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SOME ZERO-DIMENSIONAL GENERIC SINGULARITIES;
FINITE ALGEBRAS HAVING SMALL TANGENT SPACE

A. Iarrobino* and J. Emsalem

August, 1976 Paris

Summary

We exhibit Artin local algebras A, quotients A = R/I of the power
series ring R = k[[xl, ..., xr]], having very small tangent sp,ace

Hom(I, A), and hence having as flat deformations (nearby algebras)
only other algebras of the same type, and same kind. Here, by the

type of A, we mean the sequence of integers T = to,..., tj, ... where
ti = dimk Ai, the size of the ith homogeneous piece of the associated
graded algebra A* of A: the type is just the Hilbert function or
characteristic function of A with respect to its maximal ideal. We

would like to leave the notion "same kind" vague, to stimulate the

imagination of the reader, but for the second half of the paper, it

means "Gorenstein algebra".
We study also the family of those zero-dimensional Gorenstein

algebras, quotients of R, having a certain maximal type T, and show
the family is an irreducible variety of which we parametrize an open
dense subset. We show that for some types T, these Gorenstein

algebras have, in general, no deformations to k[x]1/xn; for some T

they have in general, no deformations to the trivial algebra
k ~ ... EB k; and we indicate why for certain T, these algebras ought
to have déformations only to other Gorenstein algebras of the same

type.
When k = C or R, the nontrivializable algebras correspond to stable

maps germs F: (C ", 0) - (C ’, 0), (or (R ", 0)- (R m, 0)) where the local
algebra A of F is finite of length n, but where nearby map-germs Ft
must have less than n points in Ft’(0): there are less than n-sheets
over a neighborhood of 0 in Cm, in all map-germs Ft close to F.
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1. Deforming Artin local algebras - Introduction

We suppose R = k[[xl,. - -, xr]] is the ring of power series, R’ =
k[xl,. ..., Xrl is the polynomial ring in r variables, and that the algebra
A = R/I = R’/I’ where (x1,..., x,) D I’ ~ (x1,..., x,)’ is an Artin local

algebra of length n. We can think of A as the local ring of a finite map
germ, as an algebra, or as the ring of a thick point - a singular (when
n &#x3E; 1) zero-dimensional subscheme Spec A concentrated at the origin
of affine r-space Spec R’.

In §1.1 we give equivalent topological, algebraic, and geometric
viewpoints on the three problems, whether there exist flat defor-

mations of A to k (B - - - EB k, to k[x]lx", and to algebras of type-kind
different from that of A. We also give a short history of the problem.
The type of the algebra A is the sequence of integers T = to, ..., t;, ...
where ti = dimk Ai, the size of the ith homogeneous piece of the
associated graded algebra A* of A: the type is just the Hilbert

function or characteristic function of A with respect to its maximal

ideal.

In §1.2 we sketch our method for showing type 1, 4, 3, 0 algebras
have in general no déformations to any algebras of différent type than
A (and in particular none to k[x]lxn nor to k~ ... (B k); and we
survey the results of the paper. Then in §1.3 we give an overview

comparing the situation in deformation Artin algebras to that known
for deforming Lie algebras, and we introduce the sections following.
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1.1. Three problems and three viewpoints

We give three almost equivalent viewpoints on the 3 problems of
deforming the finite local algebra A of length n to k ~ ... EB k (n
copies), to k[xllx", and to algebras of kind or type different than A.
Thus, questions 2a, 3a are equivalent, and when k = R or C, the

answer "yes" to question la implies "yes" to questions 2a, 3a. For a
more detailed discussion, see the Appendix.

1. Topological

la. There are nearby germs with n sheets. Suppose k = C or R and
A is the local algebra at the origin of the finite stable map germ

F: (C"’,O)---&#x3E;(im,O) or (R",O)~(R’,O). Are there small deformations
of F to Fi such that for UE a small enough ball around 0, there is a
ball B8 around 0 in R’ or Cl such that for t E Bs, the equation Fi = 0
has n distinct solutions in U,,? Equivalently, are there map germs near
F having n sheets over a well-chosen neighborhood of 0 in Cm? (Of
course, there are many stable map germs F having A as local algebra;
we assume one such F has been chosen.)

lb. Aligning. Are there small deformations of F to Ft such that
there is one solution pt = Fr-1(0) to Ft = 0 in U,,, and such that the
local algebra of Ft at p is isomorphic to k[x]lxn?

Ic. The type of A changes along the flat locus. Are there small
déformations of F to Ft such that there is EITHER more than one

solution to Ft = 0 in U,,, but the sum of the lengths of the local

algebras of Ft at these solutions remains n, OR there is only one

solution pt to Ft = 0 in U, the local algebra A’ of F at pi has length n,
but the type or kind of A’ is different from that of A?

The statement la is purely topological; we don’t know if the

statements lb or lc are.

2. Algebraic

2a. Trivialization. Does the algebra A have a flat deformation to

k ~ ... EB k? Here we mean a déformation of the structure constants

giving the multiplication in A.

2b. Deformation to the simplest Artin algebra. Does the algebra A
have a deformation to k[x]lxn?

2c. The algebra is not almost-generic. Does A have EITHER a
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déformation to an algebra A’ that is not local, OR a déformation to a
local algebra of type or kind different from that of A?

3. Geometric

3a. Smoothing. Is there a flat deformation of the thick point
Spec A in affine r-space Ar to a smooth subscheme Spec At or Ar?
For t~ 0, Spec At would consist of n distinct points, p 1(t), ..., pn(t)
each of multiplicity one, and the algebra A, = (R’/IIm p,t)) where mpi(t)
is the maximal ideal of Pie t) in R’.

3b. Aligning. Is there a deformation of Spec A to Spec A’=

Spec(R’/(xi, ..., xr-i, xr))? (The thick point Spec A’ consists of the
origin 0 of Ar r with an infinitesimal tangent line of order n in the

xr-direction. When a function f of R’ is evaluated at Spec A’, one
obtains its value and that of its first n - 1 partial derivatives in the xr
direction, at the origin.)

3c. The thick point is not almost-generic. Is there EITHER a defor-

mation of Spec A to a subscheme of Ar not concentrated at a single
point, or to a subscheme of different type at 0, OR déformations to at
least two different generic subschemes of Ar? (An almost-generic
thick point Spec A will have deformations only to other thick points
of the same type, and the point z parametrizing Spec A will lie on a
single component of the Hilbert scheme Hilb" Ar.)

Notice that the algebra k[x]/xn has the deformation k[x]/(xn - t)
which is isomorphic to k E9 ... E9 k when t #- 0, since then xn - t has n
distinct roots. We do not know whether conversely the local algebra
A being trivializable implies it has a deformation to k[x]lxn" Thus an
answer "yes" to questions 1b, 2b, 3b implies "yes" to questions la,
2a, 3a, respectively.
Our viewpoint is geometric. The problem of deforming zero

dimensional singular subschemes of Ar is interesting for two reasons:
i. There is a rumor that the problem of deforming s-dimensional

schemes Y’ in X r is related to that of deforming zero-dimensional
schemes in an (r - s) dimensional variety: it is embedding codimen-
sion that indicates the difficulty. Work of Schaps concerning the
Cohen-Macaulay subschemes of codimension 2, the example of

Mumford of an irreducible reduced curve in P4 having no nonsingular
deformation; and when X r is regular local, the result of Buchsbaum-

’ (Added in proof) Kleppe [27] shows the converse is false: he shows every 3-generator
Gorenstein algebra is trivializable; but Theorem 3.35 shows not all these have a

deformation to k[x]/x".
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Eisenbud concerning the Pfafnan structure of height 3 Gorenstein
ideals, bear out the rumor.

ii. There is a scheme Hilb" A,, r parametrizing the length n zero-

dimensional subschemes of Air. We use the tangent space Hom(I, A)
to the point z in Hilbn Ar r parametrizing the subscheme Spec A =

Spec R’Il’, to study the deformations of A.
We now give a short account of previous work. For 2-generator

algebras, Hartshorne (unpublished), then Fogarty (1968) [8], Schaps
(1970) [21], Briançon-Galligo (1972) [2], and Laksov (1975) [17] all

gave various explicit déformations of A to k ® · · · ® k. Briançon
then showed in 1972 (see thèse, 1976) [1], that 2-generator local

algebras A have deformations to k[x]/xn, when k is algebraically
closed. J. Briançon and J. Damon remark that work of Levine-

Eisenbud shows the topological degree of the mapping, R 2--&#x3E; R2 given
by (xy, x2a _ y2b) has absolute value 2; and the degree of the mapping
(y, x2a+2b) is 0; hence R[x, y]1(xy, x2a - y 2b ) has no deformation to

R[X]I(X2a+2b ). Damon-Galligo used the trivialization result in 1975 to
show that the type of a 2-generator algebra A is a C° invariant for a
C°° stable map germ F having discrete algebra type of which A is the
local algebra. (See also (Damon [2] and [4]) where these results are

extended.)
For r-generator algebras, Damon-Galligo have exhibited certain

algebras A = RII where I is a tower-like ideal, having trivializations
(1975). On the other hand, in 1972 larrobino exhibited a nontrivializ-
able local algebra: the argument was that the dimension of a certain
family of algebras (computed via Hilb" Ar) is larger than the dimen-
sion rn of the open set U in Hilbn Ar parametrizing trivial algebras.
For comparison here, we summarize that example: suppose r - 3 and
consider the family of algebras (Av = R/(V, mj+1)} where V is a vector
space of degree j forms having size dim V = #Rjl2, half the size of
the space of all degree j forms in R. (We will use throughout #S to
denote the vector space dimension of S over k.) The dimension of the

family {Ay} (the number of parameters) is dim Grass(#Rj/2, #Rj) =
(#Rjl2)2- = C(jr- 1)2 . The length n of each algebra Av is n =

(#Ro + ... + #Rj-l + #R;/2)= c’ j r. Thus the dimension of the family is
(C"n2-2/r) &#x3E; (rn) when n &#x3E; 3 and n is large; hence the general algebra
of the family cannot be trivializable since the dimension of U

parametrizing sets of n distinct points in A, is only m. The existence
of such nontrivializable algebras with 3 generators also implies the
existence of "generic" local algebras with 3-generators, for which the
answer to questions lc, 2c, 3c is "no": the subscheme parametrized
by a generic point z of a component of Hilbn As r other than Ü is a
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family of sets of thick points and points; the algebra A corresponding
to one of the thick points will be "generic" and local (an "elementary
component" of Hilb" Ar in the language of [14]). However, till now,
there were no specific examples known of such "almost generic" or
generic algebras.

1.2. Examples of "generic" Artin algebras

We here give two specific examples of such "generic" algebras - in
lengths 8 and 10, and for r = 4; and we indicate, identify, many more
such components, up to a verification of the independence of certain
linear conditions that we describe. The only method we’ve so far
found to verify the independence of the linear conditions is to

calculate them, and we verified the two simplest examples (where one
might expect the conditions to be most degenerate). Our method is to
bound the size of the tangent space Hom(I, A) to Hilb" Air at a point z
of Hilb" Ar parametrizing a local graded Argin algebra A = R/I; we
show that for certain types of algebras A the tangent space is so small
that the only deformations of A are other algebras of the same type.
The two explicit examples are

1. Algebras of type 1, 4, 3, 0 generated by 7 general enough
quadratic forms in 4 variables.

2. Gorenstein algebras of type 1, 4, 4, 1 generated by 6 polynomials
of order 2 in 4 variables.

Precisely speaking, a generic algebra B of type 1, 4, 3, 0 is B =

k[x,y,z,w](Jaijl)l(gl,...,97), where (a;j) 1 S 1 S 7, 1 S j S 3) are 21

variables and gi = ui + ailz2 + ai2ZW + ai3w2, with U¡,..., U7 = x2, xy, xz,
xw, y2, yz, yw respectively. We prove any deformation B’ of B has in
turn B as a deformation; and B is parametrized by a generic point of
a component Z of the Hilbert scheme Hilb" A4 parametrizing length 8
zero-dimensional subschemes, of affine 4-space; the component Z
parametrizes only "thick points" - or in other words, singular length 8
subschemes concentrated at some point of A4. Thus Spec B is a

"generic" 0-dimensional singular subscheme of A4. An almost generic
algebra A of type (1, 4, 3, 0) is for us a quotient A = k(x, y, z, w)/I
"close to" a generic algebra, in the sense A has deformations only to
other algebras of the same type and kind. The point parametrizing A
lies on a single component Z of Hilb" Ar, and an open subset of Z
parametrizes only "thick points" of the same type as A; the

coefficients of (fI, ..., f7) defining I are in k. A generic point of the



151

component Z parametrizes a generic algebra B of type (1, 4, 3, 0),
which is a deformation of A. We will use these words henceforth

somewhat loosely; in particular we’ll employ "generic" with quotes to
mean almost generic.
These examples are not rigid, since there are moduli for the

isomorphism classes of these algebras; we do not know if there exist
rigid finite Artin algebras. Our method depends heavily on a natural
gradation of the tangent space Hom(I, A) when I is graded, described
and used by M. Schlessinger in (Schlessinger, 1973 [23]). We believe
that this dependence of our simple method on this graded structure is
what prevents our detection by it of "generic" algebras in 3 variables,
(which are certainly not homogeneous, and which will require a

somewhat finer method). However, there is evidence that over a

closed field, 8 is very likely the smallest colength in which such

"generic" local algebras exist: algebras of length no more than 5 have
trivializations; algebras of length 6 and most types do (it remains to
check the type 1, 3, 1, 1); algebras of length 7 and types 1, 4, 2 or

1, 3, 3 (the types where there are moduli of isomorphism classes) also
have trivializations (see [7]).
Our argument proving genericity for the 1, 4, 3, 0 algebras is simple:

suppose I is an ideal generated by 7 quadratic forms in R, and that
E - F - 1 - 0 is the beginning of a free resolution for I over R ; then
there are graded maps Hom(I, A) - Hom F, A ----&#x3E; Hom E, A such
that Hom(I, A) is the kernel of 0. The zero part Homo(I, A) of the
tangents correspond to choosing a slightly different set of 7 quadratic
forms; the positive part is 0; we show using the sequence that if I is
sufficiently general, Hom-,(I, A) is 4-dimensional, just large enough
for the trivial tangents corresponding to the 4 independent partial
derivatives; we prove a general lemma showing that then also

Hom_2(I, A) = 0. It follows that for linear (tangent) reasons only, the
ring A has deformations only to other rings of the same type. The ring
A = R/I, with I = (f,, ... , f7) = (x2 + z2, xy + w2, xw, xz + wz, Y2 + z2,
yw, yz + W2) is general enough to "work" here. We then generalize,
but show something weaker; if I is the ideal generated by d forms of
degree j in r variables, where d, j and r are chosen properly, then

(diMk(Hom-,(E, A)) + r) &#x3E; dim(Hom_1(F, A)) : there are enough
conditions, if independent, to ensure the ring A has deformations only
to other rings of the same type.
Our argument for the Gorenstein 1, 4, 4, 1 algebras is similar. We

begin with a graded 1, 4, 4, 1 Gorenstein algebra A== RII; we show
that the zero part Homo(I, A) corresponds to choosing a slightly
different graded Gorenstein algebra; the positive part Homi(I, A)
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corresponds to choosing a non-graded Gorenstein algebra A’ having A
as associated graded algebra, and we show that if 7 is general enough,
the negative part Hom-,(I, A) consists only of the trivial tangents. The
graded Gorenstein algebra A = R/I, with I = (fi,..., f6) =

(yz - X2- W2, xz - y2- W2, wz - x2- y2, yw - 2x2 - z2, xw - 2y2 - Z2,
xy - 2W2 - Z2) is general enough to work here: thus, it has as def or-

mations only other Gorenstein algebras (not necessarily graded) of
the same type 1, 4, 4, 1.
We then generalize, as before, to the largest Gorenstein algebras

having symmetric type T, socle of degree j and r generators. First, we
show the family Gor T C Hilbn R of such algebras is irreducible, and
generically rational, of a dimension we calculate. (Theorem 3.34.) To
prove this, we show the open subset ’TT-1(G Gor T) parametrizing
those algebras quotients of R whose associated graded algebra is

Gorenstein, is in fact a locally trivial fibration ’TT: ’TT -1 G Gor T---&#x3E;

G Gor T with fibre an affine space, over G Gor T, parametrizing the
graded Gorenstein algebras of type T (Lemmas 3.3A and 3.3B). The
variety G Gor T is itself an open set in the projective space P(Rj)
(Theorem 3.31). The dimension calculation shows that for r &#x3E; 8 and all

j, or for r&#x3E;4 and j&#x3E;9, the general Gorenstein algebra of type T is
not smoothable. (Theorem 3.35.) We then in section 3.4 extend the
argument of section 2, and indicate for which types one might expect
to prove genericity using the method of small tangent spaces.

1.3. Overview

Our work shows that there is a similarity in the structure of

SLalg(k") parametrizing semilocal commutative algebras, and the

structure of Lie(kn) parametrizing Lie algebras of length n, as sum-
marized for example in the thèse of Monique Levy-Nahas: different
"kinds" of algebras determine the generic points of components of
the parameter variety. (See Monique Levy-Nahas [18], M. Vergne
[25].) It’s just a matter of finding the right "kinds" to accurately
describe the components. Perhaps this search will suggest new ways
of divying up the finite commutative algebras, into kinds other than

"type T", or "Gorenstein of type T". Our work also indicates that
there are two elementary components of Hilbl° As, hence that the
number of components of Hilb" As grows exponentially with n. (See
[14].)
We should like to thank B. Teissier, B. Bennett, M. Schlessinger,
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D. Trotman, and J. Mather for discussions and encouragement, D.

Laksov for a critical reading, M. Levy-N ahas for inspiration through her
results on Lie algebras, and people of the Lê-A’Campo seminar for
whom we prepared a first version. The first author was supported by a
CNRS exchange fellowship in France during this work.
We now outline the sections. In section 2.1 we give our main

argument on smallness of the tangent space for the case A = R/I,
where I is generated by the elements of a d-dimensional vector space
of quadratic forms. We then calculate the pairs (d, r) where the

argument should work. We give the example in section 2.2 - a cal-
culation of the independence of the 24 conditions in 28 unknowns
arising in the simplest case of algebras of type 1, 4, 3, 0. In section 2.3
we generalize the discussion of §2.1 to vector spaces of degree j
forms, when r is large compared to j. We also show that if

Hom-i(7, A) has dimension r, and I is general enough, then all the
negative part Hom_(I, A) vanishes (Lemma 2.31).

In section 3.1 we give our argument for the Gorenstein algebras of
type 1, r, r, 1 when r&#x3E;4. In section 3.2 we give the calculation of
independence in the simplest algebra we found that works for r = 4.
Verifying the example involves finding the somewhat complicated
relations between the 6 generators of a graded type 1, 4, 4, 1 Goren-
stein ideal I, then showing the nonsingularity of the appropriate
20 x 20 matrix: the key is to choose an ideal I symmetric enough so
that the relations can be hand-calculated, but general enough so that
the conditions we use are independent. Then in section 3.3 we discuss
the Gorenstein ideals of thin symmetric type T, showing their exis-
tence (Theorem 3.31), parametrizing them (Lemmas 3.33A and 3.33B,
Theorem 3.34), and showing their nonsmoothability for large r

(Theorem 3.35). We then in section 3.4 study their tangent space,
comparing the sizes of Hom(F, A) and Hom(E, A) in Theorem 3.36.
In these more complicated algebras, we need to use more of the
presentation, to estimate the tangent space. Section 3.4 is conjectural,
depending on an assumption concerning the presentation of the

general Gorenstein algebra of type T.
Finally, in an appendix, we give the relation between dim Alg T and

dim Hilb T, the dimensions of the parametrizations by structure

constants and by the Grassmanian, of Artin local algebras of type T.
We do this mainly to clarify the relation between these two

parametrizations. One application of the appendix is that the known
bounds on dim Hilb" A, r (See [14]), [12]) determine bounds on

dim SLalg,(kn).
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2. Graded algebras with small tangent space

We consider rings A = R/I where I is the ideal generated by a
sufficiently general d-dimensional vector space V of quadratic forms
in the power series ring R = k[[xl, ..., xr]] of dimension r &#x3E; 2. We

give a plan of argument showing that if d is well chosen for r, these

rings A have no rigid deformation (and in particular they have no
smooth deformation). The only deformation of such rings A, in cases
where the argument can be carried out, will be algebras A’ = R/I’
where I’ is generated by another d-dimensional vector space of

quadratic forms in R. If E --&#x3E; F --&#x3E; I ~ 0 is the beginning of a minimal
free resolution of I over R, we may assign degrees to the basis

elements of F and E such that the maps have degree 0. We also can
grade Hom(F, A), Hom(E, A), and Hom(I, A): we say t E Homs(F, A)
if degree t(f) = degree f + s when f is "homogeneous". Then

0: Hom(F, A) ---&#x3E; Hom(E, A) is a graded map with kernel

Hom(I,A), and the first order deformations T’(A) are just
Hom(I, A)/A(a/axl, ..., al ax,). The argument is simply that if V is not
too special the linear conditions 0(t) = 0 determining the degree -1
part T’-,(A) of the first order deformations, ought to be irredundant.
If so, and if the dimension d of V is well chosen, the -1 part of

Hom(I, A) contains only the trivial tangents, the -2 and positive parts
vanish, and the degree 0 part comes from deformations of the

generators of I to other generators of the same degree. Hom(I, A) is
the tangent space to the point z parametrizing I on the Hilbert

scheme parametrizing ideals in k[xi,...,xr]; we can explicitly
describe there all the deformations producing degree 0 elements of
Hom(I, A) or producing the trivial degree -1 elements; and there is
no room in the tangent space for extra deformations. Thus the algebra
A will be "generic". The quotients of R that are deformations of A,
will be described by an open U in the Grassmannian Grass(d, R2)
parametrizing all d-dimensional V in R2. The component of Hilb" A,, r
including a point z parametrizing A, will contain the open set U x Ar,
and will be smooth and reduced at its generic point. Of the coor-
dinates in U, there are (r2 - 1) parameters of Pgl(r - 1) acting on
Grass(d, R2), and the rest (d(cod V) - (r2 - 1» are the moduli of

isomorphism classes of algebras A’ of the same type near A. The
closure U x Ar in Hilb" Pur will be an example of an elementary
component of Hilb" Pr - one parametrizing only irreducible 0-dimen-
sional subschemes of Pr r (see [13]). (Here the colength n is 1 + r +

cod V.) The dimensions d that work ought to be all those between

about 3 the size of R2 (13 the dimension of the space of quadratic
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forms), and (#R2 - 3). However, we have not found the key, the proof
that the linear conditions 0(t) = 0 that we find are usually irredundant,
save in the simplest case T = 1, 4, 3, 0. So at the moment the method
is mainly a scouting tool for finding elementary components of

Hilb" Pr. Any particular values of interest can be put into a computer
and checked. The number of conditions is about rd, which ranges
from about r3/6 to (r3/2 + r2/2).

In section 2.1 we give in more detail the general argument and
describe which d should work; in section 2.2 we verify that it works
in the simplest case - giving a colength 8 elementary "generic
singularity", the quotient of k[[x, y, z, w]] by the ideal generated by 7
general quadratic forms. To prove the example, we simply solve the
24x24 system of linear conditions defining T ’-,(A) when I =

(fI, ..., f7) = (x2 + Z2, xy + w2, xw, xz + wz, Y2 + z2, yw, yz + w2). In

section 2.3 we comment on higher degree extensions of the same
intuition.

2.1. C onditions satisfied by the degree -1 tangents

We view A = R/I as the ring of the subscheme X = Spec A
concentrated at the origin 0 of Ar = Spec k[xl,..., xr] ; the affine space
Ar is embedded in Pr; Hilb" Pr = H parametrizes the length n dimen-
sion 0 subschemes of Pur. If z e Hilb" Pr r parametrizes X, then NX =

Hom(I, A) is the tangent space to H at z; the isomorphism classes of
the first order deformations Tlx = T1(A) is defined by the exact

sequence

The map 0 takes the vector field X = E fi alaxi to ~X which maps f E I
to the class of 1 fi alaxi mod I; the image is the trivial first order

deformations, arising from the Hilbert scheme H by merely changing
the point in Pr r where the singularity is defined from the origin to a
nearby point in Pr, and acting by an element of Aut R. All the degree 0
tangents - mapping the generators of I to A2 = R2/ V - occur by
changing V = (fI, ..., fd) to a nearby vector space V’ = (fi, ..., fd) in
R2; there are no nonzero positive degree tangents, provided I ~ m 3
(which will hold in our examples); if we can show Hom-,(I, A) is just
the trivial tangents and Hom_2(I, A) = 0, then the Hilbert scheme H
near z is just U x Ar, with U an open in the Grassmannian G.
Suppose I is graded and the sequence E ---&#x3E; F ---&#x3E; I ---&#x3E; 0 begins a
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minimal graded free resolution of I, and that Eo denotes the sub-
module of trivial relations; then there is an exact sequence

The degree -1 tangents, those in Hom-1(I, A) arise from Hom(F, AI)
where Al 1= R is the linear part of A. Our goal is to show these lie in
the image of 0, for V well-chosen. We count: there are rd elements
of Hom(F, AI). The relations in E/Eo are the degree 3 relations

(L BiFi == 0 with Bi E RI), and are the kernel of multiplication map:

(E/Eo)3 = Ker(R1 Q9 V) ~M R3. Thus if M is surjective

Now 0 maps (Hom F, Al) to Hom(E/Eo, A2): If t E Hom(F, Al)
takes fi to ei E AI and e E E’ is the degree 3 relation 1 BJi = 0, then
0(t)(e) = E Biti E A2. That 0(t) = 0 is equivalent to the vanishing of s
linear conditions whose variables are the rd coefficients of t. Here

s = #(Hom(E3, A2) = dim E3 . dim A, - (rd - (r32)(cod V). We know
there is at least the solution space 0(alax,,..., alax,) which is r-

dimensional if V is sufficiently general. If V is chosen general
enough, the s linear conditions will, we expect, be as independent as
possible, and we expect dim T’-,(A) = dim Hom-,(F, A) -
(dim RI Q9 V-dim R3)(cod V) - r (or zero when the quantity is nega-
tive). In other words we expect

We now show, assuming char k # 2

LEMMA 2.1 : If (with the notation above) dim V &#x3E; 2, and T ’-,(A) =
0, then also T’2(A) = 0.

PROOF: Suppose t E ker 0: Hom(F, AO) ---&#x3E; Hom(E’, A 1). We choose
the basis ffil of V such that t(fl) = 1, t(f2) = 0. Then
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(X1t, ..., xrt) C Hom(F, Al) is an r-dimensional subspace (the images
of f being independent) coming from Hom(I, A), so must be the same
subspace as $(ôlôxi, ..., alaxr) since T’-,(A) = 0. This would imply
all the partials are 0 on f2. :z&#x3E;# 0 (See also Lemma 2.31)

We give here a table of solutions of

We have shown that when d = (#R2 - 2), the algebra A = R/( V) has
smooth deformations, so that value of d is omitted from the table.

Table of Solutions to Key Inequality : h (r, d)  0, and d # (#R2 - 2)

r = # variables d = dimension n = colength

When r &#x3E; 5, and d satisfies

then h (r, d) ~ 0. When r is very large, the constant 2 on the left of (2.1.3)
can be reduced to 1, then to slightly over 2.

In other words, we expect that if one chooses any number between
about #R2/3 (see (3) for precise limits) and (#R2 - 3) of general
enough quadratic forms in R, the ideal I in R they generate has no
deformations other than ideals I’ similarly formed.
Of course, when completed, this is a first order argument: there

could be more values of d yielding "generic singularities". (The
skeptic would say there could be less!) Incidentally, this style
argument gives no examples in 3 variables: at the time of writing,
although we know there are generic singularities of colength no more
than 102 in 3 variables (probably in colengths much less), we have no
explicit examples of embedding codimension 3.
The line of argument suggested can be used to limit the size of

Hom(I, A), even when it doesn’t show T1(A) is 0. Emsalem remarks
that in certain cases this gives further examples of non-smoothable
ideals, or algebras having no deformation to k[x]/xn; we showed in
§ 1.2 that to have a smooth déformation, #(Hom(!, A)) must be at least
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rn ; and to have a déformation to an s-dimensional component of

Hilb" Pr or of Hilb" R, the dimension #(Hom(I, A)) must be at least s.
When r = 4, and d = 6, n = 9, the argument above suggests
#(Hom-i(I, A)) = 4.6 - (24 - 20)(4) = 8 and similarly (a slight exten-
sion) that #(HOM-2(I, A)) = 0; we know #(Homo(I, A) = dim

Grass(6, R2) = 24, hence we expect #Hom(I, A) = 32 instead of the
needed rn = 36 to have smooth deformations. That this argument
does not work in the very special case cod V = 2 can be seen when
r = 3 and d = 4; here the formula (1) would predict 16 for

#Hom(I, A). But it turns out there is one extra independent degree -1
first order deformation in T’-,(A), and there is even a non-zero

element of T’2(A). Thus dim Hom(I, A)= 18 as needed, and in fact
the "generic" ideal I=(x2, y2, xz - z2, yz - z2) of type (1, 3, 2) has
smooth deformations.l
We propose the verification of this argument above for the d and r

of the table (or (2.1.3)) as a nontrivial problem. A natural approach is
to try to construct inductively a sequence of examples, one ideal (as
simple as possible) for each pair d, r in the table, and to show

inductively that they work. (The example we give in the section 2.2
following is the first step in the induction!) We mention in passing that
the status of this general sort of problem in 3 or more variables is

rather poor. A similar problem, also in general unsolved, is "given
d, r, j, i what is the expected dimension #RiV, for V a "generic"
d-dimensional vector space of degree j forms?

2.2. Example of a length 8 algebra having as déformations only other
algebras of the same type

We now give the example of an "almost generic" algebra of type,
1, 4, 3, 0, and we show it is not rigid by describing the 6 moduli of
isomorphism classes of 1, 4, 3, 0 algebras. The irredundancy of the
conditions described in section 2.1 amount to the nonvanishing of a
determinant whose entries are polynomials in the coefficients of the

’ Algebras of type 1, r, 2, 0 are smoothable. For the general case see (Ems-Iar). When
r = 3 we give the proof here. An open dense set of these algebras are A = RII with
I = (x2, y2, xz - z2, yz - z2). The two degree 3 relations are z(x2 - y2) - (x + z)(xz - Z)2 +
(y + z)(yz - z2) = el and (x - z)(yz - z2) - (y - z)(xz - z2) = e2; thèse and the trivial rela-
tions generate all the relations. The déformation of I in the polynomial ring k [x, y, z] to 1 ( t )
replacing Y2 by y2 + t(x - y) and replacing the first relation el by (el - t(xz - z2) +
t ( yz - z2)) is certainly flat, since all relations in I extend to 1(t). When 7’ 0, the part 1(1)0 of
I(t) resting at the origin has colength 4 and Hilbert function 1, 2, 1, 0. Being an ideal in
essentially 2 variables it is smoothable; the rest of I(t) has colength 6 - 4 = 2, so is
smoothable. Thus I(t) for t ~ 0 is smoothable, and so is 1.
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fi’s generating I. Thus it suffices to produce a single example to

validate the discussion for a given pair d, r. The guideline is, the
example has to be simple enough to calculate easily, but complex
enough to work. Our example has r = 4, d = 7, n = 8, and is the ideal
i = fI, ..., f7 == (X2 + z2, xy + w2, xw, xz + wz, Y2 + z2, yw, yz + w2). It is
easy to check R1 ® V---&#x3E;R3 is surjective. In order to be able to write
down the (7’4-20) = 8 relations easily, we chose which combina-
tions of generators to use in getting W3, w2z, wz2, z3: respectively
wf7 - zf6, wf4- zf3, wfs - yf6, and Zf5 - Yf7 + Wf6. We assumed fi is

deformed to t(fi) = f + Li, with Li = L;ix + Li2Y + Li3W + Li4Z, and Lij
constants in k. By subtracting off multiples of 0(alaxi) (thus working
in T’-,(A» we may assume Lu = L21 = L31 = L41 = 0. We then write
the inner product of each linear relation e = ~ Bii with the defor-
mation, reducing immediately the result 1 BiLi to the complementary
basis w2, wz, z2 to V in R2, thus calculating 0(t)(e) in A2. Since

h (4, 7) = 0 each condition - resulting coefficient on W2 or wz, or z2,
must count, and must not be in the span of previous conditions for
the example to work (if h(r, d) = - s, with s = 0, we’d expect s
redundant conditions in an example that works). Naturally, we begin
with the simplest relations. We include the rest of the calculation for
completeness.

CALCULATION: To start

Relation el : Involving

0(t)(el) written in a basis of

(terms xw, yw
are in I so

are 0 in A2).

CONDITIONS:

Relation o
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Relation

Relation

Status after 4 relations:

Relation

substitute for substitute

Conclude i

Relation

Relation

Substitute for Substitute for
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Relation

A check of the Li shows that t is 0, hence T’-,(A) = 0, as claimed.
Thus the algebra A has deformations only to other algebras A’

isomorphic to RII’ where I’ is the ideal generated by 7 linearly
independent quadratic forms in R, and thus A is an example for the
discussion in section 2.1.

We now describe the 6 moduli for isomorphism classes of 1, 4, 3, 0
algebras, or in other words, the 6 moduli for orbits of 7-dimensional
vector spaces of quadratic forms in k[x, y, z, w ] under the action of
Pgl(3). We can instead classify the dual spaces V of 3-dimensional
forms (see [15]) or [7] for a description of the duality). Three quadrics
in P3 determine 8 points of intersection but 7 of the points in general
enough position sufHce to determine both a vector space V and the
8th point common to the quadrics of V. This is true since passing
through a point is a linear condition on the 10 coefficients of the

quadratic form in 4 variables, so the condition of passing through 7 of
the points determines a 3-dimensional vector space V of forms. The
set of 7 points can be chosen almost arbitrarily (parametrized by an
open in Symm7(P3». Under the action of Pgl(3) five points of P3 in
general enough position can be moved to (1,0,0,0), (0,1,0,0),
(0, 0, 1, 0), (0, 0, 0, 1), and (1, 1, 1, 1). The 6 coordinates of the two

remaining points of the seven are the 6 parameters for moduli of
isomorphism classes of the vector spaces V, and also of the general
type 1, 4, 3, 0 algebras.

2.3. Ideals generated by vector spaces of degree j forms

We consider algebras of the form A = R/I, where I is the ideal

generated by a d-dimensional vector space V of degree j forms in
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R = k[[xi, ..., xr]]. First we give a lemma reducing the work of finding
"generic" algebras of this kind, to showing the size dimk Hom-i(I, A)
is r coming from the trivial tangents; we thus reduce the work to a
check on the degree -1 part of the tangent space (Lemma 2.31). We
then fix j, and describe for large r, the range of values d where the

function h(d, r, j) == (dimk(Hom-l(F, A)) - dimk(Hom-1(E’, A)) - r) is
zero or negative. (Lemma 2.32.) These are values of d, r, j with r large,
for which we expect our argument to work: if V is general enough,
the corresponding algebra A should have deformations only to other
algebras of the same type. Finally we show that h (d, r, j) is non-

positive when r = 5, j = 2, and d is the integer #Rj/2 or (#Rj/2+ 1), in
Lemma 2.33.

We now generalize Lemma 2.1.

LEMMA 2.31: Suppose r, j &#x3E; 2, and the ideal I = ( V) is generated by
a degree j vector space of forms V. If char k::j; 0 and divides (j - 2),
assume further that V contains a form f that cannot be written as a
product (C)(X2 + ... + X2)g(Xp@ ..., xp) with c a constant, and g a

polynomial. Then T’-,(A) = 0 implies Hom-s(I, A) = 0 for s &#x3E; 1.

PROOF: It suffices to show Hom_2(I, A) = 0. Suppose, by way of
contradiction that Hom-2(I, A) contains the non-zero homomorphism
h. Then the multiples x1h, ..., xrh form an r-dimensional subspace of
the trivial tangents T in Hom-1(I, A); since #T-«5r, the two spaces
must be equal. Thus, there is a nonsingular r x r matrix of constants
M such that the vector (x1h,..., xrh) = (alax 1, ..., a/axr)M. It is easy
to see that if (x1, ..., x r) = (xi, ..., xr)A is a change of coordinates,
then in new coordinates the vector (x’l h, ..., x’ h) =
(al axÍ, ..., a/axr) · ATMA. After extending k to its algebraic closure,
we may choose A such that ATMA = identity. Writing xi, ... , xr for
these new coordinates, we conclude that for each f in V, and for each
i, the form xih(f) = dfldxi. By Euler’s formula in R, the sum

~i x2h(f) = i - f.
Now if char k = p and divides j, we conclude h(f) = 0 for all the

generators of I, hence h = 0. Otherwise, we take the partial deriva-
tives of the Euler identity, and use xih(f) = dfldxi to conclude
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If char k = p and divides ( j - 2), all partials of h(f) are 0, and

h(f) = g(x;, ..., xP) which with the Euler formula above contradicts
our assumption there is an f in V that cannot be written

c~ x )g(x?, ..., xP). Otherwise, after writing h(f) as a polynomial in
with coefficients polynomials in the remaining variables, it is easy to
see that (2.3) implies h (f ) = cxj-2) for each i, hence h (f) = 0 for each
f in V, and the homomorphism h is 0. The contradiction with our

assumption h # 0 completes the proof . ·

The condition on V when (char k)l(j - 2) is not a restraint for us,
since we are concerned with general vector spaces V of dimension d
in R; and most spaces V satisfy the condition.

Notice that h(d, r, j) = (#Rj-1)d - (rd - #Rj+1)(cod V) - r.

LEMMA 2.32: (Range of dimension d which should work, when r is
large compared to j.) Suppose j is fixed, and the constants a &#x3E; 1/(j + 1)
and b &#x3E; (j + 1)1 j! are chosen. There is an r(a, b) such that when

r &#x3E; r(a, b ) and a (#Rj)  d  (#Rj-brU-2» imply h (d, r, j):5 0.

PROOF: When d is large, almost #Rj, then the difference h(d, r, j) =
(#Rj-1)(#Rj) - (r(#Rj) - (#Rj+t»(cod V) which is h(d, r, j) =

(rJ-l/(j - 1)!)(rjlj!) - (jrj+’I(j + 1 ) !))(cod V). It suffices to choose cod V &#x3E;

(rj-2/(j - 1)!)((j+ 1)lj) to make h(d, r, j) nonpositive. When d is

somewhat smaller, equal to the fraction a(#R;), then h(d, r, j) =
(#Rj-1)(a(#R,»-(ra(#Rj)-(#Rj+,»«I-a)(#Rj»; then for large r,

h(d, r, j)/(#Rj) # a rj-1 /(j-l)!-(rari/j!-rj+’/(j+l)!)(1-a). It suffices

to choose a &#x3E; 1/(j + 1) to ensure that the second, negative term
dominates. ·

When r and j are fixed, h(d, r, j) is a parabola whose minimum
occurs when the first derivative (alad)h(d, r, j) is 0, or when d is

dmin = (#Rj+1 - (#Rj-i) + r(#Rj))12r. A check when r = 4 shows that

j == 2 is the only value where h (d, r, j) can be negative: h(dmin, 4, j) has
leading term j4/48 and for small j greater than 2, hm;n is positive.
However, in 5 variables, for each j there are values d where h(d, r, j)
is negative.

LEMMA 2.33: When r= 5, and j &#x3E; 2, the difference h(d, r, j) is

negative for d equal to the integer #Rj12 or (#Rj+1)12.

PROOF: When j = 2, d = 8 = ( 15 + 1)/2 works. Since the actual

minimum dm;" is larger than #Rjl2, it suffices to show h(#Rj12, 5, J) is
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nonpositive. But h(#Ri2, r, j) = (#Rj-l + #Rj+i - r(#Rj)12)(#Rj)12,
and for r = 5 the first factor is ((’4 3) + (’4 5) - (i)(’â 4)) which is negative
when j - 3.

Finally, we note that when j = 3, the difference h (d, r, j) is negative
for r = 5 and 17  d  29; and also for r = 6 and 24  d  S0. This

suggests (just to be specific) that general enough algebras of types
1, 5, 15, 6, 0 to 1, 5, 15, 18, 0 (this last is d = 17) and of types
l, 6, 21, 6, 0 to 1, 6, 21, 32, 0 will be generic.

3. Gorenstein algebras with small tangent space

We now consider zero-dimensional Gorenstein rings A = R/I, quo-
tients of R = k[[xi,..., x,]]; and we suppose at first A has type
T = 1, r, r, 1. When r = 3, the ideal I defining A is a complete inter-
section, hence is smoothable: in that case, the algebra A has a

deformation to a direct sum of fields. We give an argument indicating
that when r &#x3E; 4, A has in general déformations only to other Goren-
stein ideals of the same type. In particular, we show that when r = 4,
and I =(yz-x2- w2, xz-y2- w2, wz-x2-y2, yw-2x2-z2, xw-
2y2 - z2, xy - 2W2- z2), then A = RII has deformations only to other
Gorenstein ideals of type T = 1, 4, 4, 1. Thus U, the Zariski-closure of
the variety U parametrizing these Gorenstein ideals, is a component
of Hilbn R ; likewise, the globalization U (closure of ô/1, which is a

locally trivial bundle over projective space P,, fibred by U) is a

component of Hilb" Pr.
The main idea of the proof is to show that when r ? 4 and I is a

general-enough graded Gorenstein ideal of type T, then A ought to

satisfy first T’-,(A) = 0; secondly #Tol(A) = dim G Gor T (parametriz-
ing graded Gorenstein ideals of type T) ; and lastly #TI(A) = r, which
is the dimension of the fiber of Gor T over G Gor T (under the
natural map taking an ideal to its associated graded ideal). Thus, there
is room in the tangent space Hom(I, A) to Hilb" Par at the point z
parametrizing at I, only for deformations of I to other Gorenstein
ideals of the same type, (concentrated at a nearby point of Pr). As in
section 2, to show this, we count the conditions on the tangents,
coming from the degree-3 relations among the generators of 7. We

show that there are exactly the right number of conditions so that
T 1i(I ) ought to have the sizes specified, when I is general enough. In
section 3.1 we outline this argument. In section 3.2 we verify the
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independence of the linear conditions for the ideal I specified above,
hence in general for Gorenstein ideals of type 1, 4, 4, 1. There are 4
moduli for isomorphism classes of graded Gorenstein ideals of type
1,4,4,1, so again we have a "generic", algebra which is not rigid, and
has no deformations to a rigid algebra.
We then consider Gorenstein rings of the particular type T =

1, r, (r+l)@ .... (r+s-l),. (r+ r, 1 with degree of socle j = 2s, and

those of type T = 1, r, ..., @ (r+,-I)@ (r+,-I),..., r, 1 with degree of socle
j = 2s + 1. We begin in section 3.3 by showing Gor T and G Gor T are
nonempty, irreducible, of a dimension we calculate. It was known

that once a system of parameters for R is chosen, a graded height-r
Gorenstein ideal in R containing m’+1 but not mi (in other words, such
that A has degree j socle), corresponds uniquely to a form f of degree
j in R - the annihilating form of I (See [15]). We show that con-

versely, if f belongs to a certain open set U of the projective space
P(R;) parametrizing degree j forms, then the graded Gorenstein ideal
annihilated by f has type T above. In other words, most graded
zero-dimensional Gorenstein rings with r generators and degree j
socle have type T.
We show an ideal I in the fibre of Gor T over I * in G Gor T is

determined uniquely by the choice of an annihilator function h =

fs+l + ... + fj with fj = f, the function annihilating I*. Here fj-i is

well-defined mod(J"f). We conclude that G Gor T, the fibre of Gor T
over G Gor T, and hence also (Gor T ) n ir-’(G Gor T) are irreducible
as varieties; and that the dimension of Gor T is

We conclude in Theorem 3.34 that for most such types T when r&#x3E;4,
the general Gorenstein algebra of type T has no trivialization.
Then in the conjectural section 3.4, we assume I is graded and that

the minimal resolution of I has the degrees it ought to have, and
outline a calculation of T’(A). We show modulus our assumptions
that the number of conditions imposed by the relations is exactly the
number needed, so that, if independent, they force the non-negative
part T’(A) = dim Gor T. For odd j - 3 and r = 4, 5 the conditions, if
independent, force the negative part T’-,(A) to be zero. However, we
have not confirmed the independence of the conditions, or the

assumptions of section 3.4 in any case beyond j = 3, r = 4, that we
complete in section 3.2.
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3.1. Gorenstein algebras of type T = 1, r, r, 1

We first describe the family Gor T parametrizing Gorenstein ideals
of type T in R ; then we plan the calculation showing T1(I) is small.
We assume here char k = 0 or char k &#x3E; 3. This restriction can be

avoided by using divided powers.
Once a system of generators xi, ..., xr for R is chosen, we define a

pairing 03C8: Ri x Rj ---&#x3E; Rj-j from the forms of degrees i and j to those of
degree j - i. On monomials, if v is a vector of r nonnegative integers
of length j, and u is a vector of length i, then

Notice that if Ui&#x3E; vi, 03C8(x ", xv) = 0. We extend the definition bilinearly
to Ri X Rj.
The graded Gorenstein ideals I of type T are the annihilators I(f)

under the pairing of certain cubic forms f - namely those cubic forms
involving essentially all the r variables [See [15]. These cubic

forms are parametrized by an open set of the projective space P(R3),
thus

is an open immersion, and dim(G Gor T) = ((r3 2) -1).
It is easy to see that the general Gorenstein ideals of type T having

Gorenstein associated graded ideal, are the annihilators I(h) of poly-
nomials h = h2 + f, where h2 E R2, f E R3, and I(f) also of type T, is

the associated graded ideal of I(h). (See section 3.3 for details.)
We now wish to parametrize the ideals I(h), so we determine to

what extent h is unique. Recall from [15] that I2(f), the graded degree
2 part of I(f), is the vector space of degree 2 forms annihilating
J1 f = ~fl~x1, ..., afl ax, under the pairing 03C8. The following lemma is a

special case of Lemma 3.33A.

LEMMA 3.1A. If I(h) and I(h’) are two ideals of type T, as above,
such that h = h2 + f and h’ = h2 + f’ are the decompositions to forms,
and both I(f) and I(f’) have type T, then I(h) = I(h’) =&#x3E; 3cEk* such
that f = cf ’, and (h2 - ch 2) E J 1 f .

PROOF OF 4=. By linearity, we may assume f=f’, and (h2-h2)E
J’ f ; by symmetry it suffices to show I(h’)C I(h). Suppose g =

g2 + g3 E I(h ’). If g2 = 0, then g E I3(f) = I3(h) C I(h). Otherwise, g2 E
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I2(h’) = I2(f), and this implies 03C8(g2, f ) = 0 and that g2 annihilates J1f.
Thus, 03C8(g, h ) - 03C8(g2, h2) + 03C8(g3, f ) - 03C8(g2, h 2) + 03C8(g3, f ) - 03C8(g, h’) = 0
and g E I(h).

PROOF OF ~. Clearly, I(h ) = I (h’) ~ the associated graded ideals
I(h )* = I(h ’)* # 3 c e k* such that f = cf’. Suppose g2 E I2(f); then
3g3ER3 with g2+g3EI(h)==I(h’), and hence 0= (g2+g3)(h-ch’)=
g2(h2 - ch2). Thus (h2 - ch2) E Ann(I2(f» = Ann(R2 nAnn(J1f». Since
03C8/R2 x R2 ~ k is an exact pairing, we conclude that (h2 - ch2) E J1f.
This completes the proof..

An immediate corollary is

LEMMA 3.1B. The natural map 7r: (Gor T n ’TT-1 G Gor T) ~ Gor T,
coming from the map taking an ideal to its associated graded ideal,
makes (Gor T n’TT -1 G Gor T) into a locally trivial bundle over

G Gor T, with fibre the affine space of dimension (2). The map has a
natural section coming from the inclusion of graded ideals in all

ideals..

We now outline the calculation of T1(A), for a graded Gorenstein
ideal I of type T. The ideal I has (2) == (’;1) - r generators of degree 2
in any minimal generating set. In general, these will generate I and if
so, there will be e = (r(2) + 1 - (r3+2)) linear relations among them. The
1 extra linear relation compared to an ideal of type 1, r, r, 0, plays an

important role here. We first estimate #(T1_1(A» by considering as
before in section 2 the identity

Hom_1(I, A) = Ker 03B8-1: Hom-i(F, A) ~ Hom-1(E’, A).

The dimension #Hom-i(F, A)) = (2)r and the dimension

#(Hom-i(E’,A))= er, thus the expected dimension of T’_1(I) is

(#Hom-1(I, A) - r), or

expected #T1_1(A) = max )

We now likewise bound the dimension of Homo(I, A). The dimension

#(Homo(F, A)) = (r2)r and the dimension #(Homo(E’, A)) = e, thus the

expected dimension of Homo(I, A) is

expected #Homo(1, A) = (re) r - e = (r+3 2) - 1 = dimension G Gor T.
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Evidently, #Hom1(I, A) = #Homi(F, A) = (2), the dimension of the

fibre of (Gor T n’TT-1 G Gor T ) over G Gor T.
Clearly, if I is generated in degree 2, and the various linear

conditions above imposed by the linear relations are independent,
then I has deformations only to other Gorenstein ideals of the same
type. We let U C (Gor T n ir-, G Gor T) be the open set in Gor T

parametrizing I such that I has #T1_1(A) = 0 and #(Hom(I, A)) is that
expected above. When U is nonempty, U is a component.

3.2. A Gorenstein algebra of type T = 1, 4, 4, 1 having deformations

only to other Gorenstein algebras of the same type

We verify the argument of section 3.1 for the graded Gorenstein
ideal I = I(f), where f == 6(xyz + ywz + xwz + 2xyw) + (x3 + y3 +
Z3 + w3). First, a word about choosing an example to calculate: on the
one hand, the argument depends on f being chosen general enough; on
the other hand, the calculation needed becomes rapidly more difficult as
f becomes less symmetric. Thus, we try to find an f as symmetric and as
simple as possible, that works. Simpler choices of f than that above do
not work!

The vector space J 1 f, annihilated by the generators of I, is

The generators of I are I = (h,, ..., h6) with

We let a denote the cyclic permutation (xyw) taking hl to h2, h2 to h3,
h3 to h1, and permuting cyclically h4, h5, h6 also. We will abuse

notation and let hi also denote a basis element of the free R-module F
on 6 generators, according to context.

It is not hard to verify, once found, that a basis of the linear

relations among the generators, is el, e2 = ueI, e3 = u2eI, e4, and

e5 = oe4, where
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and

The bracketed coefficients of e4 permute under a, and it serves as a

check on our calculation of the linear relations, that evidently,

We now show the linear independence of the 20 linear conditions
imposed on t E Hom-1(F, A)/(~l~x, al ay, dldw, ~l~z) by the require-
ment t be in the kernel of 0. This task is facilitated since the 20 x 20
matrix involved breaks into 4 x 4 blocks, because of the symmetry in
the first 3 relations. To begin, we suppose as in section 2, that

t(hi) = Li = Li + Li2Y + Li3W + Li4Z. Since J1h1 = R 1, in considering t
mod the trivial tangents (the partials), we may assume Li = 0. We
proceed by substituting Li for hi in each relation, and calculating the
image in A2 = R2/I2, modding out by the generators. We now give the
matrix M resulting. On the left we mention the relation in question
(each giving 4 linear conditions), and the basis used for A2 = R2/I2.
Blanks are zeroes. (See table on next page)
We calculated the determinant of the aforegoing matrix M in two

different ways on the University of Texas Computation Center CDC
64-6600 system computer which works with 48 bits (14 decimal

places) and gives usually over 10 digit accuracy. The modified "LU
(lower, upper triangulator) decomposition" method working with real
numbers gives

and the product of the complex eigenvalues (none of which was
smaller than 0.2 in modulus) was computed as

The performance indices of both programs was good and they give
the same result to 10 digits; we conclude that the determinant of M is

nonzero, and that the 20 linear conditions are independent. We thank
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D. Kincaid, Hunter Ellinger, and Andy Martin for help with the
programming and debugging.
We now show #Homo(I, A) = 19. The size #Homo(E, A) =

#Hom(E, A3) = 5; the size #Homo(F, A) = #Hom(F, A2) = 24; and we
must show there are 5 independent linear conditions imposed on
t E Homo(F, A) by the requirement t E ker 0. We show for t(hi) =
B1x2, t(h2) - B2y2, t(h3) - B3Z2, t(h4) - B4(y2 + W2), t(h5) - B5x2 , and
t(h6) = B4W2 with Bi E k, that t E ker 0 ~ t = 0, which will complete
our proof. Since I contains all the monomials x2y, xz2, zx2, etc. (all
x7xs with i # s), as well as x3 - y3, x3 - z3, etc., in order to calculate the
image of t in Hom(ei, A3), it suffices to substitute t(h1), ..., t(h6) in the
relation ei and to sum the resulting cubic coefficients - the coefficients
on x3, ..., z3. In this way we obtain for 0(t)

Thus 0(t) = 0 on el, e2, and e3 implies B1 = B2 = 0, and B4 = B5. Then
03B8(t) = 0 also on e4 and e5 implies 143B3 = BS and 11B3 = -66B5,
respectively. Thus t E ker 0 ~ t = 0. This shows #Homo(I, A) = 19 =
dim G Gor T, and completes the proof that A has deformations only
to other Gorenstein rings of the same type T.

3.3. Parametrizing Gorenstein algebras of symmetric, maximal types

By a Gorenstein ideal of maximal type in R, we mean an ideal I for
which there is an integer s satisfying ms+l D I D m2s+2. By symmetric
type we mean that if j is the highest power of the maximal ideal m,
not contained in I (in other words, j is the degree of the socle of
R/I *) then T(I) = to, ..., ti, ... with ti = tj-i. A Gorenstein ideal may
have a maximal, nonsymmetric type: for example, if f = x2 + y3 in
k[[x, y]], the ideal I(f)==(xy,3x2-y3) has type 1, 2, 1, 1, 0. But a

symmetric, maximal type is uniquely determined by s, and the

number j defined above, is 2s or 2s + 1. The types we study are thus
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The lengths n(T) = ~ t; of these types are respectively n(T) =
2(r+ss) - (r+s-1s) when j = 2s, and neT) == 2(’:S) when j = 2s + 1 . The
types can also be characterized by the condition

They are also the symmetric types of maximal length n(T) = ~ ti, for

which t; = I, and t;+1 = t;+2 = ... = 0.
We first study graded Gorenstein ideals of these types in R, and

later we’ll study more general Gorenstein ideals of these types.
The graded Gorenstein ideals of type T in R are parametrized by a

subscheme G Gor T of Hilbn(T) R. There is a 1-1 correspondence
between graded Gorenstein ideals 7 in R (not necessarily of type T)
such that A = R/I has degree j socle, and forms of degree j in R (up
to non-zero constant multiple). Using the Ji of section 3.1, this

correspondence is (see [15]).

For such ideals,

Here, in turn, Ji-if = 03C8(Ri, f) = vector space spanned by all ith parti-
als of f. The type of such graded Gorenstein ideals is always sym-
metric, and consequently #Ii == ti = tj-i = #Jj-if ~ min(#Ri, #Rj-i).
Thus the graded Gorenstein ideals having the type T of (3.3a, b), are
those annihilating a degree j form and having the maximum type
consistent with the symmetry ti = tj-i. Thus clearly "#Jj-if = #Ri" is
an open condition "#Jj-if ~ (#Ri-1)" on the projective space P(Rj)
parametrizing degree j forms in R, so for the T of (3.3a) there is an
open immersion G Gor T 4 P(Rj). We now show G Gor T is

nonempty; this together with the 1-1 correspondence (3.3c) shows
G Gor T is dense in P(Rj).
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THEOREM 3.31: If T satisfies (3.3a), there is an open dense im -

mersion G Gor T ~ P(Rj), f rom the scheme parametrizing graded
Gorenstein ideals of type T, to the projective space on R;. The variety
G Gor T is irreducible, rational, and has dimension (#Rj - 1) =
( r+j-1) -

PROOF: We need to show G Gor T is nonemptyl.

CASE j = 2s : It suffices to construct an f such that #Jsf = #Rs; for
then Jsf = Rs, and for u &#x3E; 0, Js+uf = Rs-u: the symmetry of the type T
of I(f ) then shows H must be the T of (3.3a). Order the monomials

. having degree s alphabetically: x;  X1-1X2  ...  x1-lxr 
x1-2x  ...  X;-lX;-2  Xr-1X;-1  x;; and we let 1 be the matrix

whose i, j entry is the coefficient of g/(&#x3E;;, f ) on the monomial 03BCj. We

will show, by induction on r, a stronger result,

CLAIM: Given j = 2s, an even integer, and given an #Rs x #Rs
square matrix C of constants, there is a form f of degree j such that
det(J - C) # 0.

PROOF OF CLAIM: If r = 1, given a constant c, we choose f = c’x2s
such that c’(2f)(k!) ~ c. Suppose the lemma is true for all even j in
(r - 1) variables x2, ..., xr and that z, x2, ..., xr are the new r variables

(thus z = xl), that R = k[[z, x2, ..., xr]], that R’ = k[[X2, ..., xr]], and
suppose that C is a square #Rsx#Rs matrix of constants. We will
choose in order fo, f2, ..., f2s with f2i E R2i, such that f =
foz2s + f2z2s-2 + ... + f2s works: det(J - C) # 0. We decompose the

matrices J, C, M = J - C and all others used, into rectangular blocks
luv, Cuv. The rows and columns of J, C, M,... are labeled by the
monomials of Rs. The block Juv contains all the entries of 1 for which
the z-power of the row-label is s - u, and the z-power of the column

label is s - v.

The idea of the proof is that the part of (J - C) in the upper left
corner: (J - C)uv with u, v ~ n depends only on the f o, ..., f2n terms of
f, and we can choose in order fo, ..., f2n so the upper left corner is
diagonalizable. Assume, to start, that f = ~ aIz’ixi22 ... xr with

coefficients al independent variables if il is even, 0 if il is odd.

’ (Added in proof) E.L. Green has independently shown that G Gor T is nonempty, in
"Complete intersections and Gorenstein ideals", to appear, Journal of Algebra.
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FIG. 1. Matrix J = Jsf when j = 2s = 6, and r = 3.

We choose in sequence fO, f2, - - -, f2s in R’, calling the resulting
matrices J(O),J(’),...,J(s) with J(j)=J’f after substituting the

coefficients of fo, ..., f2i for the pertinent al, namely those ai in which
i1 &#x3E; j - 2i. We let Mi = J(i) - C. The purpose of this notation is to

allow us to perform matrix operations to almost-diagonalize the upper
left corner of M’ after choosing fo, ..., f2i, while also indicating the
effects of these operations on the rest of the matrix M’ before
actually choosing f 2i+2’ ..., f2s. First, we choose fo E R’ 0 = k such that
M80 -:;é 0. Since Mo 7é 0, we may reduce M81 and Moo to 0 by matrix
operations involving the first row and column, obtaining thereby a
new matrix CI= S,M°S;’ 1 similar to MO by the matrix SI E G l(k).
Choose now fi and thus M’, so that the determinant )C)1) # 0, when
evaluated at f 1, and let B’ == SlM1 SI1.
At stage n, we have just chosen fn and M", and Bn - Sn MnS n such

that Sn E G 1 (k), and B n is almost diagonal in its upper left corner:

this means the early diagonal blocks B nu u with u  n are each in

G 1(k), and the early off-diagonal blocks Buv with u # v, and u, v  n
are all zero. Then we use matrix operations involving the early rows
and columns to reduce the blocks B n+l,u and Bn u,n+l with u  n, to

zero, obtaining thereby a new matrix Cn+1 = (Sn+l S hI)Bn(Sn+l s n
Sn+1MnSll for some Sn+1 E G l(k). We choose fn+1 (and hence also
Mn+1) so that the determinant )Clà(,n+1) # 0. This key step involves
solving IJn+1f2n+2 - C’l :,p4- 0 over R’, f or C a matrix of constants, and
we use the induction hypothesis. We then let Bn+1 = Sn+,M"+’Sn+1,
and notice that Bn+1 is almost diagonal in its upper left corner, which
is the set of blocks Buv with u, v S n + 1. Finally, after choosing fs, the
matrix MS is similar to B S which has off-diagonal blocks zero and

diagonal blocks invertible, so MS = (J(S) - C) is invertible. This proves
the claim, and the theorem when j = 2s.
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CASE j = 2s + 1: It suffices to show there is an f with #Jsf = #Rs,
for then by symmetry #Js+1f = #Rs, implying Js+1 = RS ; the discussion
under the case j = 2s applies to show T(I(f)) must be the T of (3.3a).
For this we need a slight generalization of the claim proven above.
There, the general Juv block of J was Juv = ((2s - u - v ) !/(s - U)!)Juf2v-
We need a similar claim for the matrix J’ where Jüv =

«2s + 1 - u - v) !/(s - u) !)Juf2v. Clearly the proof is the same. We

apply the result with C = 0 to show there is a form f =
fOZ2s+1 + f2Z 2s-1 + .. + f2iz2s+1-2i + ... + f2sz with IJsfl ~ 0. This

completes the proof of the theorem. We remark that the proof works
when characteristic k = p &#x3E; j ; or in lower characteristics, if we

replace the derivatives and duality used by one without coefficients -
if we use divided powers. Thus the theorem as stated is true in all

characteristics..

Note. The matrix J = Jsf, when degree f = 2s, was studied of old
under the name catalecticant of f (Grace-Young p. 66 [10]), but we do
not know whether it was known to be in general non-zero. Much of
the duality used here was known to Macaulay, a modern reference
being [16]. Our variation is to give the Gorenstein ring A more
structure by considering A as a quotient A = R/I of R. If I D mj+l we
then choose a dualizing module Hom(A, k) in R depending only on a
choice of system of parameters for R (equivalent to a choice of the
pairing 03C8). Since A is Gorenstein, the dualizing module is simple and
Hom(A, k) = Jf for some polynomial f. When A is graded there is a
unique form (f) up to scalar multiple generating Hom(A, k). When A
is not graded, but its associated graded algebra A* is also Gorenstein
of maximal symmetric type T, we will choose a unique polynomial f
generating Hom(A, k) = Jf (but depending on A*), in Lemma 3.3A.
This added structure allows us to parametrize G Gor T and also

Gor T n’TT-1G Gor T, the family of Gorenstein ideals of type T in R
having a Gorenstein associated graded idéal.

DEFINITION: Dualizing module Ann I of A = R/I. We suppose a
system of parameters xl, ..., xr for R is chosen, and that Ji is the pairing
of section 3.1. If I has finite colength in R we let Ann I = f g in R such
that tp(I, g)(0) = 01. The action of A on Ann I is a - g = ip(a, g), which is
also in Ann I since 03C8(I, 03C8(a, g)))(0) = 03C8(Ia, g)(0) = 03C8(I, g)(0) = 0. The
A-module isomorphism, Ann I - Hom(A, k) is g ~ g/1’, g)(0).

PROOF OF ISOMORPHISM: Suppose 7D mj+1. The bihomomorphism
03C8(-, .)(0) on (Ro @ ... EB R;) x (Ro @ ... 0 R;) to k, is clearly an exact
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pairing, and g E Ann I~ degree g ~ j. Thus #Ann I = #(RIl) =
#A=#Hom(A, k). The homomorphism AnnI--&#x3E;Hom(A,k) is in-

jective, since if g annihilates both I and R/I it annihilates R and must
be 0; thus the homomorphism is an isomorphism.
When I is Gorenstein, Hom(A, k) = Ann I is a simple extension of

k: thus, Ann I is a simple A-module generated by a function f, and
Ann I = A - f = Jf, the vector space of all partials of f. The poly-
nomial f has degree no more than j, if I contains mj+1. Also f’ = uf =

03C8p(u,f ) is a generator, if u is a unit in A. If now I D mi, the highest
degree form fj of f is uniquely defined up to multiplication by a
non-zero constant. It is non-zero since otherwise Ij =

Ri n{h/03C8(h, Ann 1)(0) =} would include Ri. We now explain the rela-
tion between I(fj) and I.

LEMMA 3.32: If I is a Gorenstein ideal containing mj+1 but not mi,
and f with top degree form fj generates Ann I, then I(fj) =

{gl03C8(g, fj) = O} is the unique graded Gorenstein ideal containing I* but
not containing mi. Also, I(fj) = (Ij: Rj) + ... + (Ij: Ro) + mj+1. If I* is

also Gorenstein, then I* = I(fj).

PROOF: We show first that I(fj) ~ I*, the associated graded ideal of
I ; then we show there are no epimorphisms among graded Gorenstein
rings having degree j socle. If hi E Ii, then hiRj-1 C I; C I, since

mj+1 C I. Thus 0 = 0 03C8(hiRj-i, f)(0) = 03C8(hi, Jj-1f)(0) == 03C8(hi, Jj-ifj), since

only the degree i terms of g contribute to li(hi, g)(0). Thus hi E I(fj),
by a remark above. These graded Gorenstein rings with degree j
socle, quotients of R, correspond 1-1 with codimension 1 vector

spaces of forms in Ri (that annihilate a form fj), and thus there are no
nontrivial inclusions. The rest of the lemma, in fact all, is a trivial

consequence of the definitions in [15]: for if I* is a graded ideal,
the ancestor ideal I; = (Ij: Rj) ® · · · ~ (Ij: Ro) of I; contains

7oe’"04
We now suppose I* = I(fj) is a fixed graded Gorenstein ideal of

maximal symmetric type T. We now choose a unique f such that
i = I(f).

LEMMA 3.33A: Suppose I(fj) is a graded Gorenstein ideal, having
type T of (3.3a), and suppose that Vs, ..., Vj-1 is an arbitrary sequence
of complementary vector spaces to Jj-ifj in Ri: thus Vi EB Jj-ifj = Ri for
i = s,..., j - 1. Then there is a 1-1 correspondence

(Gorenstein ideals 1 having I* = I(fj)l
1% Ipolynomials f = fs + ... + fj-l + fj having fs E VS, ..., fj-1 E vi-il.
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The correspondence is

PROOF oF ~ : Given I, we show there is a unique f generating
Ann I and satisfying the condition. Begin with an f generating Ann I
and having top degree term f;. Suppose further that u  j is chosen
such that /,-i,..., fu+1 are in V;-,, ..., Vu+1 respectively, but fu = fú + fü
with fú E Vu and fü = ho fj E Jj-Ufj. Then (1 - h) 0 f will have top terms
(1 - h) 0 f == fj + fj -1 + ... + f u+ 1 + f  m ode Ru -1 + ... + Ro), and (1 - h) f
also generates Ann I since h E m. Continuing in this way down to
u = 0 (we take Vs =’’’== Vo = 0), we find a generator of Ann I

satisfying the condition.
If f and f’ satisfy the conditions and both generate Ann I, suppose

(/"/’)f is the top non-zero term in f - f’. If h E I has initial degree i,
then 0 = gi(( f - f’), h )(0) = gi((f - f’);, h;), thus (f - f’) E Ann Ii n Ri =
Jj-ifj by an earlier remark; this contradicts the choice of (f - f’)i in Vi,
the complementary space to Jj-ifj.

PROOF oF ~: Suppose f satisfies the condition, then the ideal

I = I(f) = {glf/1(g, f ) = 0 = {gl03C8(g, Jf)(0) = 0}} and f generated
Ann(I(f)). By Lemma 3.32, I(fi)~ 1*, and the type T = T(I(fj)) 
T(I) in the sense ti  ti(I) for all i. It suffices to show T ~ T(I) for
then T = T(I) and 1*, being included in the idéal I(fj) of same

colength, is equal to I(fj). The inequality T &#x3E; T(I) follows from

CLAIM: If l is a Gorenstein ideal in R containing mj+1 but not mj,
and T is the type of (3.3a), then f or each u  j, 3i l t; &#x3E; ~ju ti(I).

PROOF or CLAIM: The ideal I = Ann Jf for some degree j poly-
nomial. We associate to If a graded J-ideal (Jf)* = @1 (Jf); where
(Jf)i = ((Jf n (Ri + ... + Ro)) + (Ri-1 + ... + Ro))/(R;-i + ... + Ro). It is

easy to show (Jf); is the annihilator of Ii in the pairing (.,.) from
Ri x Ri to k, using the fact f/1(gi + gi+1 + ... , hi + hi-1 + ... )(0) ==
f/1(gi, hi). It follows that #((Jfi;) = ti(I). The only partials that can

contribute to (Jf)u + ... + (Jf)j are those of order no more than j - u,
thus ~jû ti(I) ~j-u0 #R;=3i( t; if u &#x3E; s. If i  s, #((Jfi;) ~ #Ri = ti; this

completes the proof of the claim, for all u, and of the Lemma 3.33A.
.
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An immediate corollary of the above Lemma is

LEMMA 3.33B: The natural map ir: (Gor T n(’TT-1G Gor T)) ~
G Gor T makes the former into a locally trivial bundle over G Gor T,
having as fibre an affine space of dimension (Ej-’(#Ii» and having a
natural global section i : G Gor T ---&#x3E; Gor T.

PROOF: It suffices to notice that the same choices of Vi will

work - be complementary to J’-’fj - for an open neighborhood of

degree j forms fj : over that neighborhood, the map Tr is trivial with

fibre the product of affine spaces each having dimension equal to
dim V;. 

The subscheme ’TT-1(G Gor T ) is open in Gor T, since the Goren-
stein ideal I is in ’TT-1G Gor T iff I; belongs to an open set of the
codimension 1 vector spaces in Rj - namely the open set U in (P(Rj)*
corresponding to the open set U parametrizing fj where I(fj) has type
T (see Theorem 3.31, and Lemma 3.32). We now show that

’TT-1(G Gor T) is dense in Gor T. We suppose char k = 0, for the proof,
but we expect the proof extends to characteristic p.

THEOREM 3.34: If T is a type of (3.3a), then Gor T parametrizing
Gorenstein ideals of type T, contains ’TT-1G Gor T as an open dense
subscheme; Gor T is irreducible, and has dimension

PROOF: It suffices to show ’TT-1G Gor T is dense: the dimension

calculation and irreducibility are then immediate consequences of
Theorem 3.31 and Lemma 3.33B. Suppose that I is a Gorenstein ideal
of type T. Then I = I(f) for some polynomial f of degree j, with fj# 0.
Let f(t) == fj(t) + ... + fo(t) be a 1-parameter family of polynomials
such that limit,-o f (t) = f, and such that for t # 0, the top term fj(t) is
in the set U of Theorem 3.31: then I(fj(t» has type T for t # 0. Then
by Lemma 3.32 and Lemma 3.33, I(f(t))* = I(f;(t)), for t# 0. Thus I
is in the closure of ’TT -1( G Gor T).
The dimension of the component U of Hilb" Ar containing points

parametrizing smooth subschemes is rn ; the dimension of the
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component of Hilb" R containing points parametrizing quotients of R
isomorphic to k[x]lxn is (r - 1)(n - 1) (for this, see [13]); we conclude
from the dimension formula of Theorem 3.34, and an easy cal-

culation :

THEOREM 3.35: The general Gorenstein algebra of type T in r-

variables has no trivial deformations when j &#x3E; 3 in 8 or more variables,
when j &#x3E; 5 in 7 or 6 or 5 variables, and when j &#x3E; 9 in 4 variables. It has no
deformations to k[x]/xn when j &#x3E; 3 in 5 or more variables, when j &#x3E; 5 in 4
variables, and when j &#x3E; 7 in 3 variables.

Here j is the integer satisfying Aj ~ 0 but Aj+1 = 0.

3.4. Some Gorenstein algebras that should be generic

In order to prevent the miasma of conjectures from spreading, we
isolate them in this section. From assumptions on the resolution of
the general graded Gorenstein algebra A = R/I of maximal symmetric
type T, we calculate an expected dimension #Hom,(I, A) = #Ij-s for
s ? 0 and all r, j ; and we calculate the expected dimension

#Hom-1(I, A) = r for r = 4 and j odd. This leads us to predict that the
general Gorenstein algebra of maximal symmetric type T, can be
shown "generic" by our methods when r &#x3E; 4, and j odd. The example
of section 3.2 is the simplest case, but we add no further examples
and prove nothing but implications among conjectures here. We

include the section for the interest of the conjectures, and for the
curious calculation in the proof of Claim 1.

We assume A = R/I is a general graded Gorenstein algebra of
maximal type T, and that 0 --.&#x3E; F, ---&#x3E; - - - --&#x3E; FI --&#x3E; Fo = R --&#x3E; A ---&#x3E; 0, is a

minimal graded free resolution of A over R, where the homomor-
phisms are graded of degree 0. The difference in the calculation of
this section and previous, is that we must take into account more

terms of the resolution to calculate the expected sizes of Hom(I, A).
The conjectures that follow are not about particular algebras, but
about those parametrized by an open (we hope nonempty) set in

G Gor T. We assume first

CONJECTURE 1: If i  i’, the degrees of generators of Fi are less
than the degrees of the generators of F;,.’
’ (Added in proof) R. Stanley notes that here deg Fr = j + r, and that Conjecture 1 is true

when j is even.
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We then consider the sequence

where the maps 03B8’ are graded, ()i==EBs8:0153sHoms(Fi,A)
~s Homs(Fi+h A), the composition 0’0’-’=O, and on the left

Hom(I, A) is the kernel of ()1. We then assume

CONJECTURE 2: For s &#x3E; 0, 9s is surjective to the kernel of 8s+1 in
Homs(Fi,,, A). From these we will show

CLAIM 1. Conjectures 1 and 2 imply #Homs(I, A) = #Ij-s for s ~ 0.

This would imply that the non-negative-graded part Homo,+(I, A) of
the tangent space to A is just large enough to account for defor-
mations of the algebra A to (not necessarily graded) Gorenstein
algebras of type T.
We then suppose r &#x3E; 4, and j is odd &#x3E; 3, and assume

CONJECTURE 3. The homomorphism 0Li is surjective for i &#x3E; 1; and
the image of () -1 1 has maximal size consistent with #Hom-i(I, A) 2: r.

We then show when r = 4 only

CLAIM 2. Conjectures 1 and 3 imply that the -1 graded piece of the
first deformation space, T’-,(A) is zero for general graded Gorenstein
algebras A of maximal types T with r ~ 4 and with j odd - 3.

Then Lemma 2.31 implies T ’-,(A) = 0 for s &#x3E; 1, and we conclude from
Claims 1 and 2 that A has deformations only to Gorenstein algebras
of type T. Thus the general Gorenstein algebra A’ of type T would be
generic. The calculations we’ve made (not included) indicates that
maximal types T with r &#x3E; 4, j odd &#x3E; 3 are the only for which our
"small tangent space" method could work to produce "generic"
Gorenstein algebras. But Theorem 3.5 might be considered as evi-
dence that most symmetric maximal types T produce "generic"
Gorenstein algebras.
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It remains to discuss Claims 1 and 2.

There is a standard result (see [26] Vol. II) that the term ti in the
rth difference sequence of the type T of the graded algebra A is

t = 1 (- 1)’ (#generators of FS having degree i). Thus, assuming
Conjecture 1 which implies the sum has a single nonzero term, we
may read off the number and degrees of the generators of the Fs. For
example, the 4th difference of T = l, 4, 4, 1 is (t4@ ..., @ t4) = (1, 0, -6, 5,
5, -6, 0, 1). Thus there are 6 generators to I having degree 2, 5

relations among the generators in degree 3, and 5 more in degree 4;
there are 6 relations among the relations happening in degree 5, and 1

basis element of F4 with degree 7. The qualitative behavior of the {ti}
depends on the parity of r and of j. When r is even and j odd, the
non-zero terms consist of the extreme terms te = t;+r = 1 and a middle
cluster of r symmetric nonzero values occurring in adjacent degrees,
whose signs alternate expect for the middle two. Thus FI has basis
elements of degree (j + 1)/2,..., Fr/2-1 has degree (r + j - 3)/2; Fr,2 has
basis elements in the two middle degrees, and so on to Fr-i of degree
(( j - 1 )/2 + r). When also r = 4, the sequence

Notice finally that Homs(Fn A) = 0 for s - 1 and r - 2, since Fr has

degree j + r, and Aj+1 = 0.

PROOF oF CLAIM 1: We let Fi,u denote the part of the module Fi
having basis elements of degree u. Then when s &#x3E; 0

#Homs

as terms of

degree &#x3E; j are 0

by Conjecture 2

since T is symmetric

since s + u &#x3E; j/2 and
T is maximal

by a standard identity.
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We now turn to Claim 2. Numerical evidence strongly supports it

for r &#x3E; 4, but we have explicitly verified it only for r = 4 and r = 5, of
which we include here the case r = 4.

PROOF oF CLAIM 2 WHEN r = 4: We must show S =

L1 (-1)i+1 #Hom-i( E, A):5 4. Letting k = (j/2) +1 2 the size #Ak-1 =

#Ak = #Rk-1 = (k;-2), , and likewise the size #Ak+l = (k;-l) and #Ak+2 =
(3). Thus by (3.4) the sum S is

It may be useful to reconsider the example where T = 1, 4, 4, 1, and
A is proven generic in section 3.2. The sizes #Hom(Fi, A)= 24,
#Hom-1(F2,3, A) = 5 · 4 = 20, #Hom-1(F2,4, A) = 5 - 1 = 5, and

Hom-,(F3, A) = 0. We showed before that 03B8 = pr3(J’-1: Hom-1(F1, A)---&#x3E;
Hom-1(F2,3, A) is surjective; we also expect that 03B8’ = pr49’_,
Hom-1(F1, A) ---&#x3E; Hom-,(F2,4, A) is surjective; but the conditions im-
posed on an element t by 0(t) = 0’(t) = 0 are of course dependent: in
other words Hom-i(Fi, A) ~ Hom-1(F2, A) is not surjective. More
generally, when r is even, the two pieces ker 0 and ker 0’ coming
from F2,k and F2,k-, are just independent enough, we believe, to force
T ’-,(A) = 0.

Appendix: Comparison of two parametrizations of

finite-length semi-local algebras

We explain the equivalences among questions 1-3 of 1.1. We begin
with some general comments and a comparison of the topological and
geometric viewpoints. We then compare the algebraic and geometric
viewpoints. The last discussion yields a dimension result: Proposition
A5. Dimension((Hilbn k[[x,, xii) fl desingularizable algebras) 
(rn - r).

In the algebraic and geometric viewpoints, by déformation we
mean "flat deformations"; topologists don’t usually restrict themselves
to flat déformations, but those involved in question 1 are flat since the
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length of the algebra is constant. Questions 2 and 3 use the Zariski
topology on the scheme Slalg(kn, 1) or Hilb" Ar respectively (see
later). When k = C or R, we let 2’a, 3’a, etc. denote the same

questions as 2a, 3a, etc. but with the complex or real topology on the
parameter schemes. We’ll say B is a 1-parameter deformation of A in
the complex topology if there is a 1-parameter flat family of algebras
A(t) with A(O) = A, and with A(t) = B f or t in a punctured neighbor-
hood of 0. We’ll say B is a déformation of A (in the complex
topology; or "deformation of A in the extended sense" in the Zariski
topology) if every neighborhood of the point parametrizing A
contains a point parametrizing an algebra isomorphic to B. We claim
1 i ~ 2’ i =&#x3E; 3’i, for i = a, b, c. Since the Zariski topology is weaker than
the complex or real topology, "yes" to 2a (using the extended sense
of deformation) implies "yes" to 2’a or 3’a. To be precise, geometric-
ally the algebra A(T) over K(T) is a deformation of A(O) if A[T] is
flat over k[T], the polynomial ring in one variable. This is the sense of
Note 2, and of the deformation k(T)[X]/(Xn - T) of k[X]IXn found
in §1.1. What we prove about the algebras A of sections 2.2 and 3.2 is
that every irreducible Zariski open W in the parameter variety
Slalg(k", 1) or in Hilb" Ar containing a point z parametrizing the
algebra A is such that the geometric points of an open in W

parametrize only local algebras, of the same type and kind as the
algebra A. Thus A has no deformations (not even infinitesimally) to
algebras of type or kind different than A, in any of the senses above.
Thus, for these algebras the answers to questions 2c and 3c are "no";
likewise they are counterexamples to questions 2’c, 3’c, and lc.
We now discuss the relation of questions 1 and 3’. A finite mapping

germ F: Cr’ to Cm is given by its local algebra, a quotient A =
k[xi, ..., x,,Ill plus generators f1, ..., fm of the ideal I defining A.
There is always a stable map germ having its local algebra isomorphic
to a given algebra; deformations of stable germs are themselves

stable, and right-left equivalence of stable germs is the same as

isomorphism of their local algebras. A small 1-parameter deformation
of the stable germ F to F(t) = f 1(t), ..., fm(t) (where t E an open U

containing C or R), satisfying the condition that for all t E U - 0, the
algebra A(T) = k[x1, ..., xr,]/(fl(t),..., fm(t)) has length n, in fact in-
duces a flat deformation of the quotient A to A(t), since constant
length is a criterion of flatness. The deformation of A to A(t) is

parametrized by an arc in Hilbn k[xl, ..., xr,], because of the universal
property of Hilbn. Conversely, a flat 1-parameter deformation of I to

I(t) will satisfy I(t) = (f 1(t), ..., fm(t» for t in some neighborhood of
0 (see [Tjurina]). We have merely noted that 1-parameter defor-
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mations of A can be recognized by what happens to a fixed set of
generators of the ideal I defining A as a quotient of k[xl,. ..., xr,]. This
suffices to show question 1 =&#x3E; question 3’.
We now compare questions 2 and 3. We first define the first of two

schemes, Slalg(k-, 1) and Hilb" Ar which we use, and show they are
equivalent from the standpoint of our deformation questions. Choose
an element "1" = vl of the vector space k", and chose a complemen-
tary basis V2,..., vn to vl. An associative commutative (hence
semilocal) algebra with underlying vector space kn and identity "1" is
defined by a multiplication law vivj = 1’=" CijsVs with ci. E k. The cijs
must satisfy certain polynomial conditions, such as Cijs = Cjis, which

define the subscheme Slalg(k", 1) of affine n3 3 space in the variables

Xijs. We let LalgT(k’, 1) be the subscheme parametrizing Artin local
algebras of type T = to, t,, ..., with to = 1 and n == 1 ti. We now give a
well-known lemma, showing that the minimal number of generators of
A is semicontinuous on Slalg(k", 1).

LEMMA A 1: If A(zo) is the algebra parametrized b y zo E Slalg(kB 1),
and has generators XI,..., x, E kn, then XI,..., x, generate all k-al-

gebras A(z) parametrized by points of an open set U containing zo.

PROOF: Suppose 1, u,, ..., un-i are a set of monomials in XI, ..., x,
which span A(zo). Then they are linearly independent and if 1,
U1(Z), ..., Un-1(Z) denote the same monomial functions of Xi, - - x, in

A(z), these monomials are linearly independent in an open neighbor-
hood U of zo in Slalg(k n 1). For points z E U, the monomials are
independent, hence they span k" and Xi, - -, xr generate A(z). ·

With the notation above, suppose A(zo)= k[Xi, ...,Xr]/I cor-

responds to the point wo of Hilbn Air = Hilbn(Symm E) with E =

Xi, xr. Then if U is the neighborhood of lemma A.1, by the universal
property of 1-lilb nAr r there is a morphism ir: U---&#x3E;Hilb n lA, r given by
A(z) ~ k[XI,..., Xr]/I(z) where I(z) is the ideal of polynomials that are
0 when evaluated at x,, ..., xr in A(z).

COROLLARY A2: The morphism ir is surjective onto a neighborhood
of wo in Hilb" Ar, and is an open morphism on U.

PROOF: Clearly 7r is surjective into the locus of prime ideals I

where the intersection l n(l, Mi,..., un-1) = 0, or the locus of prime
ideals where n sections (1, 0,..., 0),..., (0,..., 0, un-i) of the rank n

locally free sheaf (C ® C - - - EB C) remain independent; this locus is an
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open neighborhood of Wo. It follows also that the image of an open
subset U’ of U is open. ·

The equivalence of questions 2 and 3 follows from the Lemma Al and
its Corollary.
We now consider local algebras of type T and compare the dimen-

sions of LalgT(kn, 1) and ZT = Hilbÿ R parametrizing type T quotient
algebras of the power series ring R = k[[X,, ..., Xr]]. By dimension of
the scheme X at the point x, noted dim(X, je) we mean inf(dim UI U a
neighborhood of x), where dim U is the dimension of the largest
component of U. We will use the notation (X, x) to denote a small

neighborhood of x in X. We let F denote a filtration kn =

Fo D Fi D ... D Fn = 0 compatible with the type T : thus t; =

#F;-#E+i. We let Lalg(k", 1, F) parametrize local algebras on kn
with maximal ideal m = Fi such that m = Fi. The following lemma is
self-évident.

LEMMA A3: Suppose Zo E Lalg(kn, 1,F) parametrizes the algebra
A(zo),e generated by XI,..., xr; and that Wo parametrizes the cor-

responding point of ZT,e and that U’ = U nLalg(kn, 1, F) where Ue is
the neighborhood of Lemma A1 . Then the morphism 7r: U’ - w( U’) is
a fibration. If w E ’TT(U’) parametrizes the quotient B = R/I then the

fibre ’TT-1(W) parametrizes vector space isomorphisms of B to kn,

taking 1 to 1, X; to x;, and preserving the filtration by taking mi B to Fi.

We can now compare the dimension of the family of local algebras
of type T, in the two parametrizations.

PROPOSITION A4: Suppose Zo is a point of LalgT(kn, 1) parametriz-
ing the algebra A(zo) of type T = (1, r, t2, ..., 0, 0, 0, ...) and having
generators xi, ..., xr; and suppose Wo is the corresponding point of
ZT = HilbT R. Then dim(LalgT(kn, 1), zo) = dim(ZT, wo) + (n - r)(n - 1).

PROOF: The difference (dim(LalgT(kn, 1), zo) - dim(ZT, wo» is the

sum of the dimension of the fibre of U’ over ( U’), and the dimension
of the family of filtrations on k" near the filtration induced by A(zo).
An isomorphism as in Lemma A3 from B to kn preserving the

filtration is an isomorphism mapping a complementary space Ei to
F;+1 in F;, to F;, hence

dim of fibre
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To choose a filtration, we may begin by choosing the smallest piece
Fs, then choosing successively the image of FS-1 in k"/FS, ..., the
image of Fi in kn/F2. The d-dimensional subspaces of a b-dimensional
vector space are parametrized by the Grassman variety Grass(d, b),
of dimension d(b - d ) as a variety. Thus the dimension of the variety
giving filtrations on kn, is

dim(Filtrations)

The sum of the two contributions to the difference in dimensions is

We let Triv C Slalg(k", 1) parametrize trivial algebras on k" with
fixed identity, in other words algebras isomorphic to k E9 ... E9 k. We
note that the dimension dim(Triv)= n(n - 1). For, such a trivial al-

gebra is uniquely determined by the choice of n different 1-dimen-
sional subspaces V1, ..., Vn of k" (such that no proper sum of them
contains 1); given such a decomposition of k", we may write 1 = ~ Ài,

Ai E Vi, and the multiplication law of the resulting algebra is deter-

mined by ÀiÀj = à;jA;. On the other hand, the dimension of the open W
in Hilb" Ar r parametrizing nonsingular subschemes of Ar, is m, the

number of ways of choosing n distinct points in affine r-space. We
regard R as the completed local ring at the origin of Ar. We con-

jecture that dim«Hilb nR) n W) =? (n - 1)(r - 1), but can conclude

from our discussion the weaker result

PROPOSITION A5: The dimension dim«Hilb nR) rl W)  (rn - r).

PROOF: The closure Triv is a component of Slalg(k n 1), having
dimension n2 - n. Trivial algebras of length more than 1 have no

deformations to local algebras, so the intersection (Triv fl Lalg(kn, 1))
is a proper closed subscheme of Triv and has dimension smaller than

(n2- n). We conclude from Lemmas Al, A4, and Corollary A2 that if
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T is a type with t, = r, then

or that dim(ZT f1 W)  r(n - 1).

We now suppose r &#x3E; r’ and T = (1, r’, t2, ...) ; we consider ZT
parametrizing ideals of type T in R, and ZT parametrizing ideals of
type T in R’ = k[[Xi, ..., Xr,]]. If the ideals I and I’ of type T in R
and R’ respectively, satisfy I fl R’ = l’, and correspond to the points
z, z’ of ZT and ZT, then we claim

From the claim, and from the first part of the proof, we would
conclude dim(ZT, z)  (r’(n - 1) + (r - r’)(n - 1)) = r(n - 1), which is

the assertion of the Proposition.

PROOF OF CLAIM: The variables XI,..., Xr, generate the algebra
A = R/I, and will continue to generate algebras near A. Suppose
1, u,, ..., un-i are monomials in X¡, ..., Xr- spanning algebras near A.
An ideal J in R near I, such that J has type T and J fl R’ = J’, is such
that J’ also has type T, and there are constants ais E k, with r’ i  r
and 1 :5 S  n - 1, such that

Conversely, an ideal J’ of type T in R’, and an arbitrary set of

constants als determine as above an ideal J of type T in R. It is now

easy to verify that the mapping J --&#x3E; J’ induces a morphism (ZT, z) to
(ZT, z’) with fibre an affine space of dimension (r - r’)(n - 1). This

proves the claim and completes the proof of the Proposition. ~
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