Compositio Mathematica

Antonio Cassa

A theorem on complete intersection curves and a consequence for the runge problem for analytic sets

Compositio Mathematica, tome 36, $\mathrm{n}^{\circ} 2$ (1978), p. 189-202
http://www.numdam.org/item?id=CM_1978__36_2_189_0
© Foundation Compositio Mathematica, 1978, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

A THEOREM ON COMPLETE INTERSECTION CURVES AND A CONSEQUENCE FOR THE RUNGE PROBLEM FOR ANALYTIC SETS

Antonio Cassa

Summary

The main goal of this article is to prove the following:
Approximation Theorem: Let X be a Stein complex analytic manifold of dimension $n \geq 2, A$ a Runge and Stein open set of X and C a curve of A; there exists a sequence of curves $\left\{C_{k}\right\}_{k \geq 1}$ of X such that:

$$
C=\lim _{k \rightarrow \mp}\left(C_{k \mid A}\right)
$$

in the topological space $Z_{1}^{+}(A)$ of positive analytic 1-cycles of A.
The proof makes use essentially of the following:

Complete Intersection Theorem: For each relatively compact open set B of A there exist functions g_{1}, \ldots, g_{n-1} holomorphic on B such that the positive analytic 1-cycle defined by $g=\left(g_{1}, \ldots, g_{n-1}\right)$ in B is:

$$
V_{1}(g)=\left.C\right|_{B}+m_{1} \cdot\left(D_{1 \mid B}\right)+\cdots+m_{s} \cdot\left(D_{s \mid B}\right)
$$

where D_{1}, \ldots, D_{s} are curves of X and m_{1}, \ldots, m_{s} positive integers.
In fact if $\left\{g^{(k)}\right\}_{k \geq 1}$ is a sequence of maps $g^{(k)}: X \rightarrow \mathbb{C}^{n-1}$ holomorphic on X, having at least multiplicity m_{i} on D_{i} for each $i=1, \ldots, s$ and converging to g, for k big enough we have:

$$
V_{1}\left(g^{(k)}\right)=C_{k \mid B}+m_{1} \cdot\left(D_{1 \mid B}\right)+\cdots+m_{s} \cdot\left(D_{s \mid B}\right)
$$

where the C_{k} are curves of X; then in $Z_{1}^{+}(B)$:

$$
C=\lim _{k \rightarrow \infty}\left(C_{k \mid B}\right)
$$

So every curve C of A can be approximated by curves of X on every relatively compact open set B of A, that is the restriction map:

$$
Z_{1}(X) \longrightarrow Z_{1}(A)
$$

has dense image in $Z_{1}(A)$.
Moreover if C is irreducible in A the curves C_{k} can be chosen irreducible in X and if X is an open set of \mathbb{C}^{n} they can be taken algebraic.

This proves that the so-called Runge problem has always solution for analytic cycles of dimension one. This is no longer true in general for higher dimension; Cornalba and Griffiths show in [7] page 76 there exists a non trivial condition for the approximability of an analytic set.

Under that condition they state a general Runge problem for analytic sets that they solve in the case of codimension one.

In that article (as in [4]) the topology of $Z_{d}^{+}(X)$ is defined through the space of currents $\mathscr{D}_{2 d}(X)$; the properties of that topology are described in [11] and in a more geometric way in [3] or in [5].

I take the opportunity of thanking prof. A. Andreotti for all his help and mainly for his precious suggestions; likewise I wish to thank prof. M. Cornalba and prof. Ph. Griffiths for having communicated to me their ideas about the Runge problem.

List of symbols

reg $V=$ manifold of all the regular points of the analytic space V. sing $V=V-$ reg $V=$ subspace of the singular points of V.
$T_{x}(V)=\operatorname{Hom}_{\mathbb{C}}\left(\mathfrak{M}_{x} / \mathfrak{M}_{x}^{2} ; \mathbb{C}\right)=$ Zarinski tangent space at $x \in V$.
$\operatorname{dim} t_{x}(V)=\operatorname{dim}_{\mathrm{C}} T_{x}(V)=$ embedding dimension $=$ tangential dimension.
$Z_{d}(W)=$ topological group of the analytic d-cycles in the manifold W.
$Z_{d}^{+}(W)=$ cone in $Z_{d}(W)$ of the positive d-cycles of W.
$V_{d}(f)=$ positive d-cycle defined by the equation $f=0$, where $f: W \rightarrow \mathbb{C}^{r}$ is an holomorphic map.

§1. The estimate of the rank of a sheaf using the Endromisbündel of Forster and Ramspott

Let \mathscr{F} be a coherent sheaf on a complex analytic manifold X.
For each point $x \in X$ the least number of generators of the stalk \mathscr{F}_{x} is given by the dimension on \mathbb{C} of the vector space $L_{x}(\mathscr{F})=$ $\mathscr{F}_{x} /\left(\mathfrak{M}_{x} \cdot \mathscr{F}_{x}\right)$.

If this number is bounded in X the sheaf \mathscr{F} has finite rank, that is there exist sections $f_{1}, \ldots, f_{r} \in \Gamma(X, \mathscr{F})$ generating all the stalks \mathscr{F}_{x} for every $x \in X$ (see [6]).
Taken a positive integer $s \leq r$, the existence of s sections $g_{1}, \ldots, g_{s} \in \Gamma(X, \mathscr{F})$ with the same property is equivalent to the existence of an holomorphic section of a bundle $E(\mathscr{F} ; f, r)$ on X called Endromisbündel (see [8]).

The Endromisbündel is an open set of $X \times \mathbb{C}^{r s}$ obtained subtracting analytic subspaces defined by the sections f_{1}, \ldots, f_{r} and by the numbers $\left\{\operatorname{dim}_{C} L_{x}(\mathscr{F}) ; x \in X\right\}$.

Let's put for each integer $k \geq 0$:

$$
Y_{k}(\mathscr{F})=\left\{x \in X: \operatorname{dim}_{C} L_{x}(\mathscr{F}) \geq k\right\}
$$

the family $\left\{Y_{k}(\mathscr{F})\right\}_{k \geq 0}$ is a decreasing sequence of analytic subspaces of X which are surely empty for $k \geq r+1$.

On the analytic space $X_{k}(\mathscr{F})=Y_{k}(\mathscr{F})-Y_{k+1}(\mathscr{F})$ the Endromisbündel is a locally trivial holomorphic bundle whose fibre $F_{r, s, k}$ is homotopic to the manifold $W_{s k}$ of all the orthonormal k-frames of \mathbb{C}^{s}.

The main result of [8] (satzen 5 and 6) claims that if X is holomorphically convex the existence of a holomorphic section of the Endromisbündel is equivalent to the existence of a continuous section.

Therefore the evaluation of the rank of \mathscr{F} is a purely topological problem whose main ingredients are the spaces $Y_{k}(\mathscr{F})$ and the fibres $W_{s k}$.

The following proposition is a way to make sure the existence of a continuous section of $E(\mathscr{F}, f, s)$ supposing zero all the cohomology groups containing the obstructions.

Proposition: Let X be a Stein manifold and \mathscr{F} a coherent analytic sheaf having his rank bounded by an integer s.

If for each $k \geq 0$ and $q \geq 1$:

$$
H^{q+1}\left(Y_{k}(\mathscr{F}), Y_{k+1}(\mathscr{F}) ; \pi_{q}\left(W_{s k}\right)\right)=0
$$

then there exist s sections $g_{1}, \ldots, g_{s} \in \Gamma(X, \mathscr{F})$ generating all the stalks of \mathscr{F}.

Proof: Let f_{1}, \ldots, f_{r} be global sections of \mathscr{F} generating all the stalks of \mathscr{F}; proceeding by induction on $h=r-k$ from 0 to r we will prove there exists a continuous section of $E(\mathscr{F}, f, s)$ on $Y_{r-h}(\mathscr{F})$ for $h=0, \ldots, r$.

If $h=0$ since $Y_{r+1}=\phi$ the bundle $E(\mathscr{F}, f, s)$ is a locally trivial fibre bundle with fibre homotopic to $W_{s r} ;$ the condition $H^{q+1}\left(Y_{r} ; \pi_{q}\left(W_{s r}\right)\right)=$ 0 is just the one we need to prove the existence of a continuous section on Y_{r} (see [13] page 174).

Let's prove now we can extend a continuous section from $Y_{r-(h-1)}$ to Y_{r-h}; we can find a triangulation of Y_{r-h} in such a way $Y_{r-(h-1)}$ is a subpolyhedron furnished of a neighborhood U which is again a subpolyhedron of Y_{r-h} and contractible on $Y_{r-(h-1)}$.

Since $E(\mathscr{F}, f, s)$ is an open set of $\mathbb{C}^{r s} \times X$ choosing U suitably small we can, first of all, extend our continuous section from $Y_{r-(h-1)}$ to U; then we can extend the section from $U-Y_{r-(h-1)}$ to $Y_{r-h}-Y_{r-(h-1)}$ because for each $q \geq 1$ we have:

$$
H^{q+1}\left(Y_{r-h}-Y_{r-(h-1)}, U-Y_{r-(h-1)} ; \pi_{q}\left(W_{s, r-h}\right)\right)=0
$$

In fact:

$$
\begin{aligned}
& H^{q+1}\left(Y_{r-h}-Y_{r-(h-1)} ; U-Y_{r-(h-1)}\right) \simeq H^{q+1}\left(Y_{r-h}, U\right) \\
& \quad \simeq H^{q+1}\left(Y_{r-h}, Y_{r-(h-1)}\right) \simeq H^{q+1}\left(Y_{k}, Y_{k+1}\right)=0 .
\end{aligned}
$$

§2. Complete intersection curves

Let C be a curve of an open set of \mathbb{C}^{n} and x_{0} a singular point of C, if $\operatorname{dim} t_{x_{0}}(C)=2$ then the curve C is complete intersection at x_{0}.

In fact there exist a manifold M of dimension 2 in \mathbb{C}^{n} and a neighborhood U of x_{0} such that $C \cap U \subset M \cap U$; restricting, in case, U we can find a function f_{n} holomorphic on U such that $\mathscr{T}_{C \cap U, M \cap U}=$ $f_{n} \cdot \mathcal{O}_{M \cap U}$ and functions f_{2}, \ldots, f_{n-1} holomorphic on U such that $\mathscr{T}_{M \cap U, U}=f_{2} \cdot \mathcal{O}_{U}+\cdots+f_{n-1} \cdot \mathscr{O}_{U} ;$ therefore

$$
\mathscr{T}_{C \cap U, U}=f_{2} \cdot \mathscr{O}_{U}+\cdots+f_{n} \cdot \mathscr{O}_{U}
$$

The following two lemmas prove in most cases that if $t=\operatorname{dim} t_{x_{0}}(C)$ is bigger than 2 , then adding to C some lines L_{1}, \ldots, L_{t-2} through x_{0} the curve $C \cup\left(L_{1} \cup \cdots \cup L_{t-2}\right)$ is complete intersection at x_{0}.

Lemma 1: Let C be a curve of an open set of \mathbb{C}^{n} (with $n \geq 2$) and the origin 0 a singular point of C.

Denoted by L_{1}, \ldots, L_{n} the coordinate axes of \mathbb{C}^{n} and written $L_{0}=$ $\{0\}$, if the following hypothesis is verified:
(i) the projection map $p: \mathbb{C}^{n} \rightarrow \mathbb{C}^{2}$ defined by $p\left(z_{1}, \ldots, z_{n}\right)=\left(z_{n-1}, z_{n}\right)$ is injective on C in a neighborhood of 0.
then a neighborhood V of 0 , an integer $s=0, \ldots, n-2$, a Stein neighborhood U of $\left(L_{0} \cup \cdots \cup L_{s}\right)$ and functions f_{1}, \ldots, f_{n-1} holomorphic on U exist such that:
(1) $\left\{x \in U: f_{1}(x)=\cdots=f_{n-1}(x)=0\right\}=(C \cap V \cap U) \cup\left(L_{0} \cup \cdots \cup L_{s}\right)$
(2) the germs $f_{1, x}, \ldots, f_{n-1, x}$ generate the stalk $\mathscr{T}_{C, x}$ for each $x \in$ $C \cap V \cap U-\{0\}$.
Proof: Let's proceed by induction on $n \geq 2$. For $n=2$ the conclusion is well known. For $n \geq 3$ let's suppose we have already proved the lemma for all the curves C^{\prime} of $\mathbb{C}^{n^{\prime}}$ with $n^{\prime}<n$ and let's prove it for the curves C of \mathbb{C}^{n}.

Let's denote by $q: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ the projection along the axis L_{n-2} defined by $q\left(z_{1}, \ldots, z_{n-2}, z_{n-1}, z_{n}\right)=\left(z_{1}, \ldots, 0, z_{n-1}, z_{n}\right)$ with values in $\mathbb{C}^{n-1}=\left\{z \in \mathbb{C}^{n}: z_{n-2}=0\right\}$.

For the hypothesis (i) it is possible to find a neighborhood V of 0 where q is injective on C. Rechoosing in case V we can suppose the map $q: V \cap C \rightarrow q(V)$ proper; therefore $C^{\prime}=q(C \cap V)$ is a curve of $V^{\prime}=q(V)$ open neighborhood of 0 in \mathbb{C}^{n-1}.

We can choose V small enough to have also $\operatorname{sing}(C) \cap V=\{0\}=$ sing $\left(C^{\prime}\right)$.

The curve C^{\prime} of \mathbb{C}^{n-1} in respect to the coordinates $z_{1}, \ldots, \hat{z}_{n-2}, z_{n-1}$, z_{n} verifies the hypothesis (i); for the induction there exist an integer $s^{\prime}=0, \ldots, n-3$, a Stein neighborhood U^{\prime} of $L_{0} \cup \cdots \cup L_{s^{\prime}}$ and functions $f_{1}^{\prime}, \ldots, f_{n-2}^{\prime}$ holomorphic on U^{\prime} verifying the theses (1) and (2).

Using (i) it can be verified that the restriction of q gives a map \hat{q} : $(C \cap V) \cup\left(L_{0} \cup \cdots \cup L_{s^{\prime}}\right) \rightarrow C^{\prime} \cup\left(L_{0} \cup \cdots \cup L_{s^{\prime}}\right) \quad$ bijective and holomorphic, whose inverse is meromorphic, continuous and biholomorphic out of 0 . Likewise the function m in $C^{\prime} \cup\left(L_{0} \cup \cdots \cup L_{s^{\prime}}\right)$ defined by $m\left(x^{\prime}\right)=z_{n-2}\left(\hat{q}^{-1}\left(x^{\prime}\right)\right)$ is meromorphic, continuous, holomorphic out of 0 and vanishes on $\left(L_{0} \cup \cdots \cup L_{s^{\prime}}\right)$. Therefore $m\left(x^{\prime}\right)=a^{\prime}\left(x^{\prime}\right) / b^{\prime}\left(x^{\prime}\right)$ everywhere $b^{\prime}\left(x^{\prime}\right) \neq 0$ for two functions a^{\prime}, b^{\prime} holomorphic on $C^{\prime} \cup\left(L_{0} \cup \cdots \cup L_{s^{\prime}}\right)$ with b^{\prime} not identically zero on any irreducible component and $a^{\prime}=0$ on $L_{0} \cup \cdots \cup L_{s^{\prime}}$.

Solving a \mathbb{O}^{*}-cohomological problem we can find two functions a and b holomorphic such that $b\left(x^{\prime}\right) \neq 0$ if $x^{\prime} \neq 0$ and $m\left(x^{\prime}\right)=a\left(x^{\prime}\right) / b\left(x^{\prime}\right)$ for each $x^{\prime} \neq 0$.

Since U^{\prime} is Stein we can suppose a and b defined on U^{\prime}; written $U=q^{-1}\left(U^{\prime}\right), \quad f_{1}=f_{1}^{\prime} \circ q, \ldots, f_{n-2}=f_{n-2}^{\prime} \circ q, \quad f_{n-1}=(b \circ q) \cdot z_{n-2}-(a \circ q)$ the theses (1) and (2) are verified for the curve C together with the lines $L_{0}, \ldots, L_{s^{\prime}}, L_{n-2}$ if $b(0)=0$ or the lines $L_{0}, \ldots, L_{s^{\prime}}$ if $b(0) \neq 0$.

Lemma 2: Let C be as in Lemma 1 and $n \geq 3$; there exists a coordinate system in \mathbb{C}^{n} verifying (i).

Moreover if E is a measurable subset of $\mathbb{C}^{n}-\{0\}$ with Hausdorff measure $H_{r}(E)=0$ for each $r>2$, the coordinate system can be chosen in such a way to have:

$$
\left(L_{1} \cup \cdots \cup L_{n-2}\right) \cap E=\phi
$$

Proof: For each n-uple of lines $L=\left(L_{1}, \ldots, L n\right)$ in general position and for each $i=1, \ldots, n-1$ let's write $V_{L, i}=L_{i}+\cdots+L_{n}$ and let's denote $p_{L, i}: \mathbb{C}^{n} \rightarrow V_{L, i}$ and $q_{L, i+1}: V_{L, i} \rightarrow V_{L, i+1}$ the natural projections.

Since $p_{n-1}=\left(q_{n-1}\right) \circ \cdots \circ\left(q_{2}\right)$, if p_{n-1} is not injective on C in any neighborhood of 0 , then some of the projections q_{i+1} (where $i=$ $1, \ldots, n-2$) is not injective on the set $p_{i}(C)$ in any neighborhood of 0 ; therefore for each integer $j \geq 1$ there exist two points z_{j}^{\prime} and $z_{j}^{\prime \prime}$ of C such that $p_{i}\left(z_{j}^{\prime}\right)$ and $p_{i}\left(z_{j}^{\prime \prime}\right)$ are different, non zero, $\left|p_{i}\left(z_{j}^{\prime}\right)\right|<1 / j$, $\left|p_{i}\left(z_{j}^{\prime \prime}\right)\right|<1 / j$ and $\left(p_{i}\left(z_{j}^{\prime}\right)-p_{i}\left(z_{j}^{\prime \prime}\right)\right) \in L_{i}$.

Then the intersection $L_{i} \cap\left(p_{i}(C)-p_{i}(C)\right)$ has interior part not empty in L_{i}, this set is in fact the image of the holomorphic map $d_{1}: d^{-1}\left(L_{i}\right) \cap(C \times C) \rightarrow L_{i} \quad$ where $\quad d: \mathbb{C}^{n}+\mathbb{C}^{n} \rightarrow V_{i} \quad$ is defined by $d\left(z^{\prime}, z^{\prime \prime}\right)=p_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime \prime}\right)$ which is of rank one at least in some point containing in its image the sequence $\left\{\left(p_{i}\left(z_{j}^{\prime}\right)-p_{i}\left(z_{j}^{\prime \prime}\right)\right\}_{j \geq 1}\right.$ infinite and converging to 0 .

Written $G=\left\{g \in \mathbb{C}^{*}: g=e^{a+b i}\right.$ with $\left.a, b \in \mathbb{Q}\right\}, \quad S_{i}=p_{i}(C)-p_{i}(C)$, $S_{1}^{\prime}=\cup_{g \in G} g \cdot S_{1}$ we have $L_{i}=\cup_{g \in G} g \cdot\left(L_{i} \cap S_{i}\right)$ and therefore $L_{i} \subset$ $S_{1}^{\prime}+\left(L_{0}+\cdots+L_{i-1}\right)$. Let's prove at this point that for each $i=$ $1, \ldots, n-2$ and for each $L^{\prime}=\left(L_{0}, \ldots, L_{i-1}\right) \in\left\{L_{0}\right\} \times\left(\mathbb{P}^{n-1}\right)^{i-1}$ (where $L_{0}=\{0\}$) the set $R_{L^{\prime}}=\left\{L \in \mathbb{P}^{n-1}: L \subset S_{1}^{\prime}+L_{0}+\cdots+L_{i-1}\right\}$ has measure zero in P^{n-1}.

In fact written $T_{L^{\prime}}=\cup_{L \in R_{L^{\prime}}} L$, because $T_{L^{\prime}} \leqq S_{1}^{\prime}+L_{0}+\cdots+L_{i-1}$ and $H_{r}\left(S_{1}^{\prime}\right)=0$ if $r>4$, it must be $H_{r}\left(T_{L^{\prime}}\right)=0$ for $r>4+2(i-1)$ and therefore $H_{r}\left(R_{L^{\prime}}\right)=0$ if $r>2+2(i-1)=2 i$ since $T_{L^{\prime}}-\{0\} \cong R_{L^{\prime}} \times \mathbb{C}^{*}$, so we can conclude $\mu\left(R_{L^{\prime}}\right)=H_{2 n-2}\left(R_{L^{\prime}}\right)=0$ because $2 n-2>2 i$.

We are able now to prove that for each $k=1, \ldots, n-2$ there exist k lines L_{1}, \ldots, L_{k} in general position such that $\left(L_{1} \cup \cdots \cup L_{k}\right) \cap E=\emptyset$ and for each $l=1, \ldots, k$ written $L_{l}^{\prime}=\left(L_{0}, \ldots, L_{l-1}\right)$ we have $L_{l} \notin R_{L^{\prime}}$.

For $k=n-2$ the lemma will result proved.
For $k=1$ we have to find $L_{1} \in \mathbb{P}^{n-1}$ such that $L_{1} \notin R_{L_{0}} \cup E^{\prime}$ where E^{\prime} is the image of E in \mathbb{P}^{n-1} for the natural quotient map. It is possible to find L_{1} since the set of directions to avoid has measure zero in \mathbb{P}^{n-1}.

Given the lines L_{1}, \ldots, L_{k-1} with the properties listed above we have to find a line L_{k} in general position in respect with the others and in such a way $L_{k} \notin R_{L^{\prime}} \cup E^{\prime}$.

Again it is possible to choose L_{k} since the set of directions to avoid has measure zero.

Theorem 1: Let X be a Stein manifold of dimension $n \geq 3$, A a Runge and Stein open set of X and C a curve of A.

For each relatively compact open set B of A there exist a curve D of X and functions g_{1}, \ldots, g_{n-1} holomorphic on B such that:
(1) $\left\{x \in B: g_{1}(x)=\cdots=g_{n-1}(x)=0\right\}=(C \cup D) \cap B$
(2) the germs $g_{1, x}, \ldots, g_{n-1, x}$ generate the stalk $\mathscr{T}_{C, x}$ for each $x \in$ $C \cap B-S$, where $S=\{x \in C \cap B: C$ is not complete intersection at $x\}$.

Proof: Enlarging B we can suppose it a Runge and Stein open set yet relatively compact in A.

The set S contained in $\operatorname{sing}(C) \cap B$ is finite; if $S=\emptyset$ the curve $C \cap B$ is locally complete intersection (ideal theoretically) and therefore it is complete intersection in B (see [8] page 162, the Remark (b) to Corollary (2) of Theorem (9).

If $S \neq \emptyset$ let's write $S=\left\{x_{1}, \ldots, x_{p}\right\}$; we show that however fixed an integer $r=1, \ldots, p$ for each $j=1, \ldots, r$ there exist a curve D_{j} of X, an open neighborhood U_{j} of D_{j} and functions $f_{j, 1}, \ldots, f_{j, n-1}$ holomorphic on U_{j} such that:
(A) $\left\{x \in U_{j} \cap B: f_{j, 1}(x)=\cdots=f_{j, n-1}(x)=0\right\}=\left(C \cup D_{j}\right) \cap U_{j} \cap B$
(B) the germs $f_{j, 1, x}, \ldots, f_{j, n-1, x}$ generate $\mathscr{T}_{C, x}$ for each $x \in$ $C \cap U_{j}-\left\{x_{i}\right\}$
(C) $D_{j} \cap C \cap B=\left\{x_{j}\right\}$
(D) $U_{k} \cap U_{j} \cap B=\emptyset$ for each $k<j \leq r$.

Let's proceed by induction on r. Let $r=1$; it is possible to find a holomorphic map $R: X \rightarrow \mathbb{C}^{n}$ regular in x_{1} and such that $R^{-1}(0)=\left\{x_{1}\right\}$ (see [8] page 161, Corollary 1 of Theorem 9). Replacing R with another map (denoted again by R) near enough to R we can have (see [9] page 168, Theorem 4):
(1) for all the points x of a neighborhood W of $x_{1}: R^{-1}(R(x)) \cap \bar{B}=$ $\{x\}$
(2) $R\left(x_{1}\right)=0$
(3) $\operatorname{dim}\left(R^{-1}(R(x))\right)=0$ for each $x \in X$.
(4) R establishes a biholomorphism between W and $W^{\prime}=R(W)$ open set of \mathbb{C}^{n}.
Applying the Lemmas 1 and 2 to the curve $C^{\prime}=R(C \cap W)$ of the open set W^{\prime} of C^{n} and to the set $E=R(C)-\{0\}$, it is possible to find a coordinate system $\left(z_{1}, \ldots, z_{n}\right)$ in \mathbb{C}^{n} whose coordinate axes we denote by $L_{1}, \ldots, L_{n}\left(L_{0}=\{0\}\right)$, a neighborhood V^{\prime} of 0 contained in W^{\prime}, an integer $s=0, \ldots, n-2$, a neighborhood U^{\prime} of $L_{0} \cup \cdots \cup L_{s}$ and functions $f_{1}^{\prime}, \ldots, f_{n-1}^{\prime}$ holomorphic on U^{\prime} such that:
(1) $\left\{z \in U^{\prime}: f_{1}^{\prime}(x)=\cdots=f_{n-1}^{\prime}(x)=0\right\}$

$$
=\left(C^{\prime} \cap V^{\prime} \cap U^{\prime}\right) \cup\left(L_{0} \cup \cdots \cup L_{s}\right)
$$

(2) the germs $f_{1, z}^{\prime}, \ldots, f_{n-1, z}^{\prime}$ generate $\mathscr{I}_{C^{\prime}, Z}$ for each $z \in$ $C^{\prime} \cap V^{\prime} \cap U^{\prime}-\{0\}$
(3) $\left(L_{0} \cup \cdots \cup L_{s}\right) \cap R(C)=\{0\}$.

Let's put $D_{1}=R^{-1}\left(L_{0} \cup \cdots \cup L_{s}\right)$, since $D_{1} \cap C \cap \bar{B}=\left\{x_{1}\right\}$ we can find a neighborhood U_{1} of D_{1} contained in $R^{-1}\left(U^{\prime}\right)$ such that $C \cap$ $\left(U_{1} \cap B\right) \subset C \cap W ; \quad$ on U_{1} let's define the functions $f_{1,1}=$ $f_{1}^{\prime} \circ R, \ldots, f_{1, n-1}=f_{n-1}^{\prime} \circ R$.

For these sets and functions the conditions (A) (B) (C) and (D) listed above are verified.

Let's suppose now $r>1$ and we have found for each $j=1, \ldots, r-1$ a curve D_{j} of X, a neighborhood U_{j} of D_{j} and functions $f_{j, 1}, \ldots, f_{j, n-1}$ satisfying the conditions (A) (B) (C) and (D) and let's show how to add a curve D_{r}, a neighborhood U_{r} of D_{r} and functions $f_{r 1}, \ldots, f_{r, n-1}$ in such a way the properties (A) (B) (C) and (D) are verified for each $k<j \leq r$.

Again we consider an holomorphic map $R_{r}: X \rightarrow \mathbb{C}^{n}$ such that:
(1) for all the points x of an open neighborhood W_{r} of x_{r} we have $\boldsymbol{R}_{r}^{-1}\left(\boldsymbol{R}_{r}(x)\right) \cap \bar{B}=\{x\}$
(2) $R_{r}\left(x_{r}\right)=0$
(3) $\operatorname{dim} R_{r}^{-1}\left(R_{r}(x)\right)=0$ for each $x \in X$.

As above we apply the Lemmas (1) and (2) to the curve $C_{r}^{\prime}=$ $R_{r}\left(C \cap W_{r}\right)$ of the open set $W_{r}^{\prime}=R_{r}\left(W_{r}\right)$ of \mathbb{C}^{n} and the set $E_{r}=$ $R_{r}\left(C \cup D_{1} \cup \cdots \cup D_{r-1}\right)-\{0\}$; written $D_{r}=R_{r}^{-1}\left(L_{0} \cup \cdots \cup L_{s_{r}}\right)$, again we can find a neighborhood U_{r} of D_{r} such that $C \cap U_{r} \cap B \subset C \cap W_{r}$ and define $f_{r, 1}=f_{1}^{\prime} \circ R_{r}, \ldots, f_{r, n-1}=f_{n-1}^{\prime} \circ R_{r}$; moreover since $D_{i} \cap D_{j} \cap$ $B=\emptyset$ if $i \neq j \leq r$ we can choose U_{1}, \ldots, U_{r} in such a way to have $U_{i} \cap U_{j} \cap B=\emptyset$ for each $i \neq j \leq r$, and again these sets and functions satisfy the conditions (A) (B) (C) and (D).

Arrived with r to p, let's put $D=D_{1} \cup \cdots \cup D_{p}$ and let's define for each $i=1, \ldots, p$ a coherent sheaf \mathscr{T}_{i} on $U_{i} \cap B$ putting:

$$
\mathscr{T}_{i}=f_{i, 1} \cdot \mathscr{O}_{\mid U_{i} \cap B}+\cdots+f_{i, n-1} \cdot \mathscr{O}_{\mid U_{i} \cap B}
$$

For each $x \in U_{i} \cap B-D$ we have $\mathscr{T}_{i, x}=\mathscr{T}_{C, x}$.
We can now define a sheaf \mathscr{T} on B writing:

The sheaf \mathscr{T} is well defined and coherent; moreover

$$
\operatorname{dim} L_{x}(\mathscr{T})=\begin{aligned}
& 1 \text { for each } x \in B-(C \cup D) \\
& n-1 \text { for each } x \in(C \cup D) \cap B
\end{aligned}
$$

therefore the sheaf \mathscr{T} has limited rank on B.
To complete the theorem's proof we have to check that the rank of \mathscr{T} is just $n-1$.

For what has been reported in $\S 1$ since we have:
$Y_{0}(\mathscr{T})=Y_{1}(\mathscr{T})=B, \quad Y_{2}(\mathscr{T})=\cdots=Y_{n-1}(\mathscr{T})=(C \cup D) \cap B \quad$ and $Y_{r}(\mathscr{T})=\emptyset$ for each $r \geq n$, we have to prove that for each $q \geq 1$:

$$
H^{q+1}\left((C \cup D) \cap B ; \pi_{q}\left(W_{n-1, n-1}\right)\right)=0
$$

and

$$
H^{q+1}\left(B,(C \cup D) \cap B ; \pi_{q}\left(W_{n-1,1}\right)\right)=0
$$

The first cohomology groups vanish because $(C \cup D) \cap B$ is a Stein curve; for the second we have $W_{n-1,1} \approx S^{2 n-3}$, therefore $\pi_{q}\left(W_{n-1,1}\right)=0$ for each $1 \leq q \leq 2 n-4$.

For $q \geq 2 n-3 \geq n \geq 3$ from the exact sequence:

$$
\begin{aligned}
\cdots & H^{q}((C \cup D) \cap B ; G) \longrightarrow H^{q+1}(B,(C \cup D) \cap B ; G) \\
& \longrightarrow H^{q+1}(B ; G) \longrightarrow H^{q+1}((C \cup D) \cap B ; G) \longrightarrow \cdots
\end{aligned}
$$

where $G=\pi_{q}\left(W_{n-1,1}\right)$, it follows:

$$
H^{q+1}(B,(C \cup D) \cap B ; G) \cong H^{q+1}(B ; G) \cong 0
$$

because $H^{q+1}((C \cup D) \cap B ; G)=0=H^{q+1}(B ; G)$ for each $q \geq n \geq 3$ (see [2] and [12]).

When X is an open set of \mathbb{C}^{n} we can prove something more precise:

Theorem 1': Let X be a Stein open set of $\mathbb{C}^{n}(n \geq 3)$, A a Runge and Stein open set of X and C a curve of A.

If the set:

$$
S=\{x \in C: C \text { is not complete intersection at } x\}
$$

is finite, then for each $x \in S$ there exists a finite family of lines $L_{x, 0}, \ldots, L_{x, s_{x}}$ through 0 such that the curve:

$$
\left(\left(C \cup \underset{\substack{i=1 \in \mathcal{N}, s_{x}}}{\cup} L_{x, i}\right) \cap A\right.
$$

is a set-theoretically complete intersection in A.
More precisely there exist functions g_{1}, \ldots, g_{n-1} holomorphic on A such that:
(1) $\left\{x \in A ; g_{1}(x)=\cdots=g_{n-1}(x)=0\right\}=\left(C \cup \underset{\substack{x \in S \\ i=1.1 . s_{x}}}{ } L_{x, i}\right) \cap A$
(2) the germs $g_{1, x}, \ldots, g_{n-1, x}$ generate the stalk $\mathscr{T}_{C, x}$ for each $x \in$ $C-S$.

Proof: As in the theorem 1 forgetting about B or \bar{B} and using as maps $R_{r}: X \rightarrow \mathbb{C}^{n}$ the translations sending the points x_{r} in 0 .

Theorem 2: Let X be a Stein manifold of dimension $n \geq 2$, A a Runge and Stein open set of X and C a curve of A.

For each relatively compact open set B of A there exist a holomorphic map $g: B \rightarrow \mathbb{C}^{n-1}$ and a positive $1-$ cycle $D \in Z_{1}^{+}(X)$ such that:

$$
V_{1}(g)=C_{\mid B}+D_{\mid B}
$$

Proof: Let's prove first the theorem when $n \geq 3$; enlarging B we can suppose it Runge and Stein in A. For the Theorem 1 there exist a map $g: B \rightarrow \mathbb{C}^{n-1}$ and a curve D of X such that:
(1) $\{x \in B: G(x)=0\}=(C \cup D) \cap B$
(2) $g_{1, x}, \ldots, g_{n-1, x}$ generate $\mathscr{T}_{C, x}$ for each $x \in \operatorname{reg}(C) \cap B$.

Let's denote by D the sum of the components of the cycle $V_{1}(g)$ not contained in $C ; D$ is a cycle of X and we have:

$$
V_{1}(g)=m_{1} \cdot\left(C_{1 \mid B}\right)+\cdots+m_{r} \cdot\left(C_{r \mid B}\right)+D_{\mid B}
$$

where C_{1}, \ldots, C_{r} are curves contained in $C \cap B$ decomposing it in its irreducible components, and m_{1}, \ldots, m_{r} are positive integers.

We have just to prove that $m_{1}=\cdots=m_{r}=1$; let $i=1, \ldots, r$ and $x_{i} \in \operatorname{reg}\left(C_{i}\right) \cap B$, at x_{i} we can find a coordinate system $\left(z_{1}, \ldots, z_{n}\right)$ such
that $g_{1}=z_{1}, \ldots, g_{n-1}=z_{n-1}$; in this coordinate system $V_{1}(g)$ is the nth axis counted only once.

If $n=2$, enlarging in case the open set B we can suppose it Runge and Stein in X and with smooth boundary. Therefore (see [2]) we have $H_{3}(X, B ; \mathbb{Z})=0$ and the group $H_{2}(X, B ; \mathbb{Z})$ is free of finite rank; then the restriction map:

$$
r: H^{2}(X ; \mathbb{Z}) \longrightarrow H^{2}(B ; \mathbb{Z})
$$

is surjective.
Therefore there exists a positive divisor D of X such that $r(c(D))=-c\left(C_{\mid B}\right)$, that is $c\left(D_{\mid B}+C_{\mid B}\right)=0$.

Since the divisor has Chern class zero, there exist a holomorphic map $g: B \rightarrow \mathbb{C}$ such that: $V_{1}(g)=C_{\mid} B+D_{\mid B}$.

§3. Approximation of curves

Theorem 3: Let X be a Stein manifold of dimension $n \geq 2$, A a Runge and Stein open set of X and C an irreducible curve of A.

There exists a sequence of irreducible curves $\left\{C_{k}\right\}_{k \geq 1}$ such that:

$$
\lim _{k \rightarrow \infty}\left(C_{k} \cap A\right)=C
$$

in the space of positive 1 -cycles $Z_{1}^{+}(A)$.

Proof: Let $\left\{B_{i}\right\}_{i \geq 1}$ be a sequence of relatively compact open sets of A which are Runge and Stein and invade A.

For each $i \geq 1$ for the Theorem 3 we can find irreducible curves $D_{i 1}, \ldots, D_{i s_{t}}$ of X and a map $g: B_{i} \rightarrow \mathbb{C}^{n-1}$ such that:

$$
V_{1}\left(g_{i}\right)=\left(C \cap B_{i}\right)+m_{i 1} \cdot\left(D_{i 1} \cap B_{i}\right)+\cdots+m_{i s_{i}} \cdot\left(D_{i s_{t}} \cap B_{i}\right) .
$$

Let's write $\mathscr{T}_{i}=\left(\mathscr{T}_{D_{t}}\right)^{m_{t i}} \cap \cdots \cap\left(\mathscr{T}_{D_{i s}}\right)^{m_{l s_{i}}}$, since $g_{i} \in\left[\Gamma\left(B_{i}, \mathscr{T}_{i \mid B_{i}}\right)\right]^{n-1}$ for theorem 11 at page 241 of [9] there exists a sequence of maps $\left\{g_{i}^{(k)}\right\}_{k \geqslant 1} \subset\left[\Gamma\left(X, \mathscr{T}_{i}\right)\right]^{n-1}$ converging to g_{i} on B_{i}; therefore for the prop. 7 of [5] we have:

$$
V_{1}\left(g_{i}\right)=\lim _{k \rightarrow \infty}\left(V_{1}\left(g_{i}^{(k)}\right)_{\mid B_{i}}\right) .
$$

Let's denote by $T_{i k}$ the sum of the terms of $V_{1}\left(g_{i}^{(k)}\right)$ whose support
is not in $D_{i}=D_{i 1} \cup \cdots \cup D_{i s_{i}}$; we can write:

$$
V_{1}\left(g_{i}^{(k)}\right)=T_{i k}+m_{i 1}^{(k)} \cdot D_{i 1}+\cdots+m_{i s_{i}} \cdot D_{i s_{i}}
$$

where $m_{i j}^{(k)} \geq m_{i j}$ for each $k \geq 0$ and $j=1, \ldots, s_{i}$.
Let's fix a point $x_{i j} \in \operatorname{reg}\left(D_{i j}\right) \cap B_{i}$ and choose in a neighborhood of $x_{i j}$ a coordinate system where $D_{i j}$ is the first coordinate axis; let's call R and L respectively a cube of center $x_{i j}$ and L the normal hyperplane to $D_{i j}$ in $x_{i j}$; for the Bochner-Martinelli formula (see [10]) we have:

$$
m_{i j}=\int_{L \cap \partial R} \frac{\lambda\left(g_{i}\right)}{\left|g_{i}\right|^{4 n+2}} \quad \text { and } \quad m_{i j}^{(k)} \leq \int_{L \cap \partial R} \frac{\lambda\left(g_{i}^{(k)}\right)}{\left|g_{i}^{(k)}\right|^{4 n+2}}
$$

for k big enough, where $\lambda(g)$ is a form whose coefficients are polynomials in g and its derivatives.

For the integral continuity for k big enough we have $m_{i j} \geq m_{i j}^{(k)}$.
Therefore:

$$
V_{1}\left(g_{i}^{(k)}\right)=T_{i k}+m_{i 1} \cdot D_{i 1}+\cdots+m_{i s_{t}} \cdot D_{i s_{t}}
$$

and then subtracting the common terms between $V_{1}\left(g_{i}^{(k)}\right)$ and $V_{1}\left(g_{i}\right)$:

$$
C \cap B_{I}=\lim _{k \rightarrow \infty}\left(T_{i k \mid B_{i}}\right) .
$$

For the convergence is a local property (see [5]) we have:

$$
C=\lim _{i \rightarrow \infty}\left(T_{i i}\right) .
$$

To complete the proof we need only to prove the following:

Lemma: Let X be a manifold of dimension $n \geq 2$, A an open set of X and C an irreducible curve of A.

If there exists a sequence of 1-cycles $\left\{T_{k}\right\}_{k \geq 1} \subset Z_{1}^{+}(X)$ such that:

$$
C=\lim _{k \rightarrow \infty}\left(T_{k \mid A}\right)
$$

then there exists a sequence of irreducible curves $\left\{C_{h}\right\}_{k \geq 1}$ of X such that:

$$
C=\lim \left(C_{k} \cap A\right)
$$

Lemma's Proof: It's enough to prove the lemma for each relatively compact open set B of A.

Let x be a regular point of C, we can find a coordinate system in a neighborhood of x making C a line; let P_{x} be a polycylinder with center x in this coordinate system. For k big enough the analytic set $\left(\operatorname{supp}\left(T_{k}\right)\right) \cap P_{x}$ is regular because each normal plane to C meets, in P_{x}, the space $\operatorname{supp}\left(T_{k}\right)$ in a simple point for the Bochner-Martinelli formula; moreover $\left(\operatorname{supp}\left(T_{k}\right)\right) \cap P_{x}$ is a connected manifold and there exists an irreducible curve $C_{k x}$ of X such that $T_{k \mid P_{x}}=C_{k x \mid P_{x}}$ for each k bigger than a suitable k_{x}.

Let's fix in $\operatorname{reg}(C)$ a sequence of connected compact sets invading $\operatorname{reg}(C)$ (such a sequence can be constructed using a triangulation of the connected smooth manifold reg (C)); let's call U a compact neighborhood of $\operatorname{sing}(C) \cap B$ small enough to be contained in a Stein open set of B.

Since the set $(B-U) \cap \operatorname{reg}(C)$ is relatively compact in $\operatorname{reg}(C)$ there exists a connected compact set K of $\operatorname{reg}(C)$ containing the set $(B-U) \cap \operatorname{reg}(C)$ and it is possible to find a finite number of points x_{1}, \ldots, x_{m} of K and polycylinders $P_{x_{1}}, \ldots, P_{x_{m}}$ centered in those points such that $P=\cup_{i=1}^{m} P_{x_{i}} \supset K$; therefore we have $C \cap B \subset P \cup U$.

Moreover whenever $P_{x_{i}} \cap P_{x_{j}} \neq \emptyset$ we can find a point $x_{i j} \in P_{x_{i}} \cap P_{x_{j}}$, a polycylinder $P_{i j}$ centered in $x_{i j}$ contained in $P_{x_{i}} \cap P_{x_{j}}$ and an integer big enough $k_{i j}$ such that $\left(\operatorname{supp}\left(T_{k}\right)\right) \cap P_{i j}$ is non-empty and irreducible for each $k \geq k_{i j}$.

Since P is connected for $k \geq \bar{k}=\max \left\{k_{x_{i}}, k_{i j}\right\}$ the irreducible curve representing T_{k} in each $P_{x_{i}}$ must be the same, that is there exists an irreducible curve C_{k} of X for each $k \geq \bar{k}$ such that: $T_{k \mid P}=C_{k \mid P}$.

Moreover for k big enough we have $\left(\operatorname{supp}\left(T_{k}\right)\right) \cap B \subset(P \cap U) \cap B$ (see the Remark 5 of [5]); then $T_{k \mid P \cap B}=C_{k \mid P \cap B}$, that is $T_{k \mid B-U}=C_{k \mid B-U}$ and at last $T_{k \mid B}=C_{k \mid B}$.

Theorem 4: Let X be an holomorphically convex open set of \mathbb{C}^{n} ($n \geq 2$), A a Runge and holomorphically convex open set of X and C an analytic irreducible curve of A.

There exists a sequence of algebraic curves $\left\{C_{k}\right\}_{k \geq 1}$ of \mathbb{C}^{n} irreducible in X such that:

$$
\lim _{k \rightarrow \infty}\left(C_{k} \cap A\right)=C
$$

in the space of positive analytic 1-cycles $Z_{1}^{+}(A)$.

Proof: Trivial for $n=2$.
For $n \geq 3$ following Theorem 3 let's observe that, being X an open set of \mathbb{C}^{n}, we can take as curves $D_{i 1}, \ldots, D_{i s_{i}}$ some lines of \mathbb{C}^{n} as in Lemma 1 and therefore the section of the sheaf $\mathscr{T}_{i}=$ $\left(\mathscr{T}_{D_{i} 1}\right)^{m_{i 1}} \cap \cdots \cap\left(\mathscr{T}_{D_{i s},}\right)^{m_{i s_{i}}}$ are generated by some polynomials $p_{i 1}, \ldots, p_{i r_{i}}$ of \mathbb{C}^{n}; that is for each $j=1, \ldots, n-1$ it holds:

$$
\left(g_{i}\right)_{j}=\sum_{l=1, \ldots, r_{i}} h_{i j l} \cdot p_{i l}
$$

for some functions $\boldsymbol{h}_{i j l}$ holomorphic on B_{i}.
Moreover we can choose the open sets B_{i} to be Runge in \mathbb{C}^{n} and then find sequences of polynomials $\left\{q_{i j l}^{(k)}\right\}_{k \geq 1}$ of \mathbb{C}^{n} converging to $h_{i j l}$ on B_{i}.

Denoting $\left(g_{i}^{(k)}\right)_{j}=\Sigma_{l=1, \ldots, r_{i}} q_{i j l}^{(k)} \cdot p_{i l}$, the positive 1-cycles $\left\{T_{i k}\right\}$ are algebraic and even more so the curves $\left\{C_{k}\right\}_{k \geq 1}$.

REFERENCES

[1] A. Andreotti and W. Stoll: Analytic and algebraic dependence of meromorphic functions. Lecture notes 234 (1971) Springer-Verlag.
[2] A. Andreotti and R. Narashiman: A topological property of Runge pairs. Ann. of Math. 76 (1962) 499-509.
[3] D. Barlet: Espace analytique reduit des cycles analytiques complexes compacts d'un espace analytique. Lecture notes 482 (1975) 1-158.
[4] A. CASSA: A theorem on Runge problem for analytic curves. Ann. di Matematica (IV) Vol. CVII (1976) 169-184.
[5] A. CASSA: The topology of the space of positive analytic cycles. (To appear in: Annali di Matematica).
[6] S. Coen: Sul rango de fasci coerenti. Boll. U.M.I. Vol. XXII (3) (1967) 373-382.
[7] M. Cornalba and P. Griffiths: Analytic cycles and vector bundles on noncompact algebraic varieties. Inv. Math. 28 (1975) 1-106.
[8] O. Forster and K.J. Ramspott: Analytische Modulgarben und Endromisbündel. Inv. Math. 2 (1966) 145-170.
[9] R.C. Gunning and H. Rossi: Analytic functions of several complex variables. Prentice Hall Series. 1965.
[10] J.R. King: A residue formula for complex subvarieties. Carolina conference proceedings (1970) 43-56.
[11] J.R. King: The currents defined by analytic varieties. Acta Math. 127 (1971) 185-220.
[12] R. Narashiman: On the homology of Stein spaces. Inv. Math. 2 (1967) 377-385.
[13] N. Steenrod: The topology of fibre bundles. Princeton University Press 14 (1951).

