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IMMERSED SURFACES WITH CONSTANT

CURVATURE NEAR INFINITY

David D. Bleecker

1. Introduction. The Theorem

In Tilla Klotz Milnor’s articles [3], [4] and [5], the following
conjecture of John Milnor is discussed. Throughout the present work,
we assume M is a connected, complete surface, C4 immersed in Eucl-
idean space (E3). Consider the following statements:

A. The Gaussian curvature K of M is locally constant outside a
compact subset of M.

B. The sum of the squares of the principal curvatures of M is
bounded away from zero on M.

C. M has no umbilic points.
D. K changes sign on M or K = 0 on M.
E. f M K dM = 0.

CONJECTURE (John Milnor): B and C imply D.

THEOREM: A, B, and C imply E.

Note that E implies D. In fact, by Cohn-Vossen’s Theorem ([1] and

[2]), namely that f M K dM:5 21TX(M), D implies X(M) ~ 0 and M is

homeomorphic to a plane, cylinder or mobius strip if M is noncom-

pact. We need not concern ourselves with the case where M is

compact, since both the Conjecture and Theorem are well known in

that case. We also have the following:

COROLLARY: If X(M)  0, then A and B imply M has an umbilic

point.
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PROOF: By Cohn-Vossen’s Theorem f M K dM  0. However, A, B
and C imply f M K dM = 0. Hence C is false. D

Other corollaries are obtained analogously. We also see that the
Theorem is a generalization of Hilbert’s Theorem that K~ c for

c  0. Unfortunately, while the conclusion of the Theorem is stronger
than that of Milnor’s Conjecture, so is the hypothesis.

2. Lemmas

Because of hypothesis C, it is natural to consider the line fields

obtained from the principal directions on M. A technical difficulty is
encountered if these are not orientable (i.e., they are not generated by
a global vector field). Hence we prove

LEMMA 1: Given a line field L on M, there is a double covering
p : M - M, such that L defined by p *(L) = L is orientable.

PROOF: Let M = {X E TM : X E L and IIXII = 1}. If 77-: TM - M is

the tangent bundle projection, then ’TT 1 M: M - M is a double cover-
ing. The evenly covered neighborhoods are just open sets over which
TM is trivial. Now L on M is generated by the vector field X defined

by (’TTIM)*(Xx) == X. D

First we may assume that M is orientable, for if the Theorem is
true for orientable M, then for a nonorientable M with (orientable)
Riemannian double cover M, f M K dM = 0 implies f M K dM = 0. So
henceforth, M is orientable, and we have well-defined principal
curvature functions KI and K2 relative to a choice of unit normal. Let
Li and L2 be the line fields given by the principal directions asso-
ciated to KI and K2, respectively.

In Lemmas 2 through 9 we assume that M is finitely connected.
Then it is well known that M is homeomorphic to Mo - {Pl, ..., Pn}
where Mo is a compact surface. Let e: PMo ---&#x3E;Mo be the circle bundle
obtained from the unit circle bundle of Mo (relative to some Rieman-
nian metric on Mo) by identifying each unit vector with its antipode.
We can define the index of LI about pi, denoted LI(Pi) in a way

analogous to defining indices of vector fields about singularities (or
zeros). Thus we obtain 1,~=1 LI(pi) == 2X(MO), the factor of 2 coming
from the antipodal identification. Note that clearly L1(p;) = L2(pi). We
will prove LI(Pi) ~ 2, 1 ~ i  n, using A and B, thus obtaining 2n ::5
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~ni=i LI(pi) = 2X(Mo) or 0  X(Mo) - n = X(M) and then we need only
consider M which are homeomorphic to the plane if the cylinder.

LEMMA 2: A, B and C imply

PROOF: Since i is fixed, drop the index i. Let {3 be a simple, closed
noncontractible piecewise smooth curve in the punctured disk T

about p (the point at infinity) with non-smooth corners v1, ..., vm (in
cyclic order) so that between consecutive corners {3 is an integral
curve of Li or L2. We assume that m, the number of corners, is

minimal subject to these conditions on {3. Now Q bounds a punctured
disk about p, say D. We call vK positive if the exterior angle of the
polygon D at vK is positive (i.e., 7T/2) and otherwise vK is called

negative. Let P be the number of positive corners and N the number
of negative corners (N = m - P). One can check that L1(p) ==
2 + (N - P)/2. Thus Li(p) ~ 2 if N &#x3E; P. Assume P &#x3E; N. Now if N = 0

then P is even, since LI(p) is an integer. Thus (P,N)=(2,0) is a

possibility, but in all other cases P + N ± 4. Let us handle the case
(P, N) = (0, 2) later. Now P + N ~ 4 and P &#x3E; N implies that there is a
string of corners, say vl, ..., v4 such that V2 and V3 are positive. Thus,
we have the situation in Figure 1.

Fig. 1.

Cover the compact segment v2v3 with a finite number of coordinate

rectangles whose coordinate curves are lines of curvature. For a

sufficiently small E, the lines parallel to V2V3 and issuing from points
on v1v2 within E of V2 run through all the rectangles and meet V3V4. We
therefore obtain a coordinate rectangle with base V2V3, by taking V2 to
correspond to the origin and V2V3 to correspond to part of the positive
x-axis in such a way that V2V3 is parameterized by the variable x with
unit speed and the subsegment of v2v l of length e starting at v2
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corresponding to part of the positive y-axis with y parameterizing the
subsegment with unit speed. (Here it should be noted that in general
not all the coordinate curves are parameterized by arclength since this
would imply K ~ 0.) We call such a coordinate rectangle (with base
V2V3 and left and right sides being subsegments of VIV2 and V3V4

respectively) a special coordinate system (scs). Let R be the maximal
scs, (i.e., R is the union of all the scs’s). We shall prove that vi or v4 is
a top corner of R. Thus D - R will be a region bounded by a curve {3’
of fewer sides than {3, contradicting the minimality assumption on (3.

Let e(yo) be the length of the coordinate curve of R given by
y = yo. If we assume t(y) is bounded (this will be proved in Lemma
3), then we can prove that either vi or v4 is a top corner of R : Let
b = sup(y (0, y) Cz RI. Let the sequence (bi) be chosen such that

bi &#x3E; 0, bi i b and e(bi) ---&#x3E; 5 E R (recall we are assuming e(y) is boun-
ded). Let (0, b ) denote the point on v1v2 which is a distance b from V2,
and identify the points of R with their coordinates. Define a unit
vector field on M equal to a/ax on V2V3 generating the line field which
is tangent to V2V3 (we may have to lift the whole situation to M of

Lemma 1). Now since M is complete, this vector field defines a flow
0: M x R ~ M. Now 0 is continuous and since (bi,O)---&#x3E;(b,O)
and t(bi)---&#x3E;&#x26;, we have limi-(,e(O),bi)=Iimi-.,O«O,bi), é(bi»=

4&#x3E;(limi-oo(O, bi), limi-.,e(bi»=O«O,b),&#x26;). Now limi_oo(t(O), bi) is a

point on V3V4 and 0«0, b), S) is the endpoint of the line of curvature
of length 6 issuing from (b, 0) into D. By covering this curve by a
finite number of small rectangles as before, we get an extension of R
(a contradiction) unless (b, 0) = V2 or 0«0, b), S) = v4 (i.e., v, or v4 are

corners of R). In either case the curve y(t) = 0«0, b), t) 0  t:5 S

bypasses V2 and V3 and introduces at most one new corner, contradic-
ting the minimality of /3. Thus assuming e(y) is bounded, our original
assumption that (P, N) ~ (2, 0) and P &#x3E; N is false. Before proving
e(y) is bounded, let us handle the case (P, N) = (2, 0). Here L1(p) is 3.
It is clear that for Li to be orientable on T we must have L1(p) even.
Thus, Li is not orientable on T. Let T be the two fold cover of T as
in Lemma 1. Then taking vi to be the beginning (and end) of the loop
{3, we can lift {3 + {3 to a simple closed noncontractible curve 8 (easily
verified). Now Q has four positive vertices which by the preceding
argument must be vertices of a coordinate rectangle bounded by 03B2
which is impossible since 8 is noncontractible. The next lemma

completes the proof. D

LEMMA 3: The function e(y) in the proof of Lemma 2 is bounded.
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PROOF: First note that a (the constant Gaussian curvature of M in

T) is not positive, since if q E D is a point of distance greater than
’TTa -1/2 from 8, then by a familiar result there is no length minimizing
geodesic from q to {3, contradicting the completeness of M. Now in
the coordinate rectangle R the metric of M is given by E dX2 + G dy2.
Let KI be the principal curvature for the y = constant curves, etc.
Then, the Codazzi-Mainardi equations of embedding and Gauss equ-
ation are:

If a # 0, then these equations yield the explicit expressions for E
and G :

where C(x) = (K 2(X@ 1 0) - a) and D(y) = (K2(o, y) -a) are chosen in

order that E(x, 0) = G(0, y) = 1.
Let Co = maxIC(x): 0  x  e(0)1. We compute a bound for l(y) as

follows:

If a = 0 and KI # 0, then we have E = C(x)K1-2 and l(y) 
t(O)[ Col b ]1/2 since K1 + K2 = K 1 &#x3E; b &#x3E; 0. If 03B1 = 0 and Ki=0, then
E~ 1, and t(y) ~ t(O). In any case t(y) is bounded. This concludes
the proofs of Lemmas 2 and 3. D

By the remarks preceding the statement of Lemma 2, we now have
that A, B, and C imply X(M)&#x3E;0 and hence M is homeomorphic to
R2 or a cylinder.
Going back to the proofs of Lemmas 2 and 3, one might wonder

whether {3 can have any positive corners at all. In fact we have

LEMMA 4: The curve {3 defined in the proof of Lemma 2 has no
positive corners unless N = P = 1.
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PROOF: We know from the proof of Lemma 2, that N &#x3E; P and no

two positive corners occur consecutively. Thus if there is a positive
corner, it is flanked by two negative corners or N = P = 1. In the first
case we have the following situation illustrated in Figure 2.

Fig. 2.

The integral curve w (dashed) is the extension of the side ouf 8
containing v, as shown. We prove that m stays in D. If m leaves D, w-
(the part of o) between v, and the next time it meets 03B2) will divide D
into two subregions, one of which "contains" p say D’. Now D’ has
no more sides than D. In fact D’ will have fewer sides than D if the

end of ii does not lie on V1V2 (the end of &#x26; cannot lie on the remaining
side of 03B2 containing vl, since then oi would have a self intersection

whence oi would be a closed orbit and would have to circle p and give
a contradiction to (3 minimality). Now the end of o-) cannot lie on VI V2,
say at q, since qV1 + 03C9 would circle p because integral curves of Li
and L2 cannot intersect twice in a simply connected region (readily
verified). Now qV1 + 03C9 has only two corners and 8 has at least two
corners by assumption. Thus qvl + w is minimal and has two positive
corners at v, and q which is impossible. Thus D’ has fewer sides than
D which is a contradiction and so oi stays in D. The same reasoning
applies to a shown in Figure 2. Consider special coordinate systems
with base v1v2 and sides being subsegments of a and m. Using the
same reasoning as in Lemmas 2 and 3 and the fact that m has infinite
length, we get a maximal scs, R, with V3 as an upper corner. However
the top edge of R is a, so a intersects cv and D - R is bounded by a
curve with fewer sides than 03B2. D

LEMMA 5: Let the punctured disk T (in M) about p (a point at
infinity) have constant negative curvature a. Then T has finite area.
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PROOF: It is convenient to introduce coordinate systems with the

lines x = constant and y = constant being asymptotic lines. These

systems are the classical Tchebycheff nets. If the curvature is con-

stant the metric in a suitable coordinate system of this type is dx2 +
2 cos p(x, y) dx dy + dY2 where p(x, y) is a function ranging between 0
and ir, and is in fact the angle between the asymptotic directions. The
Gaussian curvature a is given by -a2p/ax ay = a sin p. Hence the
total curvature of a rectangle satisfies:

This says any rectangle in asymptotic coordinates has total curvature
less than 27r in magnitude. Taking limits, an asymptotic half-plane or
quarter-plane has finite total curvature, and since K = a is constant,
finite area. Now, we can find a simple closed noncontractible piece-
wise smooth curve Q in T such that each smooth piece of 03B2 is an

asymptotic segment. Let us assume (3 has a minimal number of

corners. Again it is possible to prove that there do not exist con-
secutive positive corners as in the proofs of Lemmas 2 and 3. In fact
here e(y) is constant. The only difficulty in making the proofs go
through in this case is that the unit vector field generating the flow ça

on M does not exist in general since the asymptotic lines are not
global if M has points of non-negative curvature. However, inside T
(or T of Lemma 1) there is no difficulty and we simply extend the
vector field to the rest of M and note that the integral curves of the
vector field are asymptotic lines while they are in T, which is really all
we need. Now we cover the open region D, bounded by {3, by a finite
number of closed asymptotic half or quarter planes in the following
fashion: Each side of {3 is flanked by two negative corners or a
negative and a positive. In the former case we take as an element of
our cover, the half-plane with the side contained in the boundary of
the half-plane and extending into D. In the latter case, we take the
quarter-plane with corner at the positive vertex and extending into D.
Thus we have a finite set U of plane sections-one for each side of {3.
We wish to show U is a cover of D. Now (U U) rl D is closed since U
consists of a finite number of closed sets, and (U U) rl D is open since

(U U) fl D = (U U’) f1 D, where U’ consists of the plane sections in U
without their boundaries, since we note that each bounding ray or line
of a plane section once it enters D is contained in the interior of a

flanking section. Thus, (U U) f1 D is open and closed in D, and hence
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D connected implies U U = D. Since each element of U has a finite
area, D has finite area and T has finite area. n

COROLLARY: If M is finitely connected and has locally constant
negative curvature outside a compact set, then f M K dM = 27rX (M).

PROOF: We have shown that M must have finite area, and Huber [2]
has shown that the Gauss-Bonnet formula holds in this case. D

Thus we have the Theorem in the case where M is homeomorphic
to a cylinder with locally constant negative curvature outside a

compact. We must prove the following Lemma 5, to handle the case
of M homeomorphic to R2.

LEMMA 6: If M is homeomorphic to the plane and has constant
negative curvature outside a compact set, then M has an umbilic

point.

PROOF: There is only one point p at infinity, and so the index of L,
about p is four. Thus N - P = 4 by the formula before Lemma 2.
Now the index of an asymptotic line field A defined in T about p is

also four, since A is homotopic to LI. Now Lemma 4 is also valid if
the line fields on T are the asymptotic line fields (the proof goes
through easily). Hence N = 4, P = 0. Consider the compact region
R C 1R2 bounded by a minimal, four-sided curve j8 with sides being
asymptotic line segments. By the previous corollary, we know
f M K dM == 21T. Since K is negative outside R, we then have

f R K dM &#x3E; 21T. Let us assume that R is chosen large enough so that
there is a neighborhood U of {3 in which the curvature is a negative
constant. Let Ai and A2 be the asymptotic line fields in U and let p,
(0  p  1T), be the positive oriented angle from Alto A2. Let

{3 , ..., Q4 be the oriented sides of {3 (i.e., 6 = /3i + ... + Q4 where we
parametrize 8 so that R lies to the left as we traverse (3). Suppose
that AI is tangent to {31. If we select a Tchebycheff net in U about
some point of /3i with {31 being the y = 0 curve parameterized with
unit speed by x, the metric takes the form dX2 + 2 cos p dx dy + dy2,
and after some computation we find that the geodesic curvature of {31 1
is -ap(x, 0)/ax inside the net. Since this can be done at each point of

{31 we get that the geodesic curvature function along /3i is k,(s) =
- dp({31(S »/ds where "s" denotes arclength. Thus the total geodesic
curvature of (31 is P(X1) - p(x2) where xl is the initial point of {31 and X2
is the end point of {31. The geodesic curvature along {32 is given by
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dp(,82(S»Ids. Here, there is no minus sign since the positive oriented
angle from L2 to Ll is ir - p. Thus the total geodesic curvature of (32 is
P(X3) - P(X2), and we find that:

where xl, ..., x4 are corners of i3 as shown in Figure 3.

Fig. 3.

The sum of the exterior angles of {3 is

Let us define 5 = p(x2) + P(X4) - p(x3) - p(xi). Then:

Hence by the Gauss-Bonnet formula fR K dM - 203B4 + S + 27r = 2w and
so &#x26; = fR K dM &#x3E; 27r and 1,1.,,Ei &#x3E; 47r, but Ei  7r so 111=,,Ei  41r, a
contradiction. D

We now consider the case where T about p (at infinity) has

curvature 0.

LEMMA 7: If T about p has curvature 0, then B and C imply that
the sides of {3 are geodesics.

PROOF: Suppose Ki (Ki &#x3E; 0) is the non-zero principle curvature,
and Li is the line field associated to Ki. Consider a coordinate system
with Li tangent to y = constant curves and L2 tangent to x = constant
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curves. In general, the metric will be given by E dx2 + G dy’ where
E = C(X)K¡2 and G = D(y) (see proof of Lemma 3). Let us choose
C(x) == D(x) -- 1. The Gauss equation says (where H = 1/EG)

or

or

Thus K11 = f(x)y + g(x) or K1 = (f (x)y + g(x))-1 for some functions
f and g. Now consider a minimal curve /3 in T, and an integral curve y
of L2 entering D (the punctured disk bounded by (3) from a point on a
side of (3 which is an integral curve of Li. We prove y cannot leave
D. If (3 is a closed orbit of L,, then if y leaves D, y divides D into
two components, one of which is simply connected, but integral
curves of L and L2 cannot intersect twice in a simply connected set.
Thus y cannot leave D in this case. Since Li(p) is an integer, if /3 is

not a closed orbit, 03B2 must have at least two sides. Now if y leaves D

through the side where it (y) started, then either y plus the asymp-
totic segment between the endpoints of y forms a minimal {3 with two
positive corners (a contradiction) or we have two integral curves
intersecting twice in a simply connected set (a contradiction). Now y
cannot leave through any side of {3 adjacent to the side it enters since
these are also integral curves of L2. Thus y bypasses at least two
corners of {3 and hence y divides D into D’ and D", both having
boundaries with no more sides than D. One of these, say D’, "con-
tains" p, and has a positive corner at the initial point of y. Thus D’
has only two corners by Lemma 4, and so {3 has two sides, but we
have shown that y cannot leave through either of these. So we have
in general that y cannot leave D.
From the relation Ki = (f (x)y + g(X»-l we get that the limit of Ki

along y (parameterized by y) is 0 if f(x) ~ 0. However, KI&#x3E; Yb&#x3E; 0
by B, thus f (x) = 0 on any side of {3 which is an integral curve of LI.
Thus KI is constant on y, and aK tI ay = 0 along a side with Li
tangents. A simple calculation now reveals that the sides of 0 are
geodesics. D
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LEMMA 8: If M has zero curvature outside a compact set, then B
and C imply f MK dM = 0.

PROOF: Let the punctured disks, with curvature zero, about the
points at infinity by Ti,..., Tn. In each Ti we choose a minimal curve
{3i. Now the {3i (i = 1,..., n) bound a compact region R of M, outside
of which the curvature is zero, thus f M K dM = f R K dM. The Gauss-
Bonnet formula yields fR K dM + IR = 2wX(M) where IR is the sum
of all the exterior angles of R. Note that the geodesic curvature term
is zero by Lemma 7. However, IR = 2ir(N - P) where N is the total
number of negative corners of the punctured Di bounded by the {3i,
etc. Thus, as in the proof of Lemma 2,

Hence,

LEMMA 9: If M is finitely connected, then A, B, and C imply
fMKdM=0.

PROOF: We know from the remark after the proof of Lemma 3,
that M is homeomorphic to 1R2 or a cylinder. Now R2 has only one
point at infinity, and so M has constant non-positive outside a

compact set in this case, and the Corollary to Lemma 5, Lemma 6 and
Lemma 8 imply Lemma 9 for M = R2 or M homeomorphic to a
cylinder with negative or zero curvature outside a compact set, but
not both.

Remaining is the case where M is homeomorphic to a cylinder
where the curvature is zero in Tl and negative in T2. We know

L(p1) &#x3E; 2 and L(P2) ~ 2, by Lemma 2, and L(p1) + L(P2) = 4. Hence
L(p 1) = L(p2) = 2. Since T2 has finite area by Lemma 5, we can use
the strong form of Huber’s Theorem ([2]), that f M K dM = 21rX(M)
for M of finite area, which says that we can find a sequence of simple
non-contractible closed curves in T2 tending to P2 such that the total
geodesic curvature and exterior angle contributions go to 0. Now in
Tl of zero curvature, a minimal curve (3 has geodesic sides by Lemma
7, and the sum of the exterior angle contribution is !1T(N - P) as in
Lemma 8. However, L(p1) = 2 implies N - P = 0. Thus combining
this result for Tl and Huber’s result for T2, we get fMK dA = 0 for M

homeomorphic to a cylinder. D
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To conclude, we have the following to handle the case where M is
infinitely connected.

LEMMA 10: A and C imply that M is not infinitely connected.

PROOF: We can exhaust M by an increasing sequence of compact
subsurfaces Sn with a finite number, depending on n, of smooth

closed bounding curves each bounding one component of M - Sn.
Now n may be chosen large enough so that M - Sn has constant
curvature in each component Ti. In each Ti we define a minimal curve

{3i as before, only we require that 8i be homotopic to the boundary of
Ti. In this case we can still prove that 8i cannot have consecutive

positive corners (see proofs of Lemmas 2 and 3). Hence as in the proof
of Lemma 5 we can show that if Ti has constant negative curvature, then
the total curvature of Ti is finite. Now since each of the Ti (finite in

number) has either negative or zero constant curvature, we get that M
has finite total curvature. However, Huber [2] proves that for M

infinitely connected f M K dM = -00. 0

This completes the proof of the Theorem.

3. Conclusion

Now, although Milnor’s conjecture in its full generality seems
difficult enough to deal with, 1 would like to introduce the following
stronger conjecture:

CONJECTURE: C and D imply that M can be exhausted by an
increasing sequence of compact subsurfaces with boundaries such
that the total curvatures of the subsurfaces tend to 0.

REFERENCES

[1] D. BLEECKER: The Gauss-Bonnet Inequality and Almost Geodesic Loops.
Advances in Mathematics, 14 (1974) 183-193.

[2] A. HUBER: On Subharmonic Functions and Differential Geometry in the Large.
Comment. Math. Helv. 32 (1957-1958) 13-72.

[3] T. KLOTZ and R. OSSERMANN: Complete Surfaces in E3 with Constant Mean
Curvature. Comment. Math. Helv. 41 (1966-1967) 313-318.



143

[4] T. MILNOR: Efimov’s Theorem About Complete Immersed Surfaces of Negative
Curvature. Advances in Mathematics 8 (1972) 474-543.

[5] T. MILNOR: Some Restrictions on the Smooth Immersion of Complete Surfaces in
E3, Contributions to Analysis (A Collection of Papers Dedicated to Lipman Bers),
Academic Press, (1974) 313-323.

(Oblatum 3-XI-1976) Department of Mathematics
University of Hawaii
Honolulu, Hawaii 96822


