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A THEOREM ON COMPLETE INTERSECTION CURVES AND
A CONSEQUENCE FOR THE RUNGE PROBLEM FOR
ANALYTIC SETS

Antonio Cassa

Summary
The main goal of this article is to prove the following:

APPROXIMATION THEOREM: Let X be a Stein complex analytic
manifold of dimension n =2, A a Runge and Stein open set of X and
C a curve of A; there exists a sequence of curves {Ci}i=, of X such
that:

C =1im (Cya)
k-F
in the topological space Z{(A) of positive analytic 1-cycles of A.
The proof makes use essentially of the following:

CoMPLETE INTERSECTION THEOREM: For each relatively compact
open set B of A there exist functions g,, ..., g.—, holomorphic on B
such that the positive analytic 1-cycle defined by g = (g1, ..., 8,-1) in B
is:

Vi(g)=Clg+my-(Dyg)+- -+ my - (D)
where D,, .. ., D, are curves of X and m,, ..., m positive integers.

In fact if {g®}= is a sequence of maps g*: X - C"! holomorphic
on X, having at least multiplicity m; on D; for each i=1,...,s
and converging to g, for k big enough we have:

Vig®) = Cyg+mqi-(Dyp)+---+m;-(Dyp)

189



190 A. Cassa [2]
where the C, are curves of X; then in Z{(B):

C =lim (Cys)

So every curve C of A can be approximated by curves of X on
every relatively compact open set B of A, that is the restriction map:

Z(X)—> Z\(A)

has dense image in Z,(A).

Moreover if C is irreducible in A the curves C, can be chosen
irreducible in X and if X is an open set of C" they can be taken
algebraic.

This proves that the so-called Runge problem has always solution
for analytic cycles of dimension one. This is no longer true in general
for higher dimension; Cornalba and Griffiths show in [7] page 76 there
exists a non trivial condition for the approximability of an analytic
set.

Under that condition they state a general Runge problem for
analytic sets that they solve in the case of codimension one.

In that article (as in [4]) the topology of Z3(X) is defined through
the space of currents 9%,,(X); the properties of that topology are
described in [11] and in a more geometric way in [3] or in [5].

I take the opportunity of thanking prof. A. Andreotti for all his help
and mainly for his precious suggestions; likewise I wish to thank prof.
M. Cornalba and prof. Ph. Griffiths for having communicated to me their
ideas about the Runge problem.

List of symbols

reg V = manifold of all the regular points of the analytic space V.
sing V = V —reg V = subspace of the singular points of V.
T.(V) = Homc(M,/PE; C) = Zarinski tangent space at x € V.
dim t,(V) = dim¢ T,(V) = embedding dimension = tangential dimen-
sion.
Z,(W) = topological group of the analytic d-cycles in the manifold
Ww.
Z (W) =cone in Z;(W) of the positive d-cycles of W.
V4(f) = positive d-cycle defined by the equation f=0, where
f: W—C" is an holomorphic map.
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§1. The estimate of the rank of a sheaf using the
Endromisbiindel of Forster and Ramspott

Let & be a coherent sheaf on a complex analytic manifold X.

For each point x € X the least number of generators of the stalk %,
is given by the dimension on C of the vector space L,(%)=
FdD, - F).

If this number is bounded in X the sheaf & has finite rank, that is
there exist sections fi, .. ., f, € I'(X, %) generating all the stalks %, for
every x € X (see [6]).

Taken a positive integer s <r, the existence of s sections
g1, - - -, & € I'(X, ) with the same property is equivalent to the exis-
tence of an holomorphic section of a bundle E(%; f, r) on X called
Endromisbiindel (see [8]).

The Endromisbiindel is an open set of X X C™ obtained subtracting
analytic subspaces defined by the sections fi,...,f, and by the
numbers {dim¢ L,(%¥); x € X}.

Let’s put for each integer k = 0:

Y (F)={x € X:dimc L (%)= k}

the family {Y,(%)}h=o is a decreasing sequence of analytic subspaces
of X which are surely empty for k=r+1.

On the analytic space X (%)= Y (%)— Yi.«(%) the Endromis-
biindel is a locally trivial holomorphic bundle whose fibre F,; is
homotopic to the manifold Wy of all the orthonormal k-frames of C°.

The main result of [8] (satzen 5 and 6) claims that if X is holomor-
phically convex the existence of a holomorphic section of the
Endromisbiindel is equivalent to the existence of a continuous
section.

Therefore the evaluation of the rank of & is a purely topological
problem whose main ingredients are the spaces Y, (%) and the fibres
Wsk-

The following proposition is a way to make sure the existence of a
continuous section of E(%,f, s) supposing zero all the cohomology
groups containing the obstructions.

ProroSITION: Let X be a Stein manifold and % a coherent analytic
sheaf having his rank bounded by an integer s.

If for each k=0 and q = 1:

H (Y (F), Vil F); mg(We)) = 0
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then there exist s sections g, . . ., g € I'(X, %) generating all the stalks
of .
PrROOF: Let fy,...,f, be global sections of ¥ generating all the

stalks of &; proceeding by induction on h = r—k from 0 to r we will
prove there exists a continuous section of E(%,f, s) on Y,_,(¥) for
h=0,...,r

If h =0 since Y,,, = ¢ the bundle E(%, f, s) is a locally trivial fibre
bundle with fibre homotopic to W,,; the condition H**'(Y,; m,(W,,)) =
0 is just the one we need to prove the existence of a continuous
section on Y, (see [13] page 174).

Let’s prove now we can extend a continuous section from Y ,_4_
to Y, ,; we can find a triangulation of Y,_, in such a way Y, 4, is a
subpolyhedron furnished of a neighborhood U which is again a
subpolyhedron of Y,_, and contractible on Y ,_4-y).

Since E(%, f, s) is an open set of C* X X choosing U suitably small
we can, first of all, extend our continuous section from Y, y_;, to U;
then we can extend the section from U~—-Y, - to Y,.p,— Y ,_4-y
because for each g =1 we have:

Hq+l(Yr—h =Yt U=Y, gy mg(Ws,o)) =0

In fact:

H"' (Y, =Y ey U= Y o) = HY'(Y 1, U)
= Hq+l(Yr—ha Yr—(h~l)) = Hq+l(Yk’ Yk+1) =0.

§2. Complete intersection curves

Let C be a curve of an open set of C" and x, a singular point of C,
if dim ¢, (C) =2 then the curve C is complete intersection at x,.

In fact there exist a manifold M of dimension 2 in C" and a
neighborhood U of x, such that C N"U C M NU; restricting, in case,
U we can find a function f, holomorphic on U such that I caymnv =
frn* Omnuy and functions f,,..., f,-i holomorphic on U such that
.OJ_MnU,U = f2 . OU + - +f,,_1 . O‘U;therefore

Tervw=fO0p+---+f. Op

The following two lemmas prove in most cases that if ¢t = dim ¢, (C)
is bigger than 2, then adding to C some lines L,,..., L,, through x,
the curve CU(L,U- - -UL,_,) is complete intersection at Xx,.
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LEMMA 1: Let C be a curve of an open set of C" (with n =2) and
the origin 0 a singular point of C.

Denoted by L,,..., L, the coordinate axes of C" and written L,=
{0}, if the following hypothesis is verified:
(i) the projection map p: C" - C? defined by p(z, . . ., 2n) = (Zn_1, Zu)

is injective on C in a neighborhood of 0.
then a neighborhood V of 0, an integer s =0,...,n—2, a Stein
neighborhood U of (LyU- - -UL,) and functions f,, ..., f._1 holomor-
phic on U exist such that:

D) {xeEU: fitx)=-=fiu(x)=0=(CNVNU)U(LU - --ULy)
(2) the germs fi, ..., fo-1x generate the stalk T, for each x €
cnNnvnuU —-{o}.

Proor: Let’'s proceed by induction on n=2. For n=2 the
conclusion is well known. For n =3 let’s suppose we have already
proved the lemma for all the curves C’ of C" with n’<n and let’s
prove it for the curves C of C".

Let’s denote by q:C"—C""! the projection along the axis L,_,
defined by q(zy,..., Zn-2, Zn-1, 22) = (21, . . ., 0, Zu—1, 2,) With values in
cl={zeC": z,.,=0}

For the hypothesis (i) it is possible to find a neighborhood V of 0
where q is injective on C. Rechoosing in case V we can suppose the
map q: VNC - q(V) proper; therefore C’'=q(CNV) is a curve of
V' = q(V) open neighborhood of 0 in C"™".

We can choose V small enough to have also sing(C)NV ={0}=
sing(C").

The curve C' of C"' in respect to the coordinates zy, .. ., Zu_2, Zn_1,
z, verifies the hypothesis (i); for the induction there exist an integer
s'=0,...,n—3, a Stein neighborhood U’ of L,U---UL, and
functions fi,.. ., fr—» holomorphic on U’ verifying the theses (1) and
2).

Using (i) it can be verified that the restriction of g gives a map §:
(CNVYULyU---ULy)>C'U(LyU---ULy) bijective and
holomorphic, whose inverse is meromorphic, continuous and bi-
holomorphic out of 0. Likewise the function m in C’ U(L,U---ULy)
defined by m(x')=z,2(¢"'(x")) is meromorphic, continuous,
holomorphic out of 0 and vanishes on (L,U---UL,). Therefore
m(x") = a’'(x")/b'(x') everywhere b'(x')#0 for two functions a’, b’
holomorphic on C'U(LyU-:-ULy) with b’ not identically zero on
any irreducible component and a'=0on LyU---UL,.

Solving a 0*-cohomological problem we can find two functions a
and b holomorphic such that b(x’) # 0 if x’ # 0 and m(x") = a(x')/b(x")
for each x' # 0.
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Since U’ is Stein we can suppose a and b defined on U’; written
U=q'(U), fi=fieq,....far=fr2°a fo1=(°q) -z 2—(acq)
the theses (1) and (2) are verified for the curve C together with the
lines Ly, ..., Ly, L,, if b(0)=0 or the lines L,,..., L, if b(0) #0.

LEMMA 2: Let C be as in Lemma 1 and n =3; there exists a
coordinate system in C" verifying (i).

Moreover if E is a measurable subset of C"—{0} with Hausdorff
measure H,(E)=0 for each r>2, the coordinate system can be
chosen in such a way to have:

(LyU---UL,)NE=¢

Proor: For each n-uple of lines L =(L,,..., Ln) in general posi-
tion and for each i=1,...,n—1 let’s write V. ;=L;+---+ L, and
let’s denote pr;:C"— Vy; and qri+1: Voi— Vi the natural pro-
jections.

Since p._i1=(qn_1)°- - -°(qy, if p,_; is not injective on C in any
neighborhood of 0, then some of the projections g;,; (where i=
1,..., n—2)1s not injective on the set p;(C) in any neighborhood of 0;
therefore for each integer j =1 there exist two points zj and 27 of C
such that pi(zj and p;(z}) are different, non zero, |pi(z)|<1/j,
lpi(z < 1/j and (pi(z) — pi(z})) € L:.

Then the intersection L; N(p:(C)— p:(C)) has interior part not
empty in L; this set is in fact the image of the holomorphic map
d:d'(L)N(CxC)->L; where d:C"+C"->V, is defined by
d(z', z") = pi(z') — pi(z") which is of rank one at least in some point
containing in its image the sequence {(p:(z}) — p:(z)};=: infinite and
converging to 0.

Written G ={g€C*:g =¢**" with a,b€Q}, S;=pi(C)—pi(C),
Si=Ueec g+ S1 we have L;=U,egg-(L;NS) and therefore L;C
Si+(Lo+---+L;)). Let’s prove at this point that for each i=
1,...,n—2 and for each L'=(L,,..., Li.;)€{Ly}x (P" )" (where
Lo=1{0}) the set R, ={LEP"":LC S{+ Ly+---+ L;_,} has measure
zero inP "',

In fact written Ty = Upeg,. L, because Tp. = S+ Lo+---+ L;_; and
H.(S)=0 if r>4, it must be H.(Tp)=0 for r>4+2(i—1) and
therefore H/(R.)=0 if r>2+2(i—1)=2i since T —{0}= R, X C*,
so we can conclude w(R;) = H,,—»(Rr) = 0 because 2n — 2 > 2i.

We are able now to prove that for each k =1,..., n — 2 there exist k
lines L,,..., L, in general position such that (L,U---UL)NE=@
and for each [ =1,..., k written L;=(Ly,...,L;-)) we have L, &€ R;..
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For k = n —2 the lemma will result proved.

For k = 1 we have to find L, €P" ! such that L, & R, ,UE'" where E’
is the image of E in P""! for the natural quotient map. It is possible to
find L, since the set of directions to avoid has measure zero in P"!.

Given the lines L,,..., L, ; with the properties listed above we
have to find a line L, in general position in respect with the others and
in such a way L,Z R; UE"'.

Again it is possible to choose L, since the set of directions to avoid
has measure zero.

THEOREM 1: Let X be a Stein manifold of dimension n =3, A a
Runge and Stein open set of X and C a curve of A.
For each relatively compact open set B of A there exist a curve D of
X and functions g, . . ., g.—1 holomorphic on B such that:
(1) {xE€B:gix)="---=gu(x)=0}=(CUD)NB
(2) the germs g\, ..., g1 generate the stalk T, for each x €
CNB -8, where S ={x € CNB: C is not complete intersection
at x}.

Proor: Enlarging B we can suppose it a Runge and Stein open set
yet relatively compact in A.

The set S contained in sing(C)NB is finite; if S=@ the curve
C N B is locally complete intersection (ideal theoretically) and there-
fore it is complete intersection in B (see [8] page 162, the Remark (b)
to Corollary (2) of Theorem (9).

If S#@ let’s write S ={x,...,x,}; we show that however fixed an
integer r=1,...,p for each j=1,...,r there exist a curve D; of X,
an open neighborhood U; of D; and functions f;,. .., fi,-1 holomor-
phic on U; such that:

A {xeUnNB:fyix)=---=fi,.(x)=0=(CUD)NU;NB

(B) the germs fjix ..., fin-1x generate I, for each x&
CNU;—{x}

(C) D;NC NB ={x;}

D) U,NnU;NB=@foreachk<j=r.

Let’s proceed by induction on r. Let r = 1; it is possible to find a
holomorphic map R: X —C" regular in x, and such that R7'(0) = {x,}
(see [8] page 161, Corollary 1 of Theorem 9). Replacing R with
another map (denoted again by R) near enough to R we can have (see
[9] page 168, Theorem 4):

(1) for all the points x of a neighborhood W of x;: R (R(x))NB =
{x}

(2) R(x)=0
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(3) dim(R'(R(x))) = 0 for each x € X.

(4) R establishes a biholomorphism between W and W'= R(W)
open set of C".
Applying the Lemmas 1 and 2 to the curve C’'= R(C NW) of the
open set W’ of C" and to the set E = R(C)— {0}, it is possible to find
a coordinate system (z,...,2z,) in C" whose coordinate axes we
denote by L,,..., L, (Ly={0}), a neighborhood V'’ of 0 contained in
W', an integer s =0,...,n—2, a neighborhood U’ of L U---UL;
and functions f1, ..., fr_, holomorphic on U’ such that:

M {ze U fix)=---=fi.(x)=0}

=(C'NV'NUYU(L U---ULy)

(2) the germs fi,...,fr1. generate Fcz for each z€
cNnvnNuU'-{0}

(3) (LyU---UL,)NR(C)=1{0}.
Let’s put D, =R '(LyU- - - ULy), since D;NC NB = {x;} we can find
a neighborhood U, of D, contained in R '(U’) such that CN
(UinB)cCNW; on U; let’s define the functions f,,=
f;°R,---,f|‘nv1:f:'-|°R-

For these sets and functions the conditions (A) (B) (C) and (D)
listed above are verified.

Let’s suppose now r > 1 and we have found foreachj=1,...,r—1
a curve D; of X, a neighborhood Uj; of D; and functions fji, . . ., fia-
satisfying the conditions (A) (B) (C) and (D) and let’s show how to
add a curve D,, a neighborhood U, of D, and functions f,i, .. ., frn_; in
such a way the properties (A) (B) (C) and (D) are verified for each
k<j=r

Again we consider an holomorphic map R,: X —»C" such that:

(1) for all the points x of an open neighborhood W, of x, we have
R;(R,(x)) NB = {x}

2) R(x,)=0

3) dim R;'(R,(x)) =0 for each x € X.

As above we apply the Lemmas (1) and (2) to the curve C,=
R.(CNW,) of the open set W,=R.(W,) of C" and the set E, =
R(CUDU---UD,_))—{0}; written D,=R;'(L,U---UL,), again
we can find a neighborhood U, of D, such that CNU,NBC CNW,
and define f,;=fi°R,, ..., frn_1 = fr1° R,; moreover since D;ND; N
B=@if i#j=<r we can choose U,,..., U, in such a way to have
U;NU;NB =@ for each i# j=r, and again these sets and functions
satisfy the conditions (A) (B) (C) and (D).

Arrived with r to p, let’s put D= D,U---UD, and let’s define for
each i=1,...,p a coherent sheaf J; on U; N B putting:

Fi=fii Owns+ -+ fin1- Olunm
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For each x€ U;NB — D we have 9, = Jc
We can now define a sheaf J on B writing:

g_x =/f’/—,-_x 1fx€BﬂU,-
T~g., ifx€B-D

The sheaf 7 is well defined and coherent; moreover

1 for each x€ B-(C UD)

dim L, (9) =
7) \n—lforeacth(CUD)ﬂB

therefore the sheaf J has limited rank on B.

To complete the theorem’s proof we have to check that the rank of
J is just n — 1.

For what has been reported in §1 since we have:
Yo(I)=Y(9)=B, Y(T)=--=Y, (T)=(CUD)NB and
Y.(9) =@ for each r = n, we have to prove that for each g = 1:

H'((CUD)NB; my(W oy 5-1)) = 0
and
H™'(B,(CUD)NB; m(W,_11)) =0

The first cohomology groups vanish because (C UD)NB is a Stein
curve; for the second we have W, ;= S, therefore wm,(W,_1)=0
for each 1=q =2n—4.

For g =2n — 3 =n =3 from the exact sequence:

-+—> HY(CUD)NB;G)—> H*'(B,(CUD)NB;G)
—> H"*'(B;G)—> H*''((CUD)NB; G) —>- - -

where G = 7,(W,_,), it follows:
H*'(B,(CUD)NB;G)=H*'(B;G) =0

because H'(CUD)NB;G)=0=H""'(B;G) for each g=n=3
(see [2] and [12]).

When X is an open set of C" we can prove something more precise:

THEOREM 1': Let X be a Stein open set of C" (n=3), A a Runge
and Stein open set of X and C a curve of A.
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If the set:

S ={x € C: C is not complete intersection at x}

is finite, then for each x € S there exists a finite family of lines
L.y, ..., Ly, through 0 such that the curve:

(cu L{g L)NA

i=1, s

is a set-theoretically complete intersection in A.

More precisely there exist functions g,, ..., g.—1 holomorphic on A
such that:
(M) xEA; @)= =g0)=0}=(CU U LpNA

=1, sy
(2) the germs g, ..., 8n—1x generate the stalk T, for each x €
Cc-S.

PROOF: As in the theorem 1 forgetting about B or B and using as
maps R,: X — C" the translations sending the points x, in 0.

THEOREM 2: Let X be a Stein manifold of dimension n=2, A a
Runge and Stein open set of X and C a curve of A.

For each relatively compact open set B of A there exist a holomor-
phic map g:B—>C""" and a positive 1-cycle D € Z}(X) such that:

Vi(g)=Ciz+ Dj.

PRroOOF: Let’s prove first the theorem when n = 3; enlarging B we
can suppose it Runge and Stein in A. For the Theorem 1 there exist a
map g:B—>C" " and a curve D of X such that:

(1) {x€B:G(x)=0=(CUD)NB

2) gix--.» gn-1.x generate I, for each x Ereg(C) N B.

Let’s denote by D the sum of the components of the cycle Vi(g)
not contained in C; D is a cycle of X and we have:

Vig)=m,;-(Cyg)+---+m,-(Cps)+ D

where C,, ..., C, are curves contained in C N B decomposing it in its
irreducible components, and m,, .. ., m, are positive integers.
We have just to prove that m;=---=m,=1;let i=1,...,r and

x; €Ereg(C;) N B, at x; we can find a coordinate system (zy, .. ., z,) such
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that g;=zy,..., guw-1 = z,_1; in this coordinate system V,(g) is the nth
axis counted only once.

If n =2, enlarging in case the open set B we can suppose it Runge
and Stein in X and with smooth boundary. Therefore (see [2]) we
have Hs(X, B;Z) =0 and the group H,(X, B; Z) is free of finite rank;
then the restriction map:

r:H¥X:Z)—> H%B;Z2)

is surjective.

Therefore there exists a positive divisor D of X such that
r(c(D)) = —c(Cj), that is ¢(Djg + Cg) = 0.

Since the divisor has Chern class zero, there exist a holomorphic
map g:B — C such that: Vi(g)= CB + Djs.

§3. Approximation of curves

THEOREM 3: Let X be a Stein manifold of dimension n=2, A a
Runge and Stein open set of X and C an irreducible curve of A.
There exists a sequence of irreducible curves {C,}i=; such that:

lim (C,NA)=C
k—o

in the space of positive 1-cycles Zi(A).

Proor: Let {B;}~; be a sequence of relatively compact open sets
of A which are Runge and Stein and invade A.

For each i =1 for the Theorem 3 we can find irreducible curves
D;, ..., Dy, of X and a map g:B;—>C""' such that:

Vig) =(CNB)+my - (DyNB)+ -+ -+ my, - (D, N B)).
Let's write 7; = (Tp)™ N- - (T p, )™, since g € [[(Bi Typ)]""
for theorem 11 at page 241 of [9] there exists a sequence of maps
{g®h= CII(X, THI"! converging to g; on B;; therefore for the prop. 7

of [5] we have:

Vi(g) =lim ( Vig®) ).

Let’s denote by Ty the sum of the terms of V,(g{) whose support
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is not in D, = D;; U- - - UD,,; we can write:
Vi@®)=Tu+m® - Dy+---+my, - Dy,
where m{¥ = m; for each k=0and j=1,..., 5.
Let’s fix a point x; € reg(D;) N B; and choose in a neighborhood of
x; a coordinate system where Dj is the first coordinate axis; let’s call
R and L respectively a cube of center x; and L the normal hyper-

plane to Dj; in x;; for the Bochner-Martinelli formula (see [10]) we
have:

A(gi A(g)
m; = f l—&:l%% and m{ = f I?((ﬁglftw

LNéR LNaR

for k big enough, where A(g) is a form whose coefficients are
polynomials in g and its derivatives.
For the integral continuity for k big enough we have m; = m .
Therefore:
Vig!)=Tu+my-Dy+---+ mjs, - Dy,

and then subtracting the common terms between V,(g!*) and Vi(g):

C ﬂB, = lim (Tile,)-
k-
For the convergence is a local property (see [5]) we have:

C =lim (Ty).

i—>o

To complete the proof we need only to prove the following:
LEMMA: Let X be a manifold of dimension n =2, A an open set of
X and C an irreducible curve of A.

If there exists a sequence of 1-cycles {Ti}i=1C Z7(X) such that:

C = lim (T )
k—w

then there exists a sequence of irreducible curves {C,}i=1 of X such that:
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LEMMA’S PROOF: It’s enough to prove the lemma for each rela-
tively compact open set B of A.

Let x be a regular point of C, we can find a coordinate system in a
neighborhood of x making C a line; let P, be a polycylinder with
center x in this coordinate system. For k big enough the analytic set
(supp(Ty)) NP, is regular because each normal plane to C meets, in
P,, the space supp(Ty) in a simple point for the Bochner-Martinelli
formula; moreover (supp(Ty)) NP, is a connected manifold and there
exists an irreducible curve Ci of X such that Typ, = Cip, for each k
bigger than a suitable k,.

Let’s fix in reg(C) a sequence of connected compact sets invading
reg(C) (such a sequence can be constructed using a triangulation of
the connected smooth manifold reg(C)); let’s call U a compact
neighborhood of sing(C) N B small enough to be contained in a Stein
open set of B.

Since the set (B — U) Nreg(C) is relatively compact in reg(C) there
exists a connected compact set K of reg(C) containing the set
(B—-U)Nreg(C) and it is possible to find a finite number of points
X1, ..., Xy of K and polycylinders P,, ..., P, centered in those points
such that P = UL, P, D K; therefore we have CNBC P UU.

Moreover whenever P, NP, # @ we can find a point x; € P,, NP, a
polycylinder P; centered in x; contained in P,, NP, and an integer big
enough k; such that (supp(T,)) N P; is non-empty and irreducible for
each k = k;.

Since P is connected for k=k = max{k,, k;} the irreducible curve
representing T in each P,, must be the same, that is there exists an
irreducible curve C; of X for each k =k such that: T yp = Cyp.

Moreover for k big enough we have (supp(T,)) NBC(PNU)NB
(see the Remark 5 of [5]); then T yprp = Cyprp, thatis Typ-v = Cyp-u
and at last T g = C .

THEOREM 4: Let X be an holomorphically convex open set of C"
(n=2), A a Runge and holomorphically convex open set of X and C
an analytic irreducible curve of A.

There exists a sequence of algebraic curves {Ci}i= of C" irreducible
in X such that:

lim (C,NA)=C
k—co

in the space of positive analytic 1-cycles ZT(A).
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PRroor: Trivial for n = 2.

For n =3 following Theorem 3 let’s observe that, being X an
open set of C", we can take as curves Dj,.. ., D;, some lines of C" as
in Lemma 1 and therefore the section of the sheaf J;=
(Ip)"N---N(Ip, )™ are generated by some polynomials
Pit, . - ., Dir, of C"; that is for each j=1,...,n—1it holds:

(8)i= 1:12 A hi - pa

for some functions h;; holomorphic on B;.

Moreover we can choose the open sets B; to be Runge in C" and
then find sequences of polynomials {q{§’};=; of C" converging to h; on
B..

Denoting (g¥); ==,.1 .. q% - ps, the positive 1-cycles {T;} are
algebraic and even more so the curves {Ci}i=1.
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