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FIBERING HILBERT CUBE MANIFOLDS OVER ANRs

T.A. Chapman and Steve Ferry

1. Introduction

By a Q-manifold we will mean a separable metric manifold
modeled on the Hilbert cube Q. Let f: M—> B be a map of a
Q-manifold to an ANR. In this paper we will be concerned with the
following question: Does f fiber, i.e. is f homotopic to the projection
map of a fiber bundle M — B with fiber a Q-manifold? In general it is
not true that f fibers. For example, a constant map Q— S' does not
fiber. In Theorem 1 below we treat the [0, 1)-stable case in which f
always fibers, while Theorems 3-7 indicate some of the problems one
encounters in the compact cases.

Theorem 1 is not terribly surprising. It is an extension of the well
known result that Q manifolds which have the form M X [0, 1) are
homeomorphic if and only if they are homotopy equivalent (see [3,
Chapter V]).

THEOREM 1: If f: M - B is a map of a Q-manifold to a locally

proj f
compact ANR, then the composition M X [0,1)—— M—— B fibers.

Of course, there is an analogue of this result for l,-manifolds, where
[, is separable infinite-dimensional Hilbert space.

THEOREM 2: If f: M > B is a map of an l,-manifold to a topolo-
gically complete separable metric ANR, then f fibers.

In the compact cases below we immediately encounter obstructions
to repeating the proofs of Theorems 1 and 2. By making enough
connectivity assumptions so that these obstructions vanish, we obtain
the following result. See §2 for a review of the undefined terms.
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8 T.A. Chapman and S. Ferry 2]

THEOREM 3: Let f: M - B be a map of a compact Q-manifold to a
compact, connected ANR B which is simple homotopy equivalent to a
finite n-complex. If the homotopy fiber %(f) of f is homotopy
equivalent to a finite n-connected complex K, then there is an obs-
truction in the Whitehead group Wh (M) which vanishes iff f fibers.
Moreover, if n =1 we only need assume that Wh 7 (K)=0, and if
n =2 we only need assume that K is 1-connected.

As a special case of Theorem 3 we obtain an infinite-dimensional
version of Casson’s fibering theorem [2].

COROLLARY: If M — S? is a map of a compact Q-manifold to S*
such that #(f) is homotopy equivalent to a finite 1-connected complex,
then f fibers.

In Theorems 4-7 we specialize to the cases in which the base B is
homotopy equivalent to a wedge of 1-spheres. The main tool is given in
Theorem 4 and the main result is given in Theorem 5.

THEOREM 4: Let (4, p, B) be a Hurewicz fibration such that B is a
compact ANR homotopy equivalent to a wedge of n 1-spheres and the
fiber F is homotopy equivalent to a finite connected complex. Then &
is fiber homotopy equivalent to a compact Q-manifold fiber bundle
over B iff an obstruction lying in a quotient of the direct sum of n
copies of Wh m(F) vanishes. Given that this obstruction vanishes,
there is a 1-1 correspondence between simple equivalence classes of
such bundles and a quotient of a subgroup of Wh = (F).

For an explanation of the last sentence in the above statement we
refer the reader to §5.

THEOREM 5: Let f: M — B be a map of a compact Q-manifold to a
compact ANR which is homotopy equivalent to a wedge of n 1-
spheres and assume that the homotopy fiber %(f) is homotopy
equivalent to a finite connected complex. There are two obstructions to
f fibering. The first one lies in a quotient of the direct sum of n copies
of Wh m,%(f). If this obstruction vanishes, the second one is defined
and lies in a quotient of Wh m(M).

In Theorem 6 we treat the special case of Theorem 5 in which B is
homotopy equivalent to S'. Here the situation is considerably sim-
plified and what we obtain is an infinite-dimensional version of
Farrell’s fibering theorem [10].
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THEOREM 6. Let f: M - B be a map of a compact Q-manifold to a
compact ANR which is homotopy equivalent to S' and for which the
homotopy fiber F(f) is homotopy equivalent to a finite connected
complex. There are two obstructions to f fibering. They are in-
dependently defined and both lie in Wh 7 (M).

We remark that one of the obstructions obtained here is just
Farrell’s obstruction for the finite-dimensional case, but the infinite-
dimensional nature of the problem requires another obstruction.

Finally, in Theorem 7 we classify equivalence classes of Q-mani-
fold fiber bundle projections over nice ANRs.

THEOREM 7: Let f, fi: M - B be homotopic compact Q-manifold
fiber bundle projections, where B is a compact ANR homotopy
equivalent to a wedge of n 1-spheres, and let F be the connected fiber
of f: M - B. There are two obstructions to finding a homeomorphism
h: M - M such that fh = f, and h is homotopic to the identity. The
first lies in Wh m(F), and if it vanishes the second is defined and lies
in a quotient of the direct sum of n copies of P(F).

Here 2 (F) is the group of all isotopy classes of homeomorphisms
of F to itself which are homotopic to the identity. It is a quotient of
7y of the concordance group of F, which has been algebraically
investigated by [12]. See §2 for further details.

We now say a few words about the organization of the material in
this paper. §2 contains some preliminary results and in §3 we prove
Theorems 1 and 2. In §§4-8 we prove Theorems 3-7. In §9 we prove a
result (Theorem 8) which calculates the kernel of a certain map of
Whitehead groups. This generalizes a result of Farrell [9]. Theorem 8
may be paraphrased as follows. Let (&, p, B) be a Hurewicz fibration,
where B is a finite wedge of 1-spheres and the fiber F has the
homotopy type of a finite complex. If i is the inclusion map i: F& €,
then Theorem 8 computes the kernel of

ix: Whm(F)—>Wh 7(%).

The constructions in §9 are made more geometric by replacing € with
a finite “‘wedge” of mapping tori.
2. Preliminaries

If p: E->B is a map and B,C B, we use E IBI to denote p~'(B))
and we let E, = p~'(b), for each b € B. If p’: E'— B is another map,
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then f: E—>E' is said to be fiber preserving (f.p.) provided that
f(E,) = Ej}, for each b € B. The restriction of f to E, is denoted by
fo: Ex—>E},. A f.p. map f: E->E’ is said to be a fiber homotopy
equivalence (f.h.e.) if there exists a f.p. map g: E'— E such that fg
and gf are f.p. homotopic to their respective identities. We will
abbreviate ordinary homotopy equivalence by h.e.

If f: E~ B is any map, where B is path connected, then we define

&(f)={(e, ) EEX B’ | f(e) = w(0)}

(B' is the space of paths in B.) Define p: €(f)—> B by p(e, w) = w(1).
p: €(f)— B is the mapping path fibration of f: E— B. There is a h.e.
g: E— &(f) such that pg = f. For any b, € B, the fiber of €(f) over b,
is

F(f)=p (bo) = {(e, w) | f(€) = 0(0), w(1) = by}.

%(f) is called the homotopy fiber of f: E— B.

The following result will be used several times in the sequel. For a
proof see [8] for the case in which B is a countable complex and see
[14] for the general case.

THEOREM 2.1: Let p: E—> B, p': E'=> B be Hurewicz fibrations,
where B is a connected ANR, and let h: E— E’' be a f.p. map such
that hy: Ey,—> E}, is a h.e., for some by&€ B. Then h is a f.h.e.

The above result gives us the following useful theorem.

THEOREM 2.2: Let p: E—> B, p': E'=> B be Hurewicz fibrations,
where E, B and all the fibers have the homotopy types of countable
complexes. If f: E— E' is a h.e. such that p'f = p, then f is homotopic
to a f.he.

PROOF: Assume that B is connected and choose by E B, ¢, € E,,
The condition p'f =p gives us a homotopy H: E X I - B such that
Hy=p and H, = p'f. Lifting H we get a homotopy H: E x I - E’ for
which H, = f. Then g = Hy: E - E’ is homotopic to f and g is f.p. The
homotopy exact sequences of the two fibrations give us a com-
mutative diagram,

<= me(E, e)) > my1(B, by) - Ta(Eyys €0) = T, (E, €0) = m, (B, bo) > - - -

| 8 }ld ) 8by b g« \1d

co > ma(E' €0) > mai(B, bo) > mi(Ehy, €0) > mu(E', €9) > ma(B, bo)—> - - -
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Here e; = g(ey) and by the five lemma (g | E;)« is a h.e. Then we apply
Theorem 2.1. W

In the sequel we will need a considerable amount of Q-manifold
machinery. Our basic reference for this is [3]. It would be time
consuming to give a complete description of the material from [3]
which we will need, but here is a list of some of the highlights.

1. Z-sets and Z-set unknotting ([3, Theorem 19.4]).

2. The classification theorem for simple equivalences in terms of
homeomorphisms on Q-manifolds ([3, Theorem 38.1]).

3. The triangulation theorem for Q-manifolds ([3, Theorem 36.2]).

4. The ANR theorem, which says that every locally compact ANR
times Q is a Q-manifold ([3, Theorem 44.1]).

It will be convenient to know how to change bases in fibering
problems.

THEOREM 2.3: Consider f: M - B, where M is a compact Q-mani-
fold, and B is a compact ANR, and let g: B—>B' be a simple
equivalence of B to another compact ANR. Then f fibers iff gf fibers.

PRrROOF: Since g:B— B’ is a simple equivalence we have a
homeomorphism B: B X Q— B’'x Q which is homotopic to g X Id.
Choose a homeomorphism a: M X Q—> M homotopic to the pro-
jection map. Assuming that f fibers we have a fiber bundle projection
map p: M — B. It is easy to check that the composition

- pxld roj

M—>MxQ—>BXxQ—>BXQ—B

is a fiber bundle projection homotopic to gf. W

In a similar fashion we can establish the following [0, 1)-stable
result.

THEOREM 2.4: Consider f: M — B, where M is a Q-manifold and B
is a locally compact ANR, and let g: B— B' be a h.e. of B to another
locally compact ANR. Then M x[0,1)2Z%> M—> B fibers iff
M x [0, 1)Z2% M— s B~ B fibers.

Here is a mild generalization of Anderson’s result [1] to fiber
bundles over ANRs. The result is also true for ANR Hurewicz
fibrations over ANRs.

THEOREM 2.5: Let p,: E,— B and p,: E;,—~ B be compact Q-mani-



12 T.A. Chapman and S. Ferry [6]

fold fiber bundles such that B is a compact connected ANR and let
fE,—E, be a f.h.e. If b€ B, then 7(f) = i x(B)7(f | (E1)s,), where
x(B) is the Euler characteristic of B and i is the inclusion (E,)y, S E,,
and 7 denotes Whitehead torsion.

Proor: For the moment assume that B is a finite complex. Choose
any other basepoint b; € B. We will first prove that j.7(f | (EDp) =
ip7(f I (E1),), where j: (E»), & E,. Choose a path o: I - B from b, to
b,. Over w(I) we have trivial bundles. This induces homeomorphisms
a: (E\)y—(E)s, and B:(E,),—(E), so that a is homotopic to
(E)y,© E, and B is homotopic to (E),, < E,. Thus we have a homo-
topy commutative diagram,

(E )y, — (E)),

fle Lrl

(Exlp—> (Edy,

Since 7(a) = 0 and 7(B8) = 0 we have 7(f | (E),) = Bs7(f | (E1)»,). Since
iB=1i we get jur(f | (EDs) = isx7(f | (E)s). Moreover, if A is any
simplex in B we can also prove that r(fI(E,),,O) and 'T(fl(E]IA))
have the same image in Wh ,(E,). This follows because if b, € A,
then we have a homotopy commutative diagram

(E)n S E | A

AN

(E»y, & E |4,
where the inclusions are simple equivalences.

We now begin the proof. Let dim B = n and let B’ be the (n — 1)-
skeleton of B, where by € B’. Then we get restricted fiber bundles
pi: E, | B'->B', pi E, | B'-> B’,

and a f.he f'=f|(E/|B": E/| B'— E,| B. We inductively assume
that 7(f') = (i)« x(B)7(f I (Eve,), Where i': (Ey),, & Ezl B’. Let {A}i,
be the n-simplexes of B. Using the Sum Theorem [6, p. 76] we have

k
(1) = X(BY7S | () + ke (F | (Eon) ~ (2 x(0d)r(f | (Eow)).
i=1
where we have omitted obvious inclusion-induced maps. Since

k
x(B)+k— ; x(84;) = x(B)
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we are done for the case in which B is a finite complex. For the
remainder of the proof we show how to reduce the general case to
this case.

Our first observation is that if B is any compact Q-manifold, then
the above proof goes through. We just replace B by K X Q, for some
finite complex K, and argue inductively over the skeleta of K times
Q. More generally, if we multiply everything by Q we obtain Q-
manifold fiber bundles E; X Q—> B x Q, where B X Q must be a Q-
manifold. We get a f.h.e. fxId: E; X Q- E,x Q. The above special
case implies that

7(f X Id) = (i")x x(B)7((f X ld) | (E1)p, X Q),

where i’ is inclusion. Projecting back to E, we get =(f)=
ixx(B)7(f | (Ey)s,) and we are done. W

COROLLARY 2.6: With p;: E;— B as above let g: E,—~ E, be a map
such that p,g =p, and assume that Wh m((E\)s,) =0. If g is a h.e.,
then g is a simple equivalence.

ProoF: Using Theorem 2.2 we have g =g’, where g’ is a f.h.e.
Then

7(g) = 7(8") = ixx(B)7(g' | (EDy).
and 7(g’' | (E1)s,) € Wh m(Eps, = Wh 7,(E))p, = 0. W

We will also need the notion of a mapping torus. For any com-
pactum X and map ¢: X - X, the mapping torus of ¢ is the com-
pactum

T(e)=X x[0,1]/~,

where ~ is the equivalence relation generated by (x, 0) ~ (¢(x), 1). It
is clear that there is a natural map T(¢)—S' so that each point-
inverse is naturally identified with X.

Finally we introduce the group (M) needed in Theorem 7. For
any compact Q-manifold M let (M) denote the group of isotopy
classes of homeomorphisms of M which are homotopic to the iden-
tity. Here are some facts about ?(M) which appear either explicitly
or implicitly in [4].

1. If M is l-connected, then (M) is trivial.

2. P(S'x Q=28 %P,

3. If Mis h.e. to N, then (M) = ?(N).

4. P(M) is always abelian.
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If h: M > M is a homeomorphism homotopic to the identity, then h
determines an isotopy class of homeomorphisms in ?(M). To save
notation we will identify h with this isotopy class in ?(M). Thus in §8
a statement such as f = g actually means that f is isotopic to g, where
f and g are homeomorphisms homotopic to the identity.

3. Proofs of Theorems 1 and 2

We begin with the proof of Theorem 1. The basic step is the
following result.

LEMMA 3.1: Let N be a Q-manifold, E— S" be a fiber bundle with
fiber N X [0, 1), and let f: S" X N x[0,1)E€ E be a f.h.e. Then f is fiber
homotopic to a homeomorphism.

Proor: Using Theorem 4.1 of [5] there is a f.p. embedding g: S" X
N %[0, 1)— E such that each g,: N x[0,1)— E, is a Z-embedding and
such that g is fiber homotopic to f. Let S$" x N x [0, 1) be identified
with $" X N x [0, 1) x{0} in S" x N X [0, 1) X I. Our strategy is to show
that we have a f.p. homeomorphism of pairs,

(E, g(S" X N X[0,1)=(S"x N x[0,1)XI,S"x N x[0, 1)).

This implies that the inclusion g(S" x N x[0,1))S E is fiber homo-
topic to a homeomorphism, thus completing the proof of our lemma.
Let D" C S" be any n-cell.

ASSERTION: There exists a f.p. homeomorphism of D" X N X
[0,1)x I onto E l D" which agrees with g on D" X N X [0, 1).

PROOF OF ASSERTION: Choose any f.p. homeomorphism a: D" X
N x[0,1)x I - E | D". We must replace a by a’ so that @’ | D" x N x
[0, 1) = g. Consider the f.p. Z-embedding

gi=a 'gi:D"XNXx[0,)>D"x N X[0,1)x 1.

It will suffice to construct a f.p. homeomorphism of D" X N X [0, 1]x I
onto itself which extends g;.

We now use the fact that g, is a f.h.e. Choose any b, € D" and
consider (gi)s: N X[0,1)—> N x[0,1)x I, which is a h.e. It follows
from [3, Theorem 21.2] that there exists aj homeomorphism u: N X
[0, )X T— N Xx[0,1]x I extending (g1)p, Dl:ﬁne g D" X N x[0,1)—>
D" x N x[0,1)x I by (g2)s = (g1)s,, for all b € D". Then g, is a ‘“‘con-
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stant” f.p. Z-embedding. Using the homeomorphism u it is clear that
g extends to a f.p. homeomorphism of D" X N X [0, 1) X I onto itself.
So, to finish, all we need is a f.p. homeomorphism of D" x N x [0, 1) X
I onto itself which composes with g; to give g,.

To see this, let 6,: D" — D" be a homotopy such that 6, = id and
0,(D") = {by}. Then define a f.p. homotopy

B:: D"X N x[0,1)=>D"x N X[0,1)x [T

by (B)s = (g1)ew- Clearly Bo=g; and B, = g,. Moreover, this is a f.p.
proper homotopy. By Theorem 5.1 of [5] we conclude that there
exists a f.p. homeomorphism r of D" x N X [0, 1) X I onto itself such
that rg, = g,. This completes the proof of the assertion.

Now let G be the homeomorphism group #(N x[0,1)X I, N X
[0, 1)), the space of all homeomorphisms of N x[0,1) X I onto itself
which are the identity on N x [0, 1). For each b € S" let @(b) be the
space of all homeomorphisms ¢: N X[0,1)X [ — E, such that ¢ =g,
on N X [0, 1). This makes E— S" into a fiber bundle with structure
group G, which we call a G-bundle (see [16, p. 90]). We will show that
E is trivial as a G-bundle. This will imply that there is a f.p.
homeomorphism of pairs,

(E,g(S"X N x[0,1))=(S"xX N X[0,1)xI,S"x N x[0, 1)),

as was our strategy. To show that E is trivial for all n, all we have to
do is prove that G is contractible.

Choose any h€ G. If f:[0,1) X I - [0, 1) X I is any homeomorphism
which is the identity on [0, 1) X {0}, then it is easy to isotope f to a
homeomorphism f’rel[0, 1) X {0}, where f’ is also the identity on
{0} x I. This same idea easily shows that h is isotopic to h'rel N X
[0, 1), where h' is the identity on N x {0} X I. Using a variation of the
well known Alexander trick define h{ = Id and for 0 =t < 1 define

h,z{ld, on N x[0,t]1x1
! @;lhlﬁot, on N X [t7 ])X I9

where ¢, NX[t,1)XI—> N x[0,1)xI is defined by linearly
homeomorphing [t, 1) to [0, 1). Then h} defines an isotopy of h' to Id
rel(N x {0} < I) U (N x [0, 1)). All of these isotopies depend continu-
ously on h. Thus G is contractible. W

ReMARK: The above method of proof can be used to prove that a
f.h.e. between any two fiber bundles, with fiber N x [0, 1), is fiber
homotopic to a homeomorphism.
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We now use Lemma 3.1 to prove the following result.

LEMMA 3.2: Let € —> B be a Hurewicz fibration over a countable
complex and assume that all the fibers are h.e. to countable com-
plexes. Then € is f.h.e. to a fiber bundle over B with fiber a Q-
manifold.

Proor: Without loss of generality assume that B is connected and
use [3, Theorem 28.1] to choose a Q-manifold N which is h.e. to the
fibers of €— B. We will induct over the n-skeleta of B, B,, to
inductively build our fiber bundle. For n =0 it is clear that & | B, is
f.h.e. to a fiber bundle over B, with fiber N X [0, 1). Passing to the
inductive step assume n =0 and let f;: & | B,—> E, be a f.h.e., where
E,— B, is a fiber bundle with fiber N x [0, 1). We will extend f; to a
fhe f:€ | B,.,— E, where E—>B,,, is a fiber bundle extending
E,— B,. For simplicity of notation we assume that B,,;= B,U A4,
where A is a single (n + 1)-simplex.

By restriction we get a f.h.e. fo: & I A > E, | dA. By Theorem 2.1 it
suffices to extend f, to a f.p. map f.: € lA—)Ez, where E;—> A is a
fiber bundle extending E, | 94 — dA. Since & | 34 is f.h.e. to 34 X N x
[0,1), we may replace & IaA by 4A X N x[0,1) and consider the
following reduction of the problem: If fy: 34 X N x[0,1)—> E, I dd is a
f.h.e., then f, extends to a f.p. map f,: A X N X[0,1)— E,.

To see how this reduction implies the general case choose a f.h.e.
a:AXNX[0,)>&|4, let a=a|ddxNx[0,1), and let
B: & | 34 - 3dA X N x [0, 1) be a fiber homotopy inverse of a,. Given a
f-he fo€|3A—E, |84, we get a f.he. foaoB:€|3A— E,|0A. The
reduction implies that foa, extends, and since B extends it follows
that foaoB extends. Since f, is fiber homotopic to foaeB we conclude
that f, extends.

To verify the reduction we first use Lemma 3.1 to see that f is fiber
homotopic to a homeomorphism a: 94 X N X [0, 1)—> E, | dA. Thus all
we have to do is show how to extend a to a f.p. map a:4 X N X
[0, 1)—> E,. Define

E,=(E,|34)U (4 x N x[0, 1)),

where the attaching is made by a. Then a automatically extends to a
f.p. map of A X N x[0,1) onto E,. W

Finally, we will need the following result.
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LEMMA 3.3: If f: M - B is a map between locally compact ANRs,
where B is connected, then the homotopy fiber of f has the homotopy
type of a countable complex.

Proor: For definiteness choose a basepoint b€ B. Let a: M —
Q x[0,1) be any closed embedding and define f': M - B X Q X [0, 1)
by f' = (f, ). Choose the basepoint b = (b, 0,0) in B x Q X [0, 1) and
consider the homotopy fiber F(f’).

ASSERTION 1: %(f) is h.e. to F(f').

Proor: Define ¢: F(f)—> F(f') by ¢(x,w)=(x, w'), where o' fol-
lows a straight-line path from (f(x), a(x)) to (f(x),0,0)), for 0=t <3,
and for 3=t =<1, ' follows the path w in B x{0}x{0}=B from
(f(x),0,0) to bj. Define ¢: F(f')—> F(f) by ¢¥(x, w)=(x, ®"), where
w"” = projew (proj: Bx Q x[0,1)—> B). We leave it as an easy exer-

cise for the reader to prove that ¢ and ¢ are homotopy inverses.
ASSERTION 2: F(f’) is an ANR.

Proor: Observe that f’ is a closed embedding. Consider the space
2 =(BxQx[0,1),b)""c(BxQx[0,1)),

the space of paths ending at b¢. It follows from [13] that £ is an ANR.
Clearly Z(f') is a closed subset of M X . Choose (x,w)E M X 2
which is close to #(f’). Then we must have w(0) close to f'(x). If they
are sufficiently close, then there is a canonical path in B x Q X [0, 1)
from f'(x) to (0). By composing this canonical path with o we
obtain a new path o' € 2 which starts at f'(x) and ends at bj. Thus
(x, )~ (x, w') defines a retraction r: U — Z(f"), for U some suitable
neighborhood of #(f’) in M X . Therefore F(f’) is an ANR.

Finally, it follows from [15] that the ANR %(f’) has the homotopy
type of a countable complex. W

PROOF OF THEOREM 1: We are given a map f: M — B, where B is a
locally compact ANR. It follows from [15] that B is a h.e. to a
countable complex, and therefore by Theorem 2.4 we may assume
that B is a countable complex. Without loss of generality assume that
B is connected. Let p: € - B be the mapping path fibration with fiber
F(f), and let g: M -> & be a h.e. such that pg = f. Using Lemma 3.2
there is a fiber bundle q: E —» B, with fiber a Q-manifold N, which is
f.h.e. to p: €— B. We therefore obtain a h.e. g': M - E such that
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qg'=f Then g'xid: M x[0,1)—>EXx[0,1) is homotopic to a
homeomorphism h: M X [0, 1)— E x [0, 1) by [3]. Clearly

roj
M x [0, 1)——> EX[0, 1) —>s E—> B
is a fiber bundle projection homotopic to feproj: M x[0,1)>B. B

PrROOF OF THEOREM 2: The machinery we have used for the proof
of Theorem 1 has analogues for l,-manifolds. The knowledgeable
reader can easily supply the details. W

4. Proof of Theorem 3 and its Corollary
For the proof of Theorem 3 we will first need the following result.

LEMMA 4.1: Let N be a compact Q-manifold, E— S" be a fiber
bundle with fiber N, and let f; S" X N - E be a f.h.e. If N is (n+ 1)-
connected, then f is fiber homotopic to a homeomorphism. Moreover,
if n =0 we only need assume that Wh = (N)=0, and if n = 1 we only
need assume that N is 1-connected.

Proor: Following the proof of Lemma 3.1, f is homotopic to a f.p.
Z-embedding g: S" X N - E. It suffices to show that we have a f.p.
homeomorphism of pairs,

(E, g(S"XN))=(S"XNXIS"XN).

If n=0 it follows from the assumption Wh 7 (N)=0 that each
inclusion g,(N)S E, is homotopic to a homeomorphism. Since S" =
{b,, by} this is all we need for our desired f.p. homeomorphism of
pairs.

If n =1 we proceed as in Lemma 3.1 and show that E — S" may be
regarded as a G-bundle, where G is the homeomorphism group
H(N X I, N). All we need to do is show that E— S" is trivial as a
G-bundle. For this it suffices to prove that G is (n — 1)-connected. It
follows from [4] and [11] that 7(G) =0 for N l-connected, and in
general m,_(G)=0 for N (k + 1)-connected. W

LEMMA 4.2: Let €—> B be a Hurewicz fibration over a finite n-
complex and assume that all the fibers are h.e. to a compact Q-
manifold N. If N is n-connected, then & is f.h.e. to a fiber bundle over
B with fiber N. Moreover, if n =1 we only need assume Wh 7 (N) =0,
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and if n =2 we only need assume N to be 1-connected.

Proofr: Using Lemma 4.1 we can prove Lemma 4.2 just as Lemma
3.2 followed from Lemma 3.1. W

PROOF OF THEOREM 3: We are given a map f: M — B, of a com-
pact Q-manifold to a compact, connected ANR B which is simple
equivalent to a finite n-complex. By Theorem 2.3 we may assume that
B is a finite n-complex. Let € — B be the mapping path fibration and
use Lemma 4.2 to conclude that & is f.h.e. to a fiber bundle p: E — B,
whose fiber is a compact Q-manifold. Thus we have a homotopy
equivalence g: E— M such that fg = p. We define our obstruction to
be 7(g) € Wh 7, (M).

To see that 7(g) is well-defined we assume that there is another
such h.e. g,: E;,—> M, where E,— B is a fiber bundle whose fiber is a
compact Q-manifold. It follows from Corollary 2.6 that the torsion of
the composition g ~'g,: E;— E is zero, thus 7(g) = 7(g)).

If 7(g)=0, then g is homotopic to a homeomorphism h: E > M,
and f is therefore homotopic to the bundle projection M *—> E - B.
On the other hand assume that f is homotopic to a bundle projection
M- B. The h.e. g: E-> M must have zero torsion by Corollary

26. W

PROOF OF THE COROLLARY: The homotopy sequence of f: M - B
gives us an exact sequence

ng(f)_)ﬂ'l(M)_)Trl(Sz),

thus 7(M) =0 and Wh 7 (M) =0. This implies that our obstruction
to fibering is zero. W

5. Proof of Theorem 4

We first introduce some notation which will be used throughout this
section. Let € > B represent a Hurewicz fibration, where B is a
compact ANR h.e. to a wedge of n 1-spheres. Choose a basepoint
by € B and assume that &, is h.e. to a finite connected complex. Let
{a;}=; be a collection of maps, a;: (S', *)=>(B, by), such that {[a;]}/-,
freely generates (B, by). Each map «; may be regarded as a map of
(I, 8I) to (B, by), and the homotopy lifting criterion implies that a; can
be covered by a map &: &, X1 —>€ such that (&;),=id. We call
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¢i = (@) €,,— &y, a characteristic map corresponding to a;. It is
well-known that ¢; is a h.e. and its homotopy class is uniquely
determined.

DEFINITION OF THE OBSTRUCTION: Define a homomorphism
0: Wh 7(&,)—>Wh 7(&,) P - - - D Wh m(&,) (n copies)

by sending 7 in Wh 7,(&,,) to ((Id — (¢ 1)), . . ., (Id—(@n)4)7), Where *
as usual indicates induced homomorphisms on Whitehead groups.
Choose any h.e. h of €, to a finite complex K. We define our
obstruction, 0,(%), to be the image of

(hy't(heih™), ..., hy'r(he.h ™)

in Cokernel (6) = Wh 7(%,)® - - - & Wh m,(&,,)/Image (8). (Here h
is a homotopy inverse of h.)

LEMMA 5.1: 0(%) is well defined.

PrOOF: Let g: &, — L be any other h.e. from &, to a finite com-
plex. We must prove that (hy'r(heh™),...,hi'r(he,h™")) and
(gx'7(gpig™), ..., g:'7(geng ")) have the same image in Cokernel ().
Let k: L - K be a h.e. such that kg = h. For each i we have

hy'r(heih ™) = (kg)i'rkgeig 'k ™)
= gy'ky'r(k) + gx'm(gog ™) + (@)xgx'(k™),
where the last equality follows from the formula for the torsion of a

composition (see [6, p. 72]). The same formula gives us 7(k)+
ky7(k™") = 0. Substituting this into the above equation gives us

hy'r(hoh™) = gi'r(gpig ™) — (Id — (¢:)s)gx ' T(k ).

/

(hs'r(heh ™), . .., hyr(heh D)— (g5'T(ge1g ™, . . . ,8%'T(gPng™")

lies in Image (). W

We will need the following classification result.

LEMMA 5.2: Let €~ B and €' — B be Hurewicz fibrations of the
type described at the beginning of this section, with characteristic
maps @i: €py—> &y, and ¢i: €4~ &}, Thena h.e. h: &,,— &}, extends to a
f-h.e. of € onto &' iff h homotopy commutes with all of the charac-
teristic maps, i.e. ¢;h = ho; for each i.
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Proor: This follows immediately from Theorem C of [17]. W

PROOF OF THEOREM 4: The proof naturally splits into two parts.
I. Existence. First assume that € is f.h.e. to a fiber bundle E— B

with fiber a compact Q-manifold. Let {¢;}/=, be the characteristic
maps of E->B.If f: € > E is a f.h.e. and h = f | €,,: ,,— Ey,, then by
Lemma 5.2 we have h = ho;, for each i. Up to simple homotopy type
we may regard E, as a finite complex, so in order to prove that
0,(%) =0 it will certainly suffice to prove that 7(¢;) =0. Since E—~ B
is a fiber bundle its characteristic maps may be chosen to be
homeomorphisms. But homeomorphisms of Q-manifolds are always
simple equivalences.

On the other hand assume that 0,(€) = 0. Then there is a compact
Q-manifold N and a h.e. h: €,,— N such that

0(7) = (hy'T(heih™), ..., hy'T(he.h ™),

for some torsion 7E€ Whm(&,). Thus (Id — (¢;)s)7=hy't(hg:h ™).
Choose a compact Q-manifold M and a h.e. f: N> M such that
7(f) = —fshs(7). Then we calculate (again using the composition for-
mula):

T(fhei(fh)™") = 7(f) + fur(hoih ™) + fuhs(@)shy'v(f )
= _f*h*(“') + f*h*(ld - ((Pi)*)T‘I'f*h*((Pi)*h;If:kl(f*h*(’f))
=0.

Let ¢; = fhei(fh) " M > M and let g: M—>M be any homeomor-
phism homotopic to ¢; (which exists since ¢; has zero torsion).

Let B’ be a wedge of n 1-spheres and let bj be the wedge point. For
each i let T(g;) be the mapping torus of g; and let E’' be the space
formed by sewing the T(g;) together along their common base, M.
Then we have a natural projection p’: E'— B’ so that

(1) E’—= B’ is a fiber bundle with fiber M,

(2) E}; is the common base of the T'(g;),

(3) the characteristic maps of E'— B’ are {g;}i~; (corresponding to

loops ain B').

Let u: B— B’ be a h.e. such that u(by) = by and ua; = a’, for each i.

Form the pull-back, E = {(b, e’)| u(b)=p'(e)}:

E— F
pl lp’

B—5> B
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Then p: E - B is a fiber bundle with fiber M. Since g; = fhe;(fh)' and
since the g; are the characteristic maps of E— B we conclude by
Lemma 5.2 that € is f.h.e. to E. B

II. Classification. Define G to be the subgroup of Wh (&, con-
sisting of all elements T such that (n—1Dr=
(Id—(e)s)mi+ - - +(d — (@n)s)Tn, for torsions 7EWh m(&,). We
prove that the simple equivalence classes of compact Q-manifold
fiber bundles over B which are f.h.e. to € are in 1-1 correspondence
with the quotient group H = Kernel (8)/(Kernel (8) N G), where two
Q-manifold fiber bundles, E,— B and E,— B, are in the same simple
equivalence class if there exists a simple homotopy equivalence from
E, to E, which is also a f.h.e. Choose a fixed compact Q-manifold
fiber bundle E— B and a f.h.e. f: € > E. Choose any other compact
Q-manifold fiber bundle E,— B and f.h.e. f:€—>E, Put h=f | &b,
and h, = f, I &, Then we get a h.e hhi'": (E\)p,— Ep, and a torsion
7(hhi") € Wh 71(Ep,).

ASSERTION 1: hy'r(hhi') € Kernel (6).

Proor: It follows from Lemma 5.2 that (hh;)'= y:(hhi"), for
each i, where the i are the characteristic maps for E— B and the !
are the characteristic maps for E,— B. Since E— B and E,— B are
compact Q-manifold fiber bundles we must have 7(;) = r(¢}) = 0. Thus

m(hhi") = 7(hhy ') = 7(Pihhi") = ()er(hhy ),

or (Id — (y)s)7(hhi") = 0. Since he; = ;h we can easily check that
Id — (¢i)s)hz'T(hhi") = 0. This proves Assertion 1.

We then define R(h;) to be the image of h;'r(hh;") in H. Thus R is
a function from the collection of f.h.e.’s f;: € > E, to the group H.
There are several properties of R which need to be established in
order to finish the proof of Theorem 4.

ASSERTION 2: R is onto.

PRrROOF: Choose any 7 € Kernel (8). Thus (Id — (¢;))7=0 for each i.
Choose a h.e. g of E, to a compact Q-manifold N such that
7(g) = —gxhy(7). (Recall that g: E, >N can be chosen so that
m(g"") = —gz'7(g) € Wh m((E,,) realizes any torsion in Wh m(E,).) A
simple torsion calculation gives us 7(ghe;(gh)')=0. Just as in the
proof of Theorem 4 (Part 1) we can construct a compact Q-manifold
fiber bundle E;— B such that (E)),,= N and a f.h.e. f;: € > E, such
that h.———fllgb(,:gh. Then R(f)) is the image of h;'r(hh;") in H.
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Computing, we have
hyi't(hhi') = hy'T(h(gh)™) = hy'r(g7) = —hi'gi'r(g) = .
This completes Assertion 2.

ASSERTION 3: If f: €—>E, and f,: €—>E, are f.h.e’s of € to
compact Q-manifold fiber bundles, then f.fi': E;—> E, is a simple
equivalence iff R(f,) = R(f»).

PRrROOF: Assume that f,f;' is a simple equivalence. It follows from
Theorem 2.5 that 0= r(fof;") = j«(1 — n)r(h,h;"), where j is the in-
clusion (E,),,> E,. Using Theorem 8 we have

(h)x'(n=1D)7(hahi") = (ld — (@) )T+ - - - + (Id — (@n)s) T,
for torsions 7,EWh 7(€,). Thus (hy)z'n(h:hi') € Kernel ()N G.
Computing, we have
hy't(hhiY)— hi't(hhy ") = 7(hi) = 7(h3") = (hy)x'(hy) + 7(hT")
= (hy)y'1(hshi") € Kernel (8) N G.
This proves that R(h,) = R(h,).

On the other hand assume that R(f;) = R(f,). From the above
calculations we see that (h,);'r(h,h;') € Kernel (8) N G. This implies
that there are torsions 1, . .., 7, € Wh 7((E;)s,) such that

(n—D7(hahi ) = (d — @D+ - -+ (d — (D) )T

where the ¢4 are the characteristic maps for E,— B. It follows from
Theorem 2.5 that 7(fofi")=j«(1—n)r(h,h;'") and it follows from
Theorem 9.1 that

jx(d = (@D )m+ -+ (d = @R )7) =0. W

6. Proof of Theorem 5

We will need some general notation. Let f: M - B be the map
given in the statement of Theorem 4. Let p: € > B be the mapping
path fibration of f: M - B which has fiber #(f) = &, and let g: M > &
be a h.e. such that pg = f.

The First Obstruction. We define our first obstruction to be

O0,(f) = 0,(€) € Cokernel (9),

where 0,(%) was defined in §5. Recall that 0,(f) vanishes iff € is f.h.e.
to a compact Q-manifold fiber bundle.
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PrOOF OF THEOREM 5 (Part I). We show that the vanishing of 0\(f)
is a necessary condition for f to fiber. Assume that f = f’, where f’ is
the projection map of a compact Q-manifold fiber bundle. Then by
Theorem 2.2 we must have g homotopic to a f.h.e. from the bundle
f': M - B to the fibration € - B. Thus 0,(f)=0. W

The Second Obstruction. Assume that 0,(f)=0 and let h: M - E
be a h.e. such that gh = f, where q: E— B is a compact Q-manifold
fiber bundle. Let i be the inclusion map &, & & and define 0x(f) to be
the image of the torsion hy'r(h) in Wh 7 (M)/(1 — n)gs'i, Kernel (9).

LEMMA 6.1: Oy(f) is well-defined.

PrROOF: Let h;: M - E, be an alternate choice for h. We must
prove that

gehy'7(h) — g4(h)s'7(hy) € (1 — n)iy Kernel (6).

Using Theorem 2.2 we see that h,h ™' is homotopic to a f.h.e. a: E -
E,. Thus by Theorem 2.5 we calculate

T(hih™") = 7(h) = (h)hy'r(h) = (1= n)7,

where 7 is the torsion of the h.e. hh™" | E,,. It follows from the proof
of Theorem 4 (Part II) that (Id — (¢;)4)7=0, for each i, where the ;
are the characteristic maps for E;— B. So, multiplying both sides of
the above equation by g.(h,);' we get what we need. H

PROOF OF THEOREM 5 (Part II): Assume that f=f', where f': M -
B is a compact Q-manifold fiber bundle. Since 0y(f) is well-defined
we may choose E =M and h = id. Clearly O,(f) = 0.

On the other hand assume that 0x(f) = 0. This means that h;'r(h) =
g+'(1 = n)ix(7), for some r € Kernel (§). We may write h as g,g, where
g1:€—>E is a f.h.e. Choose a compact Q-manifold N and a h.e.
a: E, — N such that 7(a) = —a,((g1)s)«(7). Calculating we get

m(agia ") = (@) + ax(P)sma™)
= 7(a) — ax()sas'm(a)
= ~‘0‘*((&’1)b(,)axc("') + a*('r/’i)*a;la*((gl)bo)*(ﬂ
= —ag(ld — () 5)((21)5y) (7,
which is zero because 7 & Kernel (6). (Recall that ¢; is a charac-

teristic map for E — B, which must have 0 torsion because it can be
chosen to be a homeomorphism.) Using the proof of Theorem 4 (Part



[19] Fibering Hilbert cube manifolds over ANRs 25

II) we can construct a compact Q-manifold fiber bundle E;— B such
that (E\),,= N and a f.h.e. @: E - E; extending a. Put j: (E)), & E,
and calculate to get

Il

T(@) + (@)+7(818)
= jx(1 = n)7(a) + (&) shsgs'(1— n)is(7)
=—Ju(1- n)a*((gl)bo)*("') + (@)x(g1)x(1—n)iyx(7),

T(ag.g)

which is easily seen to be zero. Thus ag,g: M — E, is homotopic to a
homeomorphism which implies that f is homotopic to a compact
Q-manifold fiber bundle projection. W

7. Proof of Theorem 6

We first introduce some notation for this section. It follows from
Theorem 2.3 that we may replace B by S'. Let p: €—S' be the
mapping path fibration of f: M > S', where F(f) = &,, and let h: M —
& be a fixed h.e. so that ph = f.

We use ¢: F(f)—> F(f) for a characteristic map corresponding to a
choice of a generator for m(S").

The First Obstruction. The first obstruction is just the obstruction
0,(f) of Theorem 5. We must show that the group in which 0:(f) lies
is isomorphic to a subgroup of Wh #,(M). This is the group

Cokernel (8) = Wh =, F(f)/(ld — ¢,) Wh m, % (f).

If i is the inclusion map #(f)S &, then it is shown in Theorem 8
that Kernel (iy) = (Id — ¢4) Wh 71, %(f). Thus Cokernel (#) is isomor-
phic with a subgroup of Wh (€)= Wh 7,(M).

The Second Obstruction. We will need some more notation.
Choose a finite complex K and a h.e. g: #(f)—> K, and let ¢: K> K
be the map gpg . Represent S' by {*™*| 0=t =< 1}, where b, = 1, and
let T(y)— S' be the natural map of the mapping torus to S'. The
fibers of T(4)—> S' are all naturally identified with K.

We leave it as a manageable exercise for the reader to construct a
h.e. a: € > T() such that « | &, =g, a takes & |{e*™|1=t=1} to
T(Y) [{e*™|3=t=1}, and « is f.p. over {¢*™|0=t=3}. We then
define our second obstruction to be

OXf) = hy'ay'r(ah) € Wh 7 (M),

where h: M — € is as chosen above.
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LEMMA 7.1: O)f) is well-defined.

Proor: Let g;: ()~ K., ¥1=giegi', a;: €~ T () be alternate
choices. We must prove that

hi'az'T(ah) = hi'(a))z' (e h),

and for this it suffices to prove that 7(a;a ') = 0. (Just use the formula
for the torsion of a composition.)

We may choose a™' so that a™' takes T(y)|{e*™|3=t=1} to
€ |{e*|3=t=1}and a™' is f.p. over (e |0=t=3}. Write T ()=
AUB and T(¢,) = A, U B,, where

A=T®@W)|{e|0=t=3, A/ =T@)|{"|0=t=<}},
B=TW)|{e™|i=t=1}, B/ =TWW)|{"|i=t=<1}.

Then a,a ' restricts to give h.e.’s of Ato A;, B to B,and AN B to
A;N B,. Using the Sum Theorem for torsion we have

r(aa™) = ar(aja™ I A)+ br(aa”! I B)—cr(a;a”! | ANB),

where a, b and c¢ are inclusion-induced homomorphisms into
Wh = T(¢). It is easy to see that ar(a;a”’ |A)=b’r(oz|0fl IB).
Clearly ANB = K'U K" (two disjoint copies of K) and A;N B, =
KU K7 (two disjoint copies of K;). Computing torsions we get

(@' |ANB)=1(aa ' |K)+ 7(a1a”' | K"),

where we have omitted the necessary inclusion-induced homomor-
phisms. It is easy to see that

cr(aa™! I K)=cr(a)a™ I K" = ar(a;a™ |A),

and therefore 7(a;a”") =0 by the above formula. H

Proor oF THEOREM 6: We first assume that f = f’, where f': M >
S' is the projection map of a compact Q-manifold fiber bundle. It
follows from the proof of Theorem 5 (Part I) that 0,(f)=0. By
Theorem 2.2 we have h = h': M - &, where h' is a f.h.e. Since 04(f) is
well-defined we may choose a: €—->T()=M.to be () E€->M,
where ¢ is a characteristic homeomorphism of the bundle f: M - S'.
Then 7(ah) = 0 and consequently O0xf) =

On the other hand assume that 0,(f) = 0 and 05(f) = 0. Since 0,(f) =
0 we have a f.h.e. a: € > E, where E— S' is a compact Q-manifold
fiber bundle. In the definition of 05(f) we may take T()= E. Then
03(f) = 0 implies that we have 7(ah)=0. Thus ah is homotopic to a
homeomorphism. W
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8. Proof of Theorem 7

We will first need some preliminary results on homotopies. Our
main result is Corollary 8.3.

LeMMA 8.1: With M and B as in the statement of Theorem 7, let
F: M x1—- B be a map such that Fy=F,. Then F = G rel M x{0. 1},
where G: M X I — B is of the form G(m, t) = r.Fy(m), for some homo-
topy r: B X I — B satisfying ry=r, = ld.

ProoF: Let A C B’ be the set of maps a: I —» B such that «(0)=
a(1). There is a natural map p: A - B given by p(a) = a(0). This map
is a fibration. The fiber is a disjoint union of contractible open subsets
(B is a K(, 1) and the fiber is 2B.)

Let A be the space obtained from A by identifying a ~ a'iff « is
homotopic to a’rel {0, 1}. Certainly A is a covering space of B where
the components of A correspond to free homotopy classes of loops
and the sheets in a component correspond to m acting on based
loops. '

There is a natural map (the quotient) g: A - A covering the identity
on B. This map takes components in the fiber of A to points in the
fiber of A in a 1-1 fashion. By Theorem 2.1, q is a f.h.e. and has a
fiber homotopy inverse, q;: A—A. We can therefore find a f.p.
deformation retraction s: A xXI1—>A such that so=1Id and s/(4)=
Q1(A—)-

Each m € M determines a loop in B by m - F,(m), 0=t =< 1. This
defines a map k: M — A such that F,(m) = k(m)(t). Define G: M x [ >
A by G,(m) = s,k(m). Then Go(m)[t] = F.(m), G,(m)[0] = G,(m)[1] =
f(m) and G,(m) is a path depending only on f(m). Defining G,(m) =
G,(m)[t] we have a homotopy from F, to F,. Because G,(m) depends
only on f(m), we can write G,(m) = r.Fy(m), for some r: BxI—> B
satisfying ro=r;=1d. R

ReMARK: The above result is true (with the same proof) for B any
K(m, 1).

LEMMA 8.2: Let us choose B as in Theorem 7 and let r: BXI1—> B
be a homotopy such that ry=r, = ld.

(1) If n=2, then r is homotopic to the constant identity homotopy
rel B x{0, 1}.

2) If n=1, then r is homotopic (rel B x{0,1}) to a ‘“standard
rotation.”
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PROOF: Let B be the universal cover of B and cover r by F: B x
I - B so that 7, = Id. 7, is a deck transformation properly homotopic
to Ild. It is therefore the identity if n=2. Thus, all loops r.(b),
0=t =1, are null-homotopic for n = 2. The component of A contain-
ing the null-homotopic loops covers B trivially. The cover A consists
of disjoint trivial sheets for n =1. Thus an argument similar to
Lemma 8.1 homotopes r to a constant for n =2 and to a ‘“‘standard
rotation” for n=1. (If B=S', a ‘‘standard rotation” is a rotation
through an integral multiple of 360°. For B =S', the homotopy
equivalence defines a standard rotation.) W

COROLLARY 8.3 Let us choose M,B as in Theorem 7 and let
g1, 82: M = B be homotopic maps. Then any two homotopies from g,
to g

(1) are homotopic (rel g, and g») for n =2, and

(2) differ by a ‘‘standard rotation” of B forn = 1.

The First Obstruction. For convenience we will henceforth refer to
the fiber bundle f;: M - B as f;: M;— B. By Theorem 2.2 we see that
ld: M,—> M is homotopic to a f.h.e. g: M,—> M. Choose by E B so that
F = M,,. The first obstruction is 2 (fi) = 7(gs,) € Wh 7,(F), where
8hy: (M), — F.

LEMMA 8.4: P (f)) is well defined.

ProoF: Let g’: M;— M be another f.h.e. homotopic to Id. Both g
and g’ are obtained by lifting homotopies from f; to f. Thus g and g,
depend only on the homotopy class (rel f; and f) of the homotopy
from f, to f. If n =2 we conclude by Corollary 8.3 that g’'=g and
therefore 7(gy,) = 7(gh,)- For n =1 choose a characteristic map ¢: F—
F which is a homeomorphism. By Corollary 8.3 we have g;, = <p"g,,0,
for some k = 0. Computing we get

7(gh) = T(@") + (0")x7(2n) = (¢")s7(2s)-

We showed in the proof of Theorem 4 (Part II) that (Id — ¢,)7(gs,) = 0.
Thus 7(gs,) = 7(g,,). M

The Second Obstruction. Assume that ?(f;) =0. We have 7(g) =
0 and therefore g: (M,)s,—~ F is homotopic to a homeomorphism
g1: (My)p,— F. Choose characteristic maps ¢;: F—> F, 1 =<i=n, where
each ¢, is a homeomorphism. Similarly, choose characteristic maps



[23] Fibering Hilbert cube manifolds over ANRs 29

¢i: Fi> F,, where F,=(M,),, Define 6: ?(F)>P(F)® - --@® P(F)
by

0(h)=(e:'hoih™, ..., 0. he.h ™).

It is easy to check that @ is a homomorphism since P(F) is
abelian. We define 2,(f,) € Cokernel (§) to be the image of
(e1'gwngi's ..., ex'gwgr) In Cokernel (6).

LEMMA 4: Py(f)) is well-defined.

Proor: First assume that n=2. Then all we have to do is show
that if g,: (M)),,—~ F is another homeomorphism homotopic to
8, (M)~ F, then a=(oi'gigi’,....0.'¢1gr") and B=
(¢i'gahig7's - .., ©n'g2g?") have the same image in Cokernel (8). Since
P(F) is abelian it is easy to see that

e 'gaigr ' = (@i (8287 Nei(g281) N 'githigr "),

which implies that Ba ' = 8(g.g1 ).

For n =1 let g,: (M,)s,— F be any homeomorphism homotopic to
©"“gy,- Then we must show that ¢ 'g;¢g; ' and ¢ 'g,ig; ' have the same
image in Cokernel (8). We have just shown above that ¢ 'g,g>! and
¢ (e*g)P(¢*g)) " have the same image. But

e (@' g)Y(e'g) " = 0 (¢ 'gig Dok,

and therefore

(e~ '(@* g)¥(e g e 'givg) ' = ¢ (e 'gide e Ko 'gie )

So it remains to be shown that any element of the form ¢*he *h ™! lies
in Image (@), for h € ?(F). But this follows from interated use of the
formula

qth‘.ofkhvl — [¢(¢k~lh<p‘(kA1))(Pfl((Pk71h(P7(k-l))—l][(pk‘lh‘pf(kfl)hfl]. -

PRrROOF OF THEOREM 7: First assume that there is a f.p. homeomor-
phism h: M,— M such that h = Id. Then g, = h | (M), (M,),—> F is a
homeomorphism and 7(h | (M,),,) = 0. This proves that %,(f,) = 0. For
the second obstruction it can easily be argued from the existence of h
that g,gg;' is isotopic to ¢;, for 1 =i=n. (Or we can refer to [7].)
Therefore P,(f;) = 0.

On the other hand assume that 2,(f))=0 and P,(f,)=0. Now
@(f1) = 0 implies that there is a homeomorphism g;: (M;),,— F which
is homotopic to g I(Ml)bo: (M))p,— F, where g: M\>M is a f.h.e
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homotopic to Id. Now P,(f,) = 0 implies that

(er'giigr’, ..., 00 'g1tngt") = 6(a),

for some a € P(F). Thus ¢;'gg;’ is isotopic to ¢; 'aga™", which
implies that (a 'g)¢i(a 'g)) ™" is isotopic to ¢;, for each i. By [7] this
implies that a 'g, extends to a f.p. homeomorphism of M, onto
M R

9. Computation of a Kernel

Our main result is Theorem 8. We will first need the general
construction of Lemma 9.1 below. For notation let X —— B be a map
and let B—— B be a covering space. Form the pull-back,

x1.5
al Ip
x5 B,

where X ={(x, ) | f(x)=p(e)}. Each deck tra‘nsformation ¢:B->B
induces a deck transformation ¢: X - X defined by &(x, ) = (x, o(e)).

1 f, . P
LEMMA 9.1: Let Xl-—]>B and X2—2+B be maps, B—— B be a

covering space, and let h: X,—> X, be a homeomorphism such that
foh=f,. If the pull-back X, is connected, then there exists a
homeomorphism h: )2,—))22 such that h covers h and h commutes
with the deck transformations of X, and X, which are induced by the
deck transformations of B.

PROOF: Since f,h = f, there is a homotopy F: X, xI- B so that F,
is the composition X — Xli—-> B and F, is the composition
X, X, x,—25 B. Note that F, can be lifted to X,—> B.
Therefore F: X, % I - B can be lifted to F: X, x I > B so that 15‘0=f,.
This induces a map h: X, X, defined by A(x, e) = (h(x), Fi(x, €)). We
leave it as an exercise for the reader to check that A fulfills our
requirements. W

LEMMA 9.2: Let K be a finite complex and let ¢: K—> K be a
homotopy equivalence. If T(¢) is the mapping torus of ¢ and i is the
natural inclusion KST(), then iy (ld — ¢4) =0, where iy and ¢, are
the induced homomorphisms on the Whitehead groups of K and T(¢).
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PRroOF: Choose any torsion 7 € Wh 7(K). We must prove that
ix(7) = iy @4(7). By [6] we may represent 7 by a pair [L, K], where L is
a finite complex containing K as a deformation retract. This means
that v = 7(f), where f: L > K is any deformation retraction. It then
follows that ¢,7(f) may be represented by [L U K, K] (we assume
that ¢ is a PL map). Applying i, we observe that i,7(f) may be
represented by [L U T(¢), T(¢)] and i, p47(f) may be represented
by [L U,T(e), T(¢)l. But if =ipf, and this implies that [L U
T(¢), T(¢)] and [L U¢T(<p), T(¢)] represent the same torsion in
Wh (T (p)). B

LEMMA 9.3: Let K be a finite connected complex and let ¢;: K > K
be a homotopy equivalence, for 1<i=n. Define X to be the space
formed by sewing the mapping tori T (¢;) together along K = K x {0} =
K x{1} in T(¢;). Then the kernel of the inclusion-induced map
ix: Wh m(K)—> Wh 7(X) is

G ={r€Whm(K)|7=(d— (@) + - +(d — (¢n)sTa}-
Proor: It follows from Lemma 9.2 that eacl}‘ element of G lies in
the kernel of i,. For the other half we will assume n = 2. The other
cases can be treated similarly. '
Choose any torsion 7 € Wh 7(K) for which i,(7) = 0. As in Lemma

9.2 we may represent 7 by a pair [L, K]. The condition iw(7)=0
implies that the inclusion X& X U L is simple. Multiplying by Q and

T(¢1)

=

T(¢2)
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applying [3, Theorem 29.4] there is a homeomorphism h: X X Q>
(X UL)x Q which is homotopic to the inclusion. Using Z-set un-
knotting we may assume that h |X x {0} = id. There is a natural map
f: X—>B=S{US} so that K is sent to the wedge point of B and
T (¢;) is wrapped once around S{. We choose notation so that f '(b) is
a copy of K, for each b € B, and passing down the ‘“‘rays” of T(¢;)
covers a path wrapping counterclockwise around S;. That is, in the
representation T (¢;) = K X [0, 1]/~, passing from 0 to 1 corresponds
to going counterclockwise around S'. Let X;=X UL and define
f1: X;— B by the composition X;—> X—'5 B, where the first map is
obtained by taking a deformation retraction of L onto K. Above is a
picture of X,, where L is represented by a segment added to K =

T(e) N T(2).

Form the pull-backs as in Lemma 9.1,

- f - - f -
-5 x5 X

) lp | lp
f
x-5B x—5B8,

where B is the universal covering space of B. The homeomorphism h
lifts to a homeomorphism A: X x Q= X, x Q for which kA | X x{0}=
id and i commutes with the deck transformations of X X Q and
X, x Q which are induced by the deck transformations of B.

B is a 1-complex such that p takes each vertex to the wedge point
of B and p wraps each 1-simplex once around S} or S). Let A, be the
following subset of the plane.

0.1

1,0)——————(1.0)

0,-1

We may identify A, with a subcomplex of B so that p wraps the
horizontal 1-simplexes in A, around S| and the vertical 1-simplexes
around S). Choose notation so that the positive directions on A,
correspond to the clockwise directions on S| and S3. Let T, be the
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deck transformation of B taking (0,0) to (1,0) and let T, be the deck
transformation taking (0, 0) to (0, 1).
Let

A= (-2, 1 x{0D U {0} X [2,2]) C A,
and choose a finite connected subcomplex A, of B so large that
A'=h'f (A x Q) Clnt f{(A) % Q.

Let A=f'"(A;»)x Q. Then A and A’ divide f '(A,)X Q into com-
ponents as pictured.

f~A)XQ f-1(An xQ

The components are named so that B; N(X x{0}) = B,N(X x{0}),
ANB =f'{-30DxQ,  ANB=f"'{G0OHXQ,  ANB;=
F'd,—»Px Q, and AN Bs=f"'({(0,1)}) % Q. Additionally, define
K;=ANB;N(Xx{0})) and note that each K; has a standard
identification with K. We observe that the pair [A, K] represents the
0 torsion of Wh#(K) and [A’, K|] represents the given torsion
T € Wh 7(K).

An easy torsion calculation gives us

(I 7(A) < Q, K11 = [Bi, K1+ (A", K1+ (¢1)+[ B>, K1+ [Bj, K]
+ (@2)«[Bi. K.

Let S;: X x Q— X X Q be the deck transformation induced by T;. Since
h commutes with the induced deck transformations we observe that

B{U S/(B3) = B,U S{'(By),
B{U S;'(BY) = B:U S5 '(By).
Thus
[B1U S (By), K1=[Bi{, K]+ [S/ (B3, K1,
[B;U S;'(By). K1=[B4, K1+ [S:'(BY). K].
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It is easy to see that [S;'(B3), K]=[B3, K1 and [S;'(B4), K1=[Bi K].
Substituting all this in (*) above we get
(+*)[f7'(A) X Q, K1 = [B, U S7'(B2), K1~ [B; U S;'(B4), K]
= ((@)«—Id)[ B3, K]+ ((¢2)x—1d)[Bi, K1+ [A', K\].
We now compute the left-hand side of (**). Note that

[BiU Si'(By), K1=[B:, K]+[Bx K],
[B3U S;'(By), K]=[Bs, K1+ [Bs, K1,
[F'(An) % Q, K\] =B, K1+ (¢)«[ B, K1+ B3, K1+ (@2)4[Ba. K1.

Substituting this into (**) above we get

((¢D)x—ld)[B>, K1+ ((¢2)x—1d)[Bs, K] = ((¢1)x—1d)[B3, K]
+ ((p2)«—1d)[Bi, K]+ [A", Ki].

This is all we need. B

THEOREM 8: Let € — B be a Hurewicz fibration, where B is h.e. to a
wedge of n 1-spheres and the fiber F = &, is h.e. to a finite connected
complex. If i is the inclusion map FS & and {¢;}/=, is the collection of
characteristic maps ¢;: F— F, then the kernel of i,: Wh a7 (F)—
Wh 7,(€) is

{rEWh m(F)|7=(d — () )1+ - - +(Id — (¢n)s) T}

ProoF: By taking a h.e. of a wedge of n I-spheres to B and
forming the pull-back, we may assume that B is a wedge of n
1-spheres, B=S|U---US,. Choose byE B to be the wedge point
and let ¢;: F > F be the characteristic maps. Let a: &,,— K be a h.e.
of &, to a finite complex. Define ;= aga” 't K— K and form the
space X - B of Lemma 9.3. We leave it as a manageable exercise for
the reader to construct a h.e. B: € - X such that

B
€— X
iy Ji

%bo—)xho

homotopy commutes. Then Kernel (ix) = Kernel (jxay) and all we
need is Lemma 9.3. W
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