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A THEOREM ON COMPLETE INTERSECTION CURVES AND
A CONSEQUENCE FOR THE RUNGE PROBLEM FOR

ANALYTIC SETS

Antonio Cassa

Summary

The main goal of this article is to prove the following :

APPROXIMATION THEOREM: Let X be a Stein complex analytic
manifold of dimension n &#x3E; 2, A a Runge and Stein open set of X and
C a curve of A; there exists a sequence of curves {Ck}k~l of X such
that:

in the topological space Z)(A) of positive analytic 1-cycles of A.

The proof makes use essentially of the following:

COMPLETE INTERSECTION THEOREM: For each relatively compact
open set B of A there exist functions g,, ..., gn-, holomorphic on B
such that the positive analytic 1-cycle defined by g = (gl,. - -, gn-1) in B
is :

where DI, ..., D, are curves of X and m1, ..., ms positive integers.

In fact if {g(k)}k~l is a sequence of maps g(k) : X ---&#x3E; C"-’ holomorphic
on X, having at least multiplicity m; on Di for each i = 1, ..., s
and converging to g, for k big enough we have:
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where the Ck are curves of X; then in Z’(B):

So every curve C of A can be approximated by curves of X on
every relatively compact open set B of A, that is the restriction map:

has dense image in Zl(A).
Moreover if C is irreducible in A the curves Ck can be chosen

irreducible in X and if X is an open set of C" they can be taken

algebraic.
This proves that the so-called Runge problem has always solution

for analytic cycles of dimension one. This is no longer true in general
for higher dimension; Cornalba and Griffiths show in [7] page 76 there
exists a non trivial condition for the approximability of an analytic
set.

Under that condition they state a general Runge problem for

analytic sets that they solve in the case of codimension one.
In that article (as in [4]) the topology of Z§(X) is defined through

the space of currents 22d(X); the properties of that topology are
described in [11] and in a more geometric way in [3] or in [5].

1 take the opportunity of thanking prof. A. Andreotti for all his help
and mainly for his precious suggestions; likewise 1 wish to thank prof.
M. Cornalba and prof. Ph. Griffiths for having communicated to me their
ideas about the Runge problem.

List of symbols

reg V = manifold of all the regular points of the analytic space V.

sing V = V - reg V = subspace of the singular points of V.
Tx( V) = Homc(WèxIWè; C) = Zarinski tangent space at x E V.

dim tx( V) = dimc Tx( V) = embedding dimension = tangential dimen-

sion.

Zd(W) = topological group of the analytic d-cycles in the manifold
W.

Z’(W) = cone in Zd(W) of the positive d-cycles of W.
Vd(f ) = positive d-cycle defined by the equation f = 0, where

f : W---&#x3E; C’ is an holomorphic map.
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§ 1. The estimate of the rank of a sheaf using the
Endromisbündel of Forster and Ramspott

Let F be a coherent sheaf on a complex analytic manifold X.
For each point x E X the least number of generators of the stalk 37x

is given by the dimension on C of the vector space Lx(F) =
Fx/(Wlx . Fx ) .

If this number is bounded in X the sheaf F has finite rank, that is
there exist sections f 1, ..., fr E F(X, F) generating all the stalks J7x for
every x E X (see [6]).
Taken a positive integer s sr, the existence of s sections

gi, ..., g, E F(X, F) with the same property is equivalent to the exis-
tence of an holomorphic section of a bundle E(F; f, r) on X called
Endromisbündel (see [8]).
The Endromisbündel is an open set of X x (rs obtained subtracting

analytic subspaces defined by the sections fi, ..., fr r and by the

numbers {dimc Lx(F); x EX}.
Let’s put for each integer k ~ 0:

the family {Yk(F)}k~O is a decreasing sequence of analytic subspaces
of X which are surely empty f or k &#x3E; r + 1.
On the analytic space Xk(F) = Yk(F) - Yk+1(F) the Endromis-

bündel is a locally trivial holomorphic bundle whose fibre F"s,k is

homotopic to the manifold Wsk of all the orthonormal k-frames of cs.
The main result of [8] (satzen 5 and 6) claims that if X is holomor-

phically convex the existence of a holomorphic section of the

Endromisbündel is equivalent to the existence of a continuous

section.

Therefore the evaluation of the rank of Y is a purely topological
problem whose main ingredients are the spaces Yk(Y) and the fibres
wsk·
The following proposition is a way to make sure the existence of a

continuous section of E(J, f, s) supposing zero all the cohomology
groups containing the obstructions.

PROPOSITION: Let X be a Stein manifold and F a coherent analytic
sheaf having his rank bounded by an integer s.

If for each k &#x3E; 0 and q - 1:
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then there exist s sections gl, g, E F(X, F) generating all the stalks
of F.

PROOF: Let f,, ..., fr be global sections of F generating all the

stalks of F; proceeding by induction on h = r - k from 0 to r we will
prove there exists a continuous section of E(F, f, s) on Yr-h(F) for
h=0,...,r.

If h = 0 since Yr+l = ~ the bundle E(F, f, s) is a locally trivial fibre
bundle with fibre homotopic to Wsr; the condition 4H9+1( Yr; ’TTq(Wsr» ==
0 is just the one we need to prove the existence of a continuous
section on Yr (see [13] page 174).

Let’s prove now we can extend a continuous section from Yr-(h-1)
to Yr-h; we can find a triangulation of Yr-h in such a way Yr-(h-1) is a
subpolyhedron furnished of a neighborhood U which is again a

subpolyhedron of Yr-h and contractible on Y r-(h-l).
Since E(F, f, s) is an open set of Crs x X choosing U suitably small

we can, first of all, extend our continuous section from Yr-(h-1) to U ;
then we can extend the section from U - Yr-(h-1) to Yr-h - Yr-(h-1)
because for each q ? 1 we have:

In f act:

§2. Complete intersection curves

Let C be a curve of an open set of Cn and xo a singular point of C,
if dim tXo( C) = 2 then the curve C is complete intersection at xo.

In fact there exist a manifold M of dimension 2 in C" and a

neighborhood U of xo such that C nUe M n u; restricting, in case,
U we can find a function fn holomorphic on U such that 3-cnumnu =

fn . 0 Mnu and functions f2,..., fn-1 holomorphic on U such that

g Mnu,U = f2 . Ou + ... + fn-1 . Ou; therefore

The following two lemmas prove in most cases that if t = dim txo(C)
is bigger than 2, then adding to C some lines LI,..., Lt-2 through xo
the curve C U (L U... U Lt-2) is complete intersection at xo.
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LEMMA 1: Let C be a curve of an open set of Cn (with n &#x3E; 2) and
the origin 0 a singular point of C.
Denoted by Li, ..., Ln the coordinate axes of en and written Lo =

{O}, if the following hypothesis is verified :
(i) the projection map p : Cn ---&#x3E; e2 defined by p(zI, ..., zn ) = (Zn-1, zn)

is injective on C in a neighborhood of 0.
then a neighborhood V of 0, an integer s = 0,..., n - 2, a Stein

neighborhood U of (Lo U ... U LS) and functions fi, ..., fn-, holomor-
phic on U exist such that:

(2) the germs f1,x,..., fn-1,x generate the stalk 3-c,, for each x E
C n v n u - {O}.

PROOF: Let’s proceed by induction on n &#x3E; 2. For n == 2 the

conclusion is well known. For n &#x3E; 3 let’s suppose we have already
proved the lemma for all the curves C’ of Cn’ with n’  n and let’s
prove it for the curves C of ".

Let’s denote by q: C,, __&#x3E; Cn-, the projection along the axis Ln-2
defined by q(z1,..., Zn-2, Zn-1, zn) = (Zi, ..., o, Zn-1, zn) with values in

n = {z E en: Zn-2 = O}.
For the hypothesis (i) it is possible to find a neighborhood V of 0

where q is injective on C. Rechoosing in case V we can suppose the
map q: VnC-&#x3E;q(V) proper; therefore c’=q(CnV) is a curve of
V’= q(V) open neighborhood of 0 in Cn-1.
We can choose V small enough to have also sing(C) n V = loi

sing( C’).
The curve C’ of Cn-1 in respect to the coordinates Zi,..., Zn-2, Zn-1,

zn verifies the hypothesis (i); for the induction there exist an integer
s’ = 0, ..., n - 3, a Stein neighborhood U’ of Lo U... U Ls’ and

functions fÍ,..., f’n-2 holomorphic on U’ verifying the theses (1) and
(2).
Using (i) it can be verified that the restriction of q gives a map q :

(C n V) U (Lo U... U L,,) --&#x3E; C’ U (Lo U... U L,,) bijective and

holomorphic, whose inverse is meromorphic, continuous and bi-

holomorphic out of 0. Likewise the function m in C’ U (Lo U... U Ls’)
defined by m(x’) = Zn-2(q-1(x’» is meromorphic, continuous,
holomorphic out of 0 and vanishes on (Lo U... U Ls’). Therefore

m (x’) = a’(x’)/b’(x’) everywhere b’(x’) # 0 for two functions a’, b’

holomorphic on C’U (Lo U ... U Ls’) with b’ not identically zero on
any irreducible component and a’= 0 on Lo U... U Ls’.

Solving a 0*-cohomological problem we can find two functions a
and b holomorphic such that b(x’) # 0 if x’ # 0 and m (x’) = a (x’)/b (x’)
for each x’ # 0.
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Since U’ is Stein we can suppose a and b defined on U’; written

U = q-1(U’), fl=fl’-q,.--,f.-2==fn-2-q, fn-1 == (b 0 q) . Zn-2 - (a 0 q)
the theses (1) and (2) are verified for the curve C together with the
lines Lo, ..., Ls" Ln-2 if b (0) = 0 or the lines Lo, ..., Ls’ if b (0) # 0.

LEMMA 2: Let C be as in Lemma 1 and n &#x3E; 3; there exists a

coordinate system in en verifying (i).
Moreover if E is a measurable subset of en - {o} with Hausdorff

measure Hr(E) = 0 for each r &#x3E; 2, the coordinate system can be

chosen in such a way to have:

PROOF: For each n-uple of lines L = (Li,..., Ln) in general posi-
tion and for each i = 1, ..., n - 1 let’s write VL,i = Li + - - - + Ln and
let’s denote P.@,: Cn VL,i and q L,i+,: VL,i ---&#x3E; V L,i+l the natural pro-

jections.
Since Pn-1 == (qn-1) 0 ... ° (q2), if Pn-1 is not injective on C in any

neighborhood of 0, then some of the projections qi+1 (where i =

1,..., n - 2) is not injective on the set p;(C) in any neighborhood of 0;
therefore for each integer j &#x3E; 1 there exist two points zj and z’J of C
such that Pi(Zj) and Pi(Z’j) are different, non zero, Ipi(Zj)1  1/j,
IPi(Z’j)1  1/j and (Pi(Zj) - Pi(Z’j) E Li.
Then the intersection Lin(pi(c)-pi(C» has interior part not

empty in L;, this set is in fact the image of the holomorphic map
dl: d -’(Li) n (c xC)---&#x3E;Li where d: Cn + Cn .. &#x3E; Vi is defined by
d(z’, z") = Pi(Z’) - Pi(Z") which is of rank one at least in some point
containing in its image the sequence {(Pi(Zj) - p;(zJ))j&#x3E;i infinite and

converging to 0.
Written G = {g E C*: g == ea+bi with a, b E Q}, Si = Pie C) - Pie C),

SI, = UGIG 9 ’ S1 we have Li = Ug,G 9 - (Li n Si) and therefore Lic
SÍ + (Lo + ... + Li-1). Let’s prove at this point that for each i =

1,..., n - 2 and for each L’ = (Lo,..., Li-1) E {Lo} x (pn-I)i-1 (where
Lo = {0}) the set RL, = f L E pn-1 : L C SI + Lo + ... + Li-1} has measure
zero in p n-1.
In fact written TL, = ULERL, L, because TL, ~ SI, + Lo + ... + Li-1 and

Hr(S1) = 0 if r&#x3E; 4, it must be H,(TL,) = 0 for r &#x3E; 4 + 2(i - 1) and
therefore H,(RL,) = 0 if r &#x3E; 2 + 2(i - 1) = 2i since TL, - 101 =: RL’ X C * ,
so we can conclude li(RL’) = H2n-2(RL’) = 0 because 2n - 2 &#x3E; 2i.

We are able now to prove that for each k = 1, ..., n - 2 there exist k
lines L,, ..., Lk in general position such that (Li U ... U Lk) nE = 03B8
and for each 1 = 1,..., k written Li = (Lo, ..., LI-,) we have L, ~ RL’.
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For k = n - 2 the lemma will result proved.
For k = 1 we have to find L 0 pn-1 such that L1 ~ RL, U E’ where E’

is the image of E in pn-1 for the natural quotient map. It is possible to
find Li since the set of directions to avoid has measure zero in pn-1.
Given the lines Li,..., Lk-i with the properties listed above we

have to find a line Lk in general position in respect with the others and
in such a way Lk e RL’U E’.

Again it is possible to choose Lk since the set of directions to avoid
has measure zero.

THEOREM 1: Let X be a Stein manifold of dimension n ~ 3, A a
Runge and Stein open set of X and C a curve of A.
For each relatively compact open set B of A there exist a curve D of

X and functions gl, ..., gn-l holomorphic on B such that:
(1) {x E B :gl(X) == ... = g,,-,(x) = 0} = (C U D) n B
(2) the germs gl,x, ..., gn-1,x generate the stalk fFc,x for each x E

C n B - S, where S = {x E C n B : C is not complete intersection
at xi.

PROOF: Enlarging B we can suppose it a Runge and Stein open set
yet relatively compact in A.
The set S contained in sing(C) n B is finite; if S = 03B8 the curve

C n B is locally complete intersection (ideal theoretically) and there-
fore it is complete intersection in B (see [8] page 162, the Remark (b)
to Corollary (2) of Theorem (9).

If S# 0 let’s write S = {x 1, ..., xp}; we show that however fixed an
integer r = 1, ..., p for each j = 1, ..., r there exist a curve Dj of X,
an open neighborhood Uj of Dj and functions fj,l, ..., fj,n-1 holomor-
phic on Uj such that:

(A) {x E Uj n B : fj,l (x) = ... = f j,n -1 (x) = 0} = (C U D;) n Uj n B
(B) the germs fj,l,x,..., fj,n-1,x generate JC,x for each x E

C n Uj - {Xj}
(C) Dj ne nB == {Xj}
(D) Uk n Uj n B == 0 for each k  j :5 r.
Let’s proceed by induction on r. Let r = 1; it is possible to find a

holomorphic map R: X ___&#x3E; Cn regular in x, and such that R-’(0) = {Xl}
(see [8] page 161, Corollary 1 of Theorem 9). Replacing R with

another map (denoted again by R ) near enough to R we can have (see
[9] page 168, Theorem 4):

(1) for all the points x of a neighborhood W of Xl: R-1(R(x» n B =

M
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(3) dim(R-1(R(x») = 0 for each x E X.
(4) R establishes a biholomorphism between W and W’= R(W)

open set of C".

Applying the Lemmas 1 and 2 to the curve C= R(C n W) of the
open set W’ of C" and to the set E = R(C) - 101, it is possible to find
a coordinate system (zl, ..., zn) in C" whose coordinate axes we

denote by L,, ..., Ln (Lo = 101), a neighborhood V’ of 0 contained in
W’, an integer s = 0,..., n - 2, a neighborhood U’ of Lo U... U L,
and functions f l, ..., f n-1 holomorphic on U’ such that:

(2) the germs fyZ, ..., f n-,,Z generate Yc,,z for each z E

c’ n V’ n u’ - {O}
(3) (Lo U... U Ls) nR(C) = {O}.

Let’s put Dl = R-1(Lo U... U LS), since Dl ne n B = {Xl} we can find
a neighborhood U1 of Di contained in R-1( U’) such that C n

( Ui fl B ) C C fl W ; on U1 let’s define the functions fl,l=
fi°R,..., f l,n-1=fn-1°R.

For these sets and functions the conditions (A) (B) (C) and (D)
listed above are verified.

Let’s suppose now r&#x3E; 1 and we have found for each j = 1,..., r - 1
a curve Dj of X, a neighborhood Uj of Dj and functions fj,i, ..., fj,n-i
satisfying the conditions (A) (B) (C) and (D) and let’s show how to
add a curve Dr, a neighborhood U, of D, and functions fri, ..., f"n-1 in
such a way the properties (A) (B) (C) and (D) are verified for each
kjr.
Again we consider an holomorphic map Rr : X - Cn such that:
(1) for all the points x of an open neighborhood Wr of xr we have

R;l(R,(x» nE == {x}
(2) R.(x.) = 0
(3) dim R;l(R,(x» = 0 for each x E X.
As above we apply the Lemmas (1) and (2) to the curve C)=

R,(C n W,) of the open set W)= Rr(Wr) of en and the set Er =
R,( C U Dl U... U D,-l) - {O}; written D, = R;l(Lo U... U Lsr), again
we can find a neighborhood Ur of D, such that C n u, n Bee n W,
and define fr,i = f o Rr, ..., fr,n-i = f n-1 o Rr; moreover since Di n Dj n
B = 03B8 if i  j  r we can choose U1, ..., Ur in such a way to have

Ui n Uj n B = 0 for each i ~ j  r, and again these sets and functions
satisfy the conditions (A) (B) (C) and (D).

Arrived with r to p, let’s put D = Di U... U Dp and let’s define for
each i = 1,..., p a coherent sheaf fii on Ui n B putting:
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For each x E ui f1 B - D we have 3-i,x = fie,x.
We can now define a sheaf 3- on B writing:

The sheaf 3- is well defined and coherent; moreover

therefore the sheaf 3- has limited rank on B.

To complete the theorem’s proof we have to check that the rank of
J is just n - 1.
For what has been reported in § 1 since we have:

Yo(g) = YI(5") == B, y2(g) = ... = Yn-1(3-) = (C U D) fl B and

yr(g) == 0 for each r ? n, we have to prove that for each q &#x26; 1:

and

The first cohomology groups vanish because (C U D) f1 B is a Stein
curve; for the second we have W n-1,1::::::: s2n-3, therefore ’TTq(W n-1,1) = 0
for each 1  q  2n - 4.

For q ? 2n - 3 ? n &#x3E;_ 3 from the exact sequence:

where G = ’TTq(Wn-1,1), it follows:

because HQ+1«CUD)nB;G)==0==HQ+l(B;G) for each q &#x3E; n &#x3E; 3
(see [2] and [12]).

When X is an open set of Cn we can prove something more precise:

THEOREM 1’: Let X be a Stein open set of C n(n &#x3E; 3), A a Runge
and Stein open set of X and C a curve of A.
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If the set :

S = f x E C: C is not complete intersection at xl

is finite, then for each x E S there exists a finite family of lines

Lx,o, ..., Lx,sx through 0 such that the curve:

is a set-theoretically complete intersection in A.
More precisely there exist functions gi, ..., gn-1 holomorphic on A

such that:

(2) the germs gl,x, ..., ggn-lx generate the stalk 3"cx for each x E
c - S.

PROOF: As in the theorem 1 f orgetting about B or B and using as
maps R, : X - C nthe translations sending the points x, in 0.

THEOREM 2: Let X be a Stein manifold of dimension n &#x3E; 2, A a

Runge and Stein open set of X and C a curve of A.
For each relatively compact open set B of A there exist a holomor-

phic map g : B ___&#x3E; Cn- 
1 and a positive 1-cycle DE Z)(X) such that :

PROOF: Let’s prove first the theorem when n * 3; enlarging B we
can suppose it Runge and Stein in A. For the Theorem 1 there exist a

map g : B ---&#x3E; Cn-1 and a curve D of X such that:

(1) {x E B: G(x) = O} == (C UD) nB
(2) gl,x, ..., gn-i,x generate 3-cx for each x E reg(C) f1 B.
Let’s denote by D the sum of the components of the cycle V1(g)

not contained in C; D is a cycle of X and we have:

where CI, ..., Cr are curves contained in C rl B decomposing it in its
irreducible components, and ml,..., mr are positive integers.
We have just to prove that m = ... = mr = 1; let i= 1,..., rand

Xi E reg(C;) f1 B, at xi we can find a coordinate system (zl, ..., zn) such
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that g, = zl, ..., gn-, = zn-1; in this coordinate system V1(g) is the nth
axis counted only once.

If n = 2, enlarging in case the open set B we can suppose it Runge
and Stein in X and with smooth boundary. Therefore (see [2]) we
have H3(X, B ; Z) = 0 and the group H2(X, B ; z) is free of finite rank;
then the restriction map:

is surjective.
Therefore there exists a positive divisor D of X such that

r(c(D» == -C(CIB), that is c(DIB + CIB) = 0.
Since the divisor has Chern class zero, there exist a holomorphic

map g : B ---&#x3E; (C such that: V1(g) = CIB + DIB.

§3. Approximation of curves

THEOREM 3: Let X be a Stein manifold of dimension n - 2, A a
Runge and Stein open set of X and C an irreducible curve of A.

There exists a sequence of irreducible curves ICklk.-I such that:

in the space of positive 1-cycles Zt(A).

PROOF: Let {Bi}i~l be a sequence of relatively compact open sets
of A which are Runge and Stein and invade A.

For each i &#x3E; 1 for the Theorem 3 we can find irreducible curves

D;i, ..., Dis, of X and a map g : Bi --&#x3E; C"-’ such that:

Let’s write ;?Ti == (;?TD,)nl) n... n(;?T D,s )nl,s" since g; E [r(Bi, ;?Ti/B)]n-l
for theorem 11 at page 241 of [9] there exists a sequence of maps
{gk)}k~l C [r(X, ;?Ti)]n-I converging to gi on Bi; theref ore for the prop. 7
of [5] we have:

Let’s denote by T;k the sum of the terms of V1(gik) whose support
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is not in Di = D;i U... U Dis;; we can write:

where m i; ~ ? mij for each k ? 0 and j = 1,..., sl.
Let’s fix a point xij E reg(Dij) n Bi and choose in a neighborhood of

Xij a coordinate system where D;j is the first coordinate axis; let’s call
R and L respectively a cube of center xij and L the normal hyper-
plane to Dij in x;j ; for the Bochner-Martinelli formula (see [10]) we
have:

for k big enough, where À (g) is a form whose coefficients are

polynomials in g and its derivatives.
For the integral continuity for k big enough we have mi; &#x3E; m (k)ij.
Therefore:

and then subtracting the common terms between V,(gi(k)) and Vi(gl):

For the convergence is a local property (see [5]) we have:

To complete the proof we need only to prove the following :

LEMMA: Let X be a manifold of dimension n ~ 2, A an open set of
X and C an irreducible curve of A.

If there exists a sequence of 1-cycles {Tk}k~1 C Zl’(X) such that:

then there exists a sequence of irreducible curves {Ckh.~l of X such that :
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LEMMA’S PROOF: It’s enough to prove the lemma for each rela-
tively compact open set B of A.

Let x be a regular point of C, we can find a coordinate system in a
neighborhood of x making C a line; let Px be a polycylinder with
center x in this coordinate system. For k big enough the analytic set
(supp(Tk)) n Px is regular because each normal plane to C meets, in
Px, the space supp(Tk) in a simple point for the Bochner-Martinelli
formula; moreover (supp(Tk)) n Px is a connected manifold and there
exists an irreducible curve Ckx of X such that T kiPx = CkxlPx for each k
bigger than a suitable kx.

Let’s fix in reg(C) a sequence of connected compact sets invading
reg(C) (such a sequence can be constructed using a triangulation of
the connected smooth manifold reg(C)); let’s call U a compact

neighborhood of sing(C) f1 B small enough to be contained in a Stein
open set of B.

Since the set (B - U) f1 reg(C) is relatively compact in reg(C) there
exists a connected compact set K of reg(C) containing the set

(B - U) nreg(C) and it is possible to find a finite number of points
xl, ..., xm of K and polycylinders PX)’ ..., Px. centered in those points
such that P = U m Px; :) K ; therefore we have C n B C P U U.
Moreover whenever Px; 1 n Px- J -:j; 0 we can find a Point Xi}. E Px- 1 n Px-, J a

polycylinder Pij centered in xi; contained in Px; npxj and an integer big
enough kij such that (supp(Tk)) n Pij is non-empty and irreducible for
each k ~ ki;.

Since P is connected for k &#x26; k = max{kx;, kij} the irreducible curve
representing Tk in each Pxl must be the same, that is there exists an
irreducible curve Ck of X for each k &#x3E; k such that: TKIP = CKIP-
Moreover for k big enough we have (supp( Tk)) n B C (P rl U) f1 B

(see the Remark 5 of [5]) ; then TkipnB = C klpnB, that is TKIB-U = C kIB-U
and at last TklB = C kiB.

THEOREM 4: Let X be an holomorphically convex open set of cC"
(n &#x3E; 2), A a Runge and holomorphically convex open set of X and C
an analytic irreducible curve of A.

There exists a sequence of algebraic curves {Ck}k~l of Cn irreducible
in X such that :

in the space of positive analytic 1-cycles Z’(A).
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PROOF: Trivial for n = 2.

For n ? 3 following Theorem 3 let’s observe that, being X an
open set of Cn, we can take as curves D;i, ..., Dis; some lines of en as
in Lemma 1 and therefore the section of the sheaf fi =

(g Dit) mil n... n (g Dis) mis i are generated by some polynomials
p;i, ..., Pirj of Cn; that is for each j = 1,..., n - 1 it holds:

for some functions hijl holomorphic on Bi.
Moreover we can choose the open sets Bi to be Runge in C" and

then find sequences of polynomials {qf)}k2:1 of en converging to hijl on
Bi.
Denoting (gik); = L /=1,..., ri qn) . Pil, the positive 1-cycles ITikl are

algebraic and even more so the curves {Ck}k2:1.
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