A provided g is

sufficiently close to f D2. In fact let a be a C°° function which is 1 on

Dl and 0 outside D2 and let g = f + u(g - f). If this observation is

combined with the following observation: for fixed b E B the point
A1(h)(b) depends continuously on h E Coo(B, R) then the claim at the

beginning of the paragraph follows easily. To be more specific: If g is
a function defined on a neighborhood of b and close to H(a) -
H (a )(b ) in this neighborhood then g can be extended to g defined and
close to H(a) - H(a)(b) on B. Then g + H(a)(b) is close to H(a). So

g + H (a )( b ) at A1(g + H (a )( b ))( b ) is equivalent to H (a ) at b using the
maps A1(g + H(a)(b)) and A2(g + H(a)(b)).

It is a consequence of unfolding theory that up to equivalence there
are only three stable unfoldings F : (IRn x IR2, (0, 0» (R, 0) which have
dxF(O, 0) = 0, namely, if y = (u, v) and x = (xi, ..., xn) they are

If it is required that 0 be a minimum for the germ F tIR n x (0) then the
only possibilities are

It is also a consequence of unfolding theory that up to equivalence
there are only six stable unfoldings F : (R " x R’, (0, 0)) - (R, 0) which
have dxF(O, 0) = 0, namely if y = (u, v, w) and x = (XI, x2, ..., xn) they
are
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and the suspension of the two others for (Rn x 1R2, (0, 0)) --&#x3E; (R, 0).
If, moreover, it is required that 0 be a minimum for the germ

F ) IR n x {0} then there are only two possibilities; namely

and

Thus far only the local structure of H(a ) has been given. However,
the fact that a is cut stable imposes global conditions as well. Recall
some consequences of C°° stability theory in the following form,
which will be convenient for the subsequent theory. Let N and P be
C°° manifolds K C N a closed submanifold of codimension 0, and

f : N - P a C°° map such that f K is proper. The map f K is said to
be stable if there exists a neighborhood v of f K in COO(K, P) and
continuous maps Hl:’V---&#x3E;Diff’(N) H2:V---&#x3E;Diff’(P) such that

H1(f’ K) = identity, H2(f ) K) = identity and g = H2(g) - f - H1(g) , K
for all g E or. Then f , K is stable if and only if for all finite subsets S
of K such that f (S) = {y} (a single point) the germ f : (K, S) --&#x3E; (P, y) is
infinitesimally stable. But f : (K, S) --&#x3E; (P, y) is infinitesimally stable if

and only if each germ f : (K, s) --+ (P, y) (s E S) is infinitesimally stable
and the vector spaces df (s)(TSK) = Vs are in general position i.e. if

S = (si, s2, ..., Sel then codim (in TyP ) of VS1 n V’2 Q ... n VSf ==
codim VS1 + codim VS2 + ... + codim Vse. (The reference for these

ideas is Mather [4], [5] and [6]).
The map (Pr, H(a»: Bi --&#x3E; M x R is stable when restricted to B and

consequently must obey the tangent space codimension condition
(taking N = B,, K = B, f = (Pr, H(a» and P = M x R).
Suppose Ih..., fe are Coo germs: (R"xR’,(0,0»--&#x3E;(R,O) and



111

ir : (R " &#x3E; R ’, (0, 0» - (R ’, 0) is projection on the second factor.

Suppose dfi(O, 0) = 0 (i = 1, 2, ..., t) where x is the R n variable and

suppose

Let y,, ..., ym be the R’ variables. Then the tangent space codimen-

sion restriction is equivalent to the assertion that the matrix

has rank e - 1. Note that this implies that 6 S m + 1. To put it another
way: If f = (Pr, H (a»: B ---&#x3E; M x R and if s1, ..., se are paths in B

from p to q each having minimum energy among such paths then

df(s)(Ts,B) has dim m in TM x R. Since these hyperplanes are in

general position we get 6 S m + 1.
As an immediate corollary one obtains the following:

PROPOSITION: If x E C(p, a) and a is cut stable then no more than
dim M + 1 length minimizing geodesics join p to q.

3. Computation of the local structure in dimensions 2 and 3

This section computes the local structure of C(p, a) for manifolds
of dimension 2 and 3 where a is cut stable. The methods work in any
dimensions but, of course, genericity is restricted to dimensions  6.

In order to compute what cases can and cannot occur for cut-stable

metrics, recall the characterization of cut-stable metrics contained in
the following theorem (proved in [1]):

THEOREM: The function H(a) is cut stable if and only if it satisfies
the (2m + 2) nd. order r-multitransversality condition on B for r _
m + 2.

The meaning of this is the following: Let jk 0 (n, 1) be the k jets of
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germs f : (R’, 0) --&#x3E; (R, 0). The vectorspace IRrx [J’(n, 1)]r is acted upon
by the group R x Lk( 1) x [Lk(n)]r where L ken) is k jets of diffeomor-
phism s 0 : (R ", 0) ---&#x3E; (R n, 0), the action of R on R is a(x,, x2, .., XI) =
(x1+a,x2+a,...,xr+a), and the actions of Lk(n ) and Lk(l) on
0(n, 1) are by composition on the right and left respectively. Now
suppose bl, b2, ..., br are points which project to q under Pr. Around
each b; we can put a local product neighborhood U x Ai, U C R’
open, Ai C IR n open, with respect to which Pr is projection on the first
factor. The function H (a ) induces a map j’H(a):UxAi---&#x3E;
R x Jô(n, 1) by taking the k jet in the Ai space. This in turn induces a
map r jkH (a): U x A x A2X ... x A ---&#x3E; Rr x [J’(n, 1)]r. The multi-

transversality condition means that , j ; H(a ) is transversal at all points
of U x Al X ... x Ar to all orbits of R x Lk(1) X [Lk(n)]r for k =

2m + 2 and r  m + 2 (this is independent of the choice of product
neighborhoods).

This multitransversality condition yields an alternative proof of the
tangent space codimension condition or equivalently the rank condi-
tion at the end of the last section. Let H; be H(a) viewed on U x Ai.
Let C: Rr x [jk 0 (n, 1)]r ---&#x3E; Rr be projection. The transversality of

r j ; H (a ) at (o, 0, ..., 0) to the orbit of , j ; H (a ) implies C( V) + (diagonal
of Rr) = Rr where V is the space spanned by the m partial derivatives
of rj;H(a) at (o, ..., 0, 0) with respect to the U variables y,, ..., ym.

But C(V) is the space spanned by
{(dH,Idyi(O,..., 0),..., aHrlayi(o,..., O)li=,,...,m. It follows that (V)+
(diagonal of Rr) = IRr is equivalent to the condition that the matrix
(d (Hi - H;+i)/ôyj(0, ..., 0)) have rank r - 1.
Now suppose m = 2. Let q E C(p, a). We have seen that

H(a) 1 Pr-’(q) has at most three minima. If there is just one minimum
this must be degenerate. The local picture of C(p, a) is entirely
determined hv the following set-un.

where H(xl,..., xn, u, v) = x; + ux’+ vxi + I ;&#x3E;i X7 and 1T is projection
on the second factor. Then the germ of C(p, a) at q is equivalent to
the germ of {(u, V)/H/1T-1(U, v) has a degenerate minimum or at least
two minima} via a diffeomorphism (M, q) ---&#x3E; (R 2, 0). The term Yi&#x3E;, X7 is
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irrelevant to the calculation. What is being sought is the set of (u, v)
such that there exists x -:j; i satisfying

Equation (3) yields x3 + x2i + xi3 + i3 + u(x + i) + v = 0 and if we

subtract 1/2(( 1 ) + (2)) we get

or

Consequently x = -X. It follows that v = 0 and u  0. Conversely if

v = 0 and u  0 then (1) and (2) and (3) are easily seen to be satisfied.
REMARK: It is interesting to compare this and subsequent cal-

culations with those of D. Schaeffer in his paper [ 11 ] on the quasi-
linear conservation law. A completely different problem in partial
differential equations leads to calculations which have similarity to
ours. But there is an important difference: the generic structure of the
cut locus can be computed in dimensions 2, 3, 4, 5 and 6 while the Lax
function in [11] is defined on a space fibered over space-time where
space is one-dimensional.

The calculations above may be interpreted as follows: if q E

C(p, a ) and there is a single degenerate geodesic joining p to q then
(a) C(p, a) near q is equivalent to a straight line starting at q (b)
points on C(p, a) near q have exactly two nondegenerate length
minimizing geodesics joining them to p.
The next possibility is that there are exactly two minima b, and b2

of H(a) Pr-1(q) both of which are nondegenerate. Locally this

reduces to the following set-up:
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where

cP is a germ of a diffeomorphism and aÀ/ az(O, 0, 0) &#x3E; 0 (z is the first

variable) and dgldz(O, 0, 0) &#x3E; 0. By redefining IL we can take H2 to be
IL(i=l xT, u, v). Then C(p, a) near q is equivalent to the set of (u, v)
satisfying the equation

The codimension restriction is (d(À - il)ldu(o, 0, 0), a (A -
J..L)/ av(O, 0, 0)) # (0, 0). It follows that C(p, a) near q is a 1-dimensional
submanifold every point of which is joined to p by exactly two

nondegenerate length minimizing geodesics.
Consider the germ @j6H (a): (R’ &#x3E; R’ &#x3E; R", (0, 0, 0))-&#x3E; 

R 2 &#x3E; j6 0 (n, 1 ) x Jô(n, 1) determined by H(a) at the two minima bi and
b2. Suppose that bi is a degenerate minimum for H(a) Pr-’(q). Then
the codimension of the orbit through 2 j;H(a)(0, 0, 0) is &#x3E; 1 + n + n + 2.

It is not possible for @j6 H (a) to be transversal to this

orbit for dimension reasons. Consequently the only possibility for two
minima is the one already discussed. In the case of three minima

multitransversality gives a germ jÎH(a ) : (R 2 x R" x R" x R n
(0, 0, 0, 0)) - R3 X [J6(n, 1 )]3. If one of the minima is degenerate then
the codimension of the orbit through 3 j6 IH(a)(0,0,0) is &#x3E;_ 1 + n + n +

n + 2 and again transversality is impossible. This implies that the only
possibility remaining is three nondegenerate minima. In this case the
germ of C(p, a) is determined by three functions À(z, u, v), J..L (z, u, v)
and C(z, u, v) where (z, u, v) E R 3 and aA/ az(O, 0, 0) &#x3E; 0, djuldz(O, 0, 0) &#x3E;

0 and dCIdz(O, 0, 0) &#x3E; 0. To be precise, C(p, a) is equivalent near q to
the set of (u, v) satisfying one of the following four conditions:
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In addition the codimension restriction is that the matrix

have rank 2. Consequently the local normal form is 3 lines (embedded
half closed intervals) meeting at a point with any pair of their tangents
at their common boundary point having regular intersection

(Definition: If E,, E2, ..., E, are vector subspaces of the vector-space
E then regular intersection for the Ei means codim ni Ei =
li codim E;). The geometric interpretation is that there are 3 nonde-
generate length-minimizing geodesics joining p to q and exactly 2
joining p to points on C(p, a) near q.
A simple (but amusing) observation is that for the standard sphere

in R3 and p = North Pole the fact that the South Pole is unstable can
be seen in two ways (a) the ellipsoid with unequal axes has as cut
locus a closed line segment (b) infinitely many length minimizing
geodesics join the north pole to the south pole.

In dimension 3 the possibilities are the following: There are either
2, 3, or 4 nondegenerate minima for H(a) 1 Pr-’(q). Then there could
be a single degenerate minimum. There cannot, however, be two
degenerate minima for H(a) 1 Pr-’(q). For suppose this is possible
and consider the map

(where the jet is taken in the fiber direction at the two degenerate
minima). The codimension of the orbit through 2 jgH(a)(o, 0, 0) is

&#x3E; 1 + n + n + 2 for at the degenerate minimum H(a) Pr-1(q) has the
form x 4 + X,&#x3E;t X7).

In the case of one degenerate minimum and one nondegenerate
minimum the argument is considerably more involved. In a neigh-
borhood of q the picture is the following : The point q may be taken
to be 0 E IR 3. There are two functions given HI, H2: IR n X R’---&#x3E; R with
H,(x,, ..., xn, u, v, w) = À(xj + UX2+ VX@+Ei&#x3E;IX?@ u, v, w) and

H2(x,, ..., xn, u, v, w) = P(x7 + ¿;&#x3E;1 x7, u, v, w). In addition

ôÀl ôz(0, 0, 0, 0) &#x3E; 0 and ôpl ôz(0, 0, 0, 0) &#x3E; 0 where z is the first vari-

able.

Now let -Y: R 2 XJ"(n, 1) x J8(n, 1) ---&#x3E; R2X Rx, X RX2 be projection on
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the constants and the coefficients of x, and x; in the first factor of

J"(n, 1). Transversality of d(2j8H(a»(0, 0, 0)(R’ &#x3E; Rnx Rn) to the

tangent space of the orbit of 2j8H(a)(0, 0, 0) is equivalent to

,y[d(2j’l’I-I(a»(0, 0, 0)(R3 X (0) x (0))] + (diagonal in R2) X(0) X (0) = R 2
X R,, X [R x7. The first summand is the space spanned by

and

The transversality condition becomes simply dAldw(O) :,, ôplôw(0).
Consider now the function f(u, v, w) defined to be equal to

where xl(u, v) is the unique minimum for X4 1 + uxf+ VXt for (u, v)
outside the set A = {(u, v) 1 u  0, v = 01. On account of

ôÀlôw(0) # ôplôw(0) and the behaviour of xi(u, v ) it is f airly straight-
forward that f (u, v, w) = 0 defines w (uniquely) as a function of u and
v for (u, v) in the complement of A.
This surface together with the part of the half-plane u S 0, v = 0 given
by

gives the diagram [2] ( v ).
Consider now the case of four nondegenerate minima for

H(a) 1 Pr-’(q). Near q the cut locus C(p, a) is determined by four
functions f ic,c,;(z, u, v, w)}I=l with a/-Ldaz(O) &#x3E; 0 such that

has rank 3.
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For instance there are six conditions of type JL 1 (0, u, v, w) =
JL2(0, u, v, w) and JL3(0, u, v, w) &#x3E; JL 1(0, u, v, w) and JL4(0, u, v, w) &#x3E;

ju,(O, u, v, w). There are four of the type JL1(0, u, v, w) = 1£2(0, u, v, w)
- JL3(0, u, v, w) and JL4(0, u, v, w) &#x3E; JL 1(0, u, v, w). Then there is

JL 1(0, u, v, w) = JU2(0, u, v, w) = JL3(O, u, v, w) = u4(o, u, v, w). This gives
the following picture. Imagine q as the barycenter of a tetrahedron.
Then the four lines to the vertices determine six surfaces. This picture is
obtained because any triple of surfaces meet at one point (the same point
for any triple) and there their tangents have regular intersection. See
diagram 2[iii].
The case of 3 nondegenerate minima gives as local picture of

C(p, a) near q three surfaces meeting in a line on which q lies, the
line being the boundary of the 3 surfaces and tangent spaces at q of
the three surfaces having pairwise regular intersection. Finally in the
case of 2 nondegenerate minima the local picture is a surface passing
through q. (These are diagrams 2[ii] and 2[i] respectively).
Then there is the geometric interpretation: in the barycenter-

tetrahedron picture 4 length minimizing nondegenerate geodesics join
p to the barycenter, 3 join p to any point on the 4 lines and 2 join p to
any point on the 6 surfaces. The geometric interpretation for the other
cases is clear.

By now the reader can verify routinely that the case of one

degenerate minimum yields diagrams 2[iv] i.e. a half plane with q on
the boundary and in fact with every point on the boundary being
conjugate to p.

4. A connection with geometric topology

This section points out a curious connection with the study of
3-dimensional manifolds. We are not sure of its ultimate significance
(if any).

Let M be any compact 3-dimensional differentiable manifold.

Recall that a theorem of A. Weinstein [14] (in contradiction to a

conjecture of H. Rauch) has shown that on any compact differenti-
able manifold not homeomorphic to S2 there exists a metric a for
which the cut locus contains no points conjugate to p. It follows by
elementary continuity considerations that there is a neighborhood of
a in the space of metrics for which this is true. In view of the density
of cut-stable metrics in dimension 3 there must be a cut-stable metric

whose associated cut locus is free of conjugate points. Consequently
we have the following conclusion.
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THEOREM: Any compact 3-dimensional manfiold can be decom-
posed into the disjoint union of an open cell and a compact subset
whose local picture is one of three types namely figures [2(i)], [2(ii)] or
[2(iii)].

Now this is not entirely surprising to geometric topologists. For it is
standard procedure to do the following: First triangulate the manifold.
Then choose a maximal tree in the triangulation. Next take all the two
and three cells (in the first barycentric subdivision of the trian-

gulation) dual to the one and zero cells of the maximal tree. Together
they form an open 3 cell. Its complement is a 2-dimensional sub-

complex. What is not clear (at least to me) is what the local picture of
this two dimensional subcomplex looks like. No doubt there are only
finitely many types. But if so can one eliminate all but the ones given
in the above theorem. 1 would hazard (not very educated) guess that
on a first try it will not be possible to reduce to the above three
pictures. Very likely at least the figure [2(iv)] and [2(v)] will be

amongst those present. This raises the question of whether on the
geometric topological level there is a way of eliminating all but the

above three pictures say by choosing the triangulation and the maxi-
mal tree with greater care. If there is such a procedure does it

correspond in some way to the differential geometric procedure
outlined above?

It remains to be seen whether or not this is a worthwhile

endeavour.

REMARK: As Alan Weinstein points out, if only the above decom-
position theorem is desired, the route can be considerably shortened.
For one may work entirely within the set A of metrics whose cut loci
have no conjugate points. In particular, our multitransversality
condition will be very simple (i.e. transversality to the diagonal in Rr)
and will hold for an open dense set in A without dimension restric-
tion. Consequently there is a decomposition theorem in any dimen-
sion analogous to the above.
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