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P-DIVISION POINTS ON CERTAIN ELLIPTIC CURVES

Kuang-yen Shih*

1. Introduction

Let p be an odd prime, E = (_1)(p-l)/2@ and k = Q(B/,Ep). Consider an
elliptic curve E defined over k. Adjoin to k the x-coordinates of the
points of order p on E and denote the resulting field by Fp (E), or
simply Fp. It is known (see [7, 6.1]) that Fp is a Galois extension of k
and Gal(Fplk) can be identified with a subgroup of GZ.(Z/pZ)/{±l2},
where

Note that if Gal(F,/k) is the whole G’Z(Z/pZ)/{±l2}, then Fp contains
a subfield F normal over the quadratic field k such that Gal(F/k) is
isomorphic to PSL2(Z/p Z). One purpose of this paper is to discuss
some conditions on E under which Fp(E) contains a subfield K

normal over the rational number field Q so that Gal(K/Q) is isomor-
phic to PSL2(Z/pZ).
Denote the non-trivial automorphism of k by or. Suppose there are a

quadratic non-residue N modulo p, and an N-cyclic isogeny À of E to
its conjugate EU such that

(1.1) C = ker À is rational over k, and

Here E(N) stands for the group of N-division points on E. The
existence of such À implies that Fp is not only normal over k, but also
over Q. This will be proved in §2. We also determine the Galois group
Gal(Fp/Q). We show in particular that Gal(F,/Q) is a group extension
of PSL2(Z/pZ) if
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Using the theory of arithmetic automorphic functions, we con-
structed in [5] Galois extensions over Q with PSL2(Z/p Z) as Galois
groups for a certain family of primes p. In §3, we show that the above
result serves as a modular interpretation of this construction. We

work out some numerical examples in §4.
Careful consideration of the generic case enables us to write down

general equations with Galois group PSL2(Z/pZ) for small p’s. In §5,
we carry this out for p = 5, 7, 11 and 13 in the fashion of Fricke [2].

2. The Galois group Gal(F(pn)/Q)

Let E be an elliptic curve defined over k = Q(Vep) and À an

N-isogeny of E to EU satisfying conditions (1.1) and (1.2). We further
assume that Aut(E) = {±id.}. Take a non-zero holomorphic differential
cv on E rational over k. Then

for some s E C. (See [8, §10] for similar discussion.) For T E

Aut(C/k), À-: E ---&#x3E; E’ is an isogeny, and by (1.1), ker A’ = C. In view
of the assumption Aut(E) = {±id.}, this shows A T = ±À. Hence s’ = s
or -s, depending on whether 03BB T = À or -A. It follows that À is defined
over k(s), and [k(s) : k] = 1 or 2.
Now let T be an automorphism of C such that T = a on k. From

(2.1) we have w -,k’ = sT03C903C3 Hence

Observe that 03BB T À has E(N) = ker(N - id.) as its kernel. In fact, by
(1.2) we have

Since the degree of À’ o,k is N2, this proves our assertion. Therefore
À’ o À = ±N . id. By (2.2), we have

From this we see that s does not belong to k, for otherwise (2.3)
would imply that N is a quadratic residue modulo p. Therefore

[k(s) : k] = 2. Especially, À is not defined over k.
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Note that s has exactly four conjugates over Q, namely, s, -s, N/s
and -N/s. Hence k(s) is normal over Q and Gal(k(s)/Q) is isomorphic
to the Klein four-group. We use o-i (resp. 03C32) to denote the element of

Gal(k(s)/Q) which sends s to -s (resp. N/s). The restriction of 03C3i

(resp. U2) to k is id. (resp. o-).
Let

be an affine equation of E. Then the canonical function h on E is
defined to be

Let E(p") be the group of p n-division points on E. Then

is a Galois extension of k. Fix tl, t2 E E(pn) so that E(pn) = zt, + Zt2.
Then we can define an injective homomorphism 0 of Gal(F(pn)/k)
into GL2(Z/pnZ)/{j:12}, as in [7, 6.1]. For TE Gal(F(pn)/k), ~(T) is

represented by the integral matrix a such that

It is known that the field F(pn) contains the cyclotomic field Q(C),
03B6 = exp(21ri/p"). If a E M2(Z) represents 0(t), T E Gal(F(pn)/k), then
yT = (deta, see [7, prop. 6.3]. Since T = id. on k = Q(Vep), we see that
det a is a quadratic residue modulo p n. Therefore G, the image of ~,
is contained in G’L*(Z/p"Z)/{±Î2}, where

GL(Z/pnZ) = {a E GL2(Z/pnz)ldet a is a square in (Z/pnZ)x}.

Let E’ = EU, h’ the canonical function on E’, and

Obviously the composite F(pn)F’(pn) is normal over Q. We show that
F(pn) = F’(p n), so F(pn) is a Galois extension of Q. Let T be an

automorphism of C which induces the identity map on F(p n). Then
we have
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Put tÍ = À(tt) and t2 = À(t2). Then E’(pn) = ZtÍ + Zt2. As observed
earlier, 03BBT = À or -À. Using this we see easily that

In other words, T induces the identity map on F’(p n). So F’(pn) is a
subfield of F(pn). Similarly, F(pn) is a subfield of F’(p n). Hence
F(p n) = F’(pn).
Thus F(p") is a Galois extension of Q. Identify Gal(F(p")/k) with

the subgroup

of Gal(F(pn)/Q), and denote the non-trivial coset of A by B. An
element p of Gal(F(p n)/Q) belongs to B if and only if p = 03C3 on k. Let

ti , t2 E E(p n) and tÍ, t2 E E’(p n) be as above. Then for p E B we have

for some (3 E M2(Z).

PROPOSITION 1: The determinant of 03B2 is a quadratic residue modulo
p n.

PROOF: Let e (resp. e’) be the Weil pairing [7, 4.3] on E(p n ) x E(pn)
(resp. E’(pn) x E’(pn». Then 03B6 = e(tl, t2) is a primitive p n-th root of
unity. We have

Since p = u on k and N is a quadratic non-residue modulo p, we
conclude that det (3 is a quadratic residue modulo p n.

Let 03C8(p) be the element of GL(Z/pnZ)/{±l2} represented by {3.
Then Q is a well-defined one-to-one map from B to

GLt(Z/pZ)/(± l). The image G’ of tp is a coset of G. (It can happen
that G’ = G.) Obviously we have



117

for T, T’ E A and p E B. And it is not hard to see that

for p, p’ E {3, using the fact that À 8 0 À = ±lV, where &#x26; is any

automorphism of C extending p.
Let Gl be the set consisting of all (IL, 1) with i£ E G and (g’, a) with

g’E G’. Introduce a group structure on G, by employing the follow-
ing multiplication table:

The above argument shows that Gal(F(pn)/Q) is isomorphic to G1.
Define a homomorphism X of G, to PSL2(Z/P"Z) by

Denote by D the subgroup of G’Z(Z/p"Z)/{±l2} consisting of ele-
ments represented by scalar matrices. Then the kernel of X is

Let K be the subfield of F(pn) corresponding to ker x. By Galois

theory, K is normal over Q and Gal(K/Q) is isomorphic to the

subgroup x( G1) of PSL2(Z/pnZ).

Now assume G = GLt(Z/p Z)/(± l). Then G’ = G and X(G1) =
PSL2(Z/pnz). Hence we have

THEOREM 2: Let notation be as above. If Gal(F(pn)/k) is isomor-

phic to the full G’L*2(Z/p"Z)/{±l2}, then F(p n ) contains a subfield K
normal over Q such that Gal(K!Q) is isomorphic to PSL2(Z!pnZ).
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3. The twisted modular curve Xo(N)

Let H = {z E ci Im(z) &#x3E; O} be the complex upper half plane. The
group

acts on H by fractional linear transformations. For a natural number

M, let fm be the field of modular functions of level M on H whose
Fourier expansions with respect to qM = exp(27riz/M) have

coefficients in the cyclotomic field Q(Cm), Cm = exp(21ri/M). Put F =
U §M= FM.
Let GL2(A) be the adelization of GL2 and GL+2(A) the subgroup of

GL2(A) consisting of elements whose components at infinity belong to
GL2(R). The group GL2(A) acts on F as a group of automorphisms in
the way described in [7, 6.6]. The image of f E f¥ under x E GL2(A)
will be denoted by f’.
Denote by Ze the ring of e-adic integers. Put

Then U is a locally compact open subgroup of GL2(A). For a natural
number M, let UM be the subgroup of U consisting of those a = (ae)
such that ae = 12(mod M . M2(Ze)) for all finite t. By [7, (6.6.3)], FM is
the subfield of F fixed by SM = QX . UM. The field Fl is generated
over Q by the modular invariant j.
Let N be a positive integer. Denote by 03C9N the element of GL2(A)

whose component at a rational prime dividing N is [ 0 -1 1 lIN] and atwh ose component at a rational prime ivid ing N is 
-1 0 0 |’ 

and at

all other places the identity matrix 12. Note that 03C9N can be decom-

posed as x .  03B1, where x E U and 03B1 =| 

-1 0 
E GL+2(Q). Therefore

03C9N maps FM into FMN. When (M, N) = 1, the Fourier coefficients of

f E FM and f03C9N E FMN are related as follows.

PROPOSITION 3: Suppose (M, N) = 1. Let

be the Fourier expansion of f E FM. Then

where u denotes the automorphism of Q(Cm) that sends (M to 03B6NM.
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PROOF: Let

Then x = (xl) E U and

Hence it is sufficient to show

For a E M-1Z2, ~ Z2, define f a as in [7, 6.1]. Then the f a’s together
with the modular invariant j generate FM over Q, see [7, prop. 6.9].
The Fourier coefficients of fa’s are known explicitly, and those of j
are rational. For these generating functions, (3.1) can be verified in a
straightforward way. Therefore (3.1) holds for all f E Jm. Q.E.D.

Now let jM be the modular function of level M defined by jm(z) =
j(Mz). The field i%M = Q(j, jm) is the fixed subfield of TM = QX . U M,
where

If (M, N) = 1, then wN’TmNwN = TMN and 03C92NE TMN. Therefore, wN
induces an involution on LMN. Actually, this is exactly the Atkin-
Lehner involution WN on YmN: i --&#x3E; jN, jM ~~ imN. This follows from

Proposition 3, or more directly, from the observation 03C9NwNl E TMN.

PROPOSITION 4: For every M relatively prime to N, úJN induces the
Atkin-Lehner involution WN on Q(j, jMN).

Now take M = p n, and assume that N is a quadratic non-residue
modulo p. Then mN induces the non-trivial automorphism cr on
k = Q(Vep). Let £mN (resp. LN) be the subfield of k5tMN (resp. k5tN)
fixed by IWN. Then Q is algebraically closed in if MN and in ifN.
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Let Xo(N) (resp. Xo(N)) be a projective non-singular curve over Q
whose function field over Q is isomorphic to YN (resp. LN). Then
both Xo(N) and Xo(N) are models of the quotient of H by the
congruence subgroup

Let WN be the involution of Xo(N) induced by the involution

z*--&#x3E;-IlNz of H. This WN corresponds to the involution wN on YN-
Now ’;N is the fixed subfield of kLN = kYN under OJN. Therefore, by a
well-known fact (see [7, Appendix 6] for example), there is a bira-
tional biregular map f/1 of Xo(N) to Xo(N) over k such that 03C803C3 0 03C8-1 =
WN. As before a stands for the non-trivial automorphism of k. We

have the following proposition, which is just a rephrasing of [5,
Lemma 9].

PROPOSITION 5: A point x of Xo(N) is rational over Q if and only if
y = 03C8(x) E Xa(N) is rational over k and y’ = WN(y).

COROLLARY. There is no Q-rational cusps on Xo(N).

PROOF: Suppose s E Xo(N) is a Q-rational cusp. Then by Proposi-
tion 5, t = f/1(s) is rational over k. Since all cusps of Xo(N) are rational
over Q(CN), t is rational over Q. However, we have t" = WN(t).
Therefore WN(t) = t, i.e. the cusp t of Xo(N) is a fixed point of WN.
But this is not the case, see for example [3, prop. 3]. Q.E.D.

Now any non-cusp k-rational point y of Xo(N) is represented by a
pair (E, C) consisting of an elliptic curve E defined over k and a
k-rational cyclic subgroup C of E of order N. If y is so represented,
then WN(y) is represented by (EIC, E(N)/C). Therefore, by Prop. 5
and its Corollary, any Q-rational point of Xo(N) is represented by a
k-rational pair such that (E’, CU) is isomorphic to (E/C, E(N)/C). For
such (E, C), there is an isogeny À of E to EU with kernel C such that
A(E(N)) = C’. Then k satisfies (1.1) and (1.2). In the following, we
shall call a pair (E, À) rational over k and of type (N) if E is an

elliptic curve over k and À is an isogeny of E to EU with properties
(1.1) and (1.2). We state the above observation as the first part of the

following:

THEOREM 6: Every Q-rational point of Xo(N) is represented by a
k-rational pair (E, À) of type (N). Conversely, every such pair
represents a Q-rational point of Xo(N).
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The converse part of the theorem can be proved by reversing the
above argument.

Let x be a Q-rational point of Xo(N) represented by (E, À). Con-
struct the algebraic number field F(p N) from E as in §2. Choose a
point zo E H which is projected to x. Consider the Galois extension
FMLN (M = pn) of k5tN. Under the specialization f --&#x3E; f (zo), FMLN
(resp. 5tN) is specialized to F(pn) (resp. k). Hence FM0Nlk0N is

specialized to F(pn)lk. Now

Hence in view of Hilbert’s irreducibility theorem, we have the fol-
lowing :

THEOREM 7: Suppose Xo(N) is a rational curve. Then there are

infinitely many k-rational pairs (E,À) of type (N) satisfying the

condition Gal(F(pn)/k) ~ GLt(ZlpZ)/(±l). Here k denotes the

quadratic field Q(N/,Ép).

The situation under which Xo(N) is a rational curve was given as
table (4.4) in [5]. Especially, we know that Xo(N) is rational when

N = 2, 3 or 7. Combining this with Theorems 2 and 7, we obtained the
main result of [5]: If p is an odd prime such that 2, 3, or 7 is a

quadratic non-residue modulo p, then PSL2(Z/pnZ), n ? 1, can be
realized as the Galois group of some Galois extension over Q. In the
following section, we give some examples of pairs (E, 03BB) that generate
such extensions.

REMARK 1. The Galois group Gal(FMLNlLN) is isomorphic to G, of
§2 with G = GLt(ZlpZ)1(±l). This can be justified as follows.

Firstly, the subgroup Gal(FMLN/kLN) is isomorphic to G, see (3.2).
Secondly, the restriction &#x26; of mN to FMLN is in the center of

Gal(FMLNILN). And thirdly, S2 = N - 12 under the identification (3.2).
The extension FMLNlLN is specialized to an extension of the form
F(pn)/Q when the functions in FMLN are evaluated at a rational point
of Xo(N).

REMARK 2: We discuss briefly the case where the genus of Xo(N)
is 1. Under this condition, it is known [2] that 5tN is generated over Q
by two functions or and T with defining equation cT2 = f(T), where

f(x) E Q[x] is of degree 4. Furthermore, wN fixes T and changes the

sign of a. Therefore the twist itN of i%N over k = Q(%/Ep) is generated
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over Q by x = T and y = (Ep )-1/203C3, with the defining equation Epy2 ==
f (x). So Xo(N) is exactly the twisted curve of Birch investigated in
[1]. As in [1], we see from the zeta-function of Xo(N) that the Birch
and Swinnerton-Dyer conjecture predicts that there are infinitely
many rational points on Xo(N) if p - 1 (mod 4). In other words, there
should be infinitely many k-rational pairs (E, À) of type (N) in view of
Theorem 6. It would be interesting to know whether such pairs
actually exist, and if exist, whether any of them satisfies (1.3).

4. Numerical examples

For each N such that Xo(N) is a rational curve, 5tN is generated by
a Hauptmodul TN such that its image under wN is cNlrN for some
rational integer cN. Put

Then LN = Q(s, t) and S2 _ Ept2 =CN- It follows that 2N is pure

transcendental over Q if and only if eN is the norm of some element
from k. This gives another proof of [5, Prop. 11].
Suppose iÙN is pure transcendental over Q, and let a, b E Q be such

that a2 - Epb2 = cN. Then

generates 2N over Q. Express j E ItN = Q(TN) in terms of TN. Solving
TN in terms of xN from (4.1), we see that every rational value of xN
gives rise to a value of j in k = Q(Y Ep). Let E be an elliptic curve
defined over k with this value as its j-invariant. Then there is an

isogeny À such that (E, À) is of type (N). Conversely, all pairs of type
(N) are obtained this way. For a given (E, À), we can check whether
(1.3) is satisfied using the method of [4] and [6]. The following
examples are obtained by this procedure.

1°. p = 5, N = 2. Denote the fundamental unit (1 + V5)/2 of Q(v5)
by u. Let

The discriminant of E is 4 = 33u 14 and the j-invariant is
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By [2, page 394], j E Y2 = Q(T2) has the expression

Hence jE = j(T2) with T2 = (3 + V5-)1(3 - V/5). This value of T2 cor-

responds to x2 = 3. Therefore, there is an isogeny À of E to EU such
that (E,À) is of type (2).
We show that the Galois group G = Gal(F(5)/Q(V5)) is the full

G’L*2(Z/5Z)/{±l2}. Reduce E modulo the prime ideal t=(6-V5) of
norm n = 31. Let A be the number of rational points on the reduced
curve E modulo 1 and t = 1 + n - A. Then we have A = 34, t = -2
and t2 - 4n = 5 . (-24). In view of [6, Lemma 1], the order of G is
divisible by 5. By [4, prop. 15], G either contains PSL2(Z/SZ) or is
contained in a Borel subgroup. The second possibility can be ruled
out by looking at the curve E reduced module 1 = (4 + V5). The norm
of 1 is n = 11, the number of rational points on the reduced curve is
A = 16. Hence t = 1 + n - A = -4 and t2 - 4n = -28. Since -28 is a

quadratic non-residue modulo 5, G is not contained in a Borel

subgroup. So G must contain PSL2(Z/SZ). On the other hand F(5)
contains Q(03B65). Hence the image of G under the determinant map is
the full subgroup of quadratic residues. This shows G=

M(Z/5Z)/{±l2}.

2° p = 5, N = 3. Consider the curve

defined over Q(N/5) with discriminant -2433(1 + YS)2. The j-invariant
of E is

which can be written as

Hence by [2, page 395], there is an isogeny À of E to EU such that
(E,À) is of type (3).
The Galois group G = Gal(F(5)/Q(V5)) in this case is a Borel

subgroup. In fact, we have
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u being the fundamental unit of Q(V5). Hence, in view of [2, page
399], E has a Q(V5)-rational subgroup of order 5. This shows G is
contained in a Borel subgroup B. We see that G is actually equal to B

using the following table. (Notation: 1 = a prime ideal of Q(V5),
n = norm of 1, A = number of rational points on E reduced mod r,
and t = 1 + n - A.)

Let K/Q be the subextension of F(5)/Q considered at the end of § 1.
Then Gal(K/Q) is isomorphic to the subgroup

of PSL2(Z/5Z).

An elliptic curve over Q(V-7) with this j-invariant is

The discriminant of E is 243311 (2 + 1/-7)2. From the way we con-
struct E we see that there is an isogeny À such that (E, A) is of type
(3). We can show that Gal(F(7)IQ(1/-7)) = GLt(Z17Z)1(± l) using the
following data and reasoning as in example 1°.
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Then

and

with T2 == (X2 + 2Y -19)/(x2 - 2V -19), x2 = 3. Therefore there is an

isogeny À such that (E, À) is of type (2). We have the following table:

Since -56 is a quadratic residue modulo 19, -28 a quadratic non-
residue, and (-4)2/11 --- -2(mod 19), we see that (1.3) holds in view of
[4, prop. 19].

5? p = 29, N = 2. Let u = (5 + V29)/2 be the fundamental unit of
Q(N/29). Consider

Then d = - 335u6(u - 1), and jE = 2633/5u3(u - 1), which can be written
as

Hence there is an isogeny À of E to EU such that (E, À) is of type (2).
We have the following table:

By [4, prop. 19], we see that Gal(F(29)/Q(Y29» ’= GLt(Z129Z)/(± 12).
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5. Equations of degree 6, 8, 12 and 14

Let M = pn and N a quadratic non-residue modulo p. Then the
Galois group of the Galois closure of 2MN over LN is isomorphic to
PSL2(Z/pnZ). We are interested in the equation of the extension
2MN/2N when 2N is pure transcendental over Q. We consider the

following cases in this section: (M, N) = (5, 2), (7, 3), (11, 2) and

(13,2).

1° (M, N) = (5, 2). Let T2 (resp. T5, T) be the Hauptmodul for ro(2)
(resp. ro(5), To(10)). We have the following identities from [2, p.

407-408]:

From the same source, we know that W2 permutes T2 with 1/T2 and TS
with T2(2T + 5)/(T + 2)2. It follows that

Therefore both

and

are invariant under úJ2, hence belong to ’;’10. Actually, -Iîio = Q(s, t).
We have 5s2 - t2 = -20. Hence 210 = Q(y) with

Put

Then L2 = Q(x).
To find an equation for the extension Q(y)/Q(x), solve T in terms of

y from (5.2):
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Substituting (5.4) in (5.1) and then (5.1) in (5.3), we obtain

This is an equation in y over Q(x) with PSL2(Z/SZ) as Galois group.

where q is the Dedekind function. Then Q(T) is the subfield of I£21
fixed by W21. We have TW3 = lIT. Therefore

is fixed by W3, and hence belongs to îll. The field Q(y) has index 2 in
Y21.

Let r3 be the Hauptmodul for FO(3). Put

Then L3 = Q(x) and L21= Q(x, y).
Solve T in terms of y and T3 in terms of x. Then an equation for

Q(x, y)/Q(x) can be obtained from the modular equation connecting T
and T3. To obtain such a modular equation, we follow Fricke’s

method.

Note that T3 21 = T61T3. Therefore the function T(T3 + T6/T3) is in-

variant under w21, hence belongs to Q(T). Counting poles and zeros,
we find the function is a polynomial of degree 8 in T. The comparison
of the Fourier coefficients gives us

Then T generates the subfield of I£22 fixed by wl l, and TW2 = lIT. As

before, we find 22 = Q(x) and L22 = Q(x, y), where
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The equation for Q(x, y)/Q(x ) can be obtained from the modular

equation

4? (M,N) = (13, 2). This case is similar to case 2°. The subfield of

Y26 fixed by W26 is generated by

We have T"’2 = 1/T. Proceeding as before, we find 22 == Q(x), and
226 = Q(x, y), where

The modular equation relating T2 and T is

Solving T2 in terms of x and T in terms of y, and substituting the
results in the above modular equation, we obtain an equation of

degree 14 in y over Q(x) which admits PSL2(Z/13Z) as Galois group.

REMARK 1: Our method depends on the fact that, for each of the
above (M, N), Xo(MN) modulo a certain Atkin-Lehner involution is a
rational curve. In view of Ogg’s result [3], the above 4 examples
exhaust all interesting cases that can be so treated.

REMARK 2: The modular equation in 2° is equivalent to

33(T3/T3 +r’lr3) = T4 - 14T3 + 45T2 + 66 T - 250, T = T + 1I T.

Note that T is the Hauptmodul for the group generated by To(21), W3
and W7. Similarly, the modular equations in 3° and 4° are equivalent to

respectively
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