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1. Introduction

By a Q-manifold we will mean a separable metric manifold

modeled on the Hilbert cube Q. Let f: M --&#x3E; B be a map of a

Q-manifold to an ANR. In this paper we will be concerned with the
following question: Does f fiber, i.e. is f homotopic to the projection

map of a fiber bundle M - B with fiber a Q-manifold? In general it isnot true that f fibers. For example, a constant map Q --- &#x3E; S’ does not
fiber. In Theorem 1 below we treat the [0, 1)-stable case in which f
always fibers, while Theorems 3-7 indicate some of the problems one
encounters in the compact cases.

Theorem 1 is not terribly surprising. It is an extension of the well

known result that Q manifolds which have the form M x [0, 1) are

homeomorphic if and only if they are homotopy equivalent (see [3,
Chapter V]).

THEOREM 1: If f: M - B is a map of a Q-manifold to a locally

compact ANR, then the composition

Of course, there is an analogue of this result for l2-manifolds, where
l2 is separable infinite-dimensional Hilbert space.

THEOREM 2: If f: M ---&#x3E; B is a map of an l2-manifold to a topolo-
gically complete separable metric ANR, then f fibers.

In the compact cases below we immediately encounter obstructions
to repeating the proofs of Theorems 1 and 2. By making enough
connectivity assumptions so that these obstructions vanish, we obtain
the following result. See §2 for a review of the undefined terms.
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THEOREM 3: Let f : M - B be a map of a compact Q-manifold to a
compact, connected ANR B which is simple homotopy equivalent to a

finite n-complex. If the homotopy fiber F(f) of f is homotopy
equivalent to a finite n-connected complex K, then there is an obs-

truction in the Whitehead group Wh 7r,(M) which vanishes iff f fibers.
Moreover, if n = 1 we only need assume that Wh 7TI(K) == 0, and if
n = 2 we only need assume that K is 1-connected.

As a special case of Theorem 3 we obtain an infinite-dimensional
version of Casson’s fibering theorem [2].

COROLLARY: If M - S2 is a map of a corripact Q-manifold to S2
such that F(f ) is homotopy equivalent to a finite 1-connected complex,
then f fibers.

In Theorems 4-7 we specialize to the cases in which the base B is
homotopy equivalent to a wedge of 1-spheres. The main tool is given in
Theorem 4 and the main result is given in Theorem 5.

THEOREM 4: Let (e, p, B) be a Hurewicz fibration such that B is a
compact ANR homotopy equivalent to a wedge of n 1-spheres and the
fiber F is homotopy equivalent to a finite connected complex. Then e
is fiber homotopy equivalent to a compact Q-manifold fiber bundle
over B ifl an obstruction lying in a quotient of the direct sum of n
copies of Wh 03C01(F) vanishes. Given that this obstruction vanishes,
there is a 1-1 correspondence between simple equivalence classes of
such bundles and a quotient of a subgroup of Wh 7r,(F).

For an explanation of the last sentence in the above statement we
refer the reader to §5.

THEOREM 5: Let f : M ---&#x3E; B be a map of a compact Q-manifold to a

compact ANR which is homotopy equivalent to a wedge of n 1-

spheres and assume that the homotopy fiber F(f) is homotopy
equivalent to a finite connected complex. There are two obstructions to

f fibering. The first one lies in a quotient of the direct sum of n copies
of Wh 03C01F(f). If this obstruction vanishes, the second one is defined
and lies in a quotient of Wh 7TI(M).

In Theorem 6 we treat the special case of Theorem 5 in which B is
homotopy equivalent to S’. Here the situation is considerably sim-
plified and what we obtain is an infinite-dimensional version of

Farrell’s fibering theorem [10].
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THEOREM 6: Let f: M ---&#x3E; B be a map of a compact Q-manifold to a
compact ANR which is homotopy equivalent to S’ and for which the
homotopy fiber F(f) is homotopy equivalent to a finite connected
complex. There are two obstructions to f fibering. They are in-

dependently defined and both lie in Wh 7r,(M).
We remark that one of the obstructions obtained here is just

Farrell’s obstruction for the finite-dimensional case, but the infinite-

dimensional nature of the problem requires another obstruction.
Finally, in Theorem 7 we classify equivalence classes of Q-mani-

fold fiber bundle projections over nice ANRS.

THEOREM 7: Let f, fI: M ---&#x3E; B be homotopic compact Q-manifold
fiber bundle projections, where B is a compact ANR homotopy
equivalent to a wedge of n 1-spheres, and let F be the connected fiber
of f: M --&#x3E;B. There are two obstructions to finding a homeomorphism
h : M ---&#x3E; M such that fh = f 1 and h is homotopic to the identity. The
first lies in Wh 7TI(F), and if it vanishes the second is defined and lies
in a quotient of the direct sum of n copies of P(F).

Here P(F) is the group of all isotopy classes of homeomorphisms
of F to itself which are homotopic to the identity. It is a quotient of -

7ro of the concordance group of F, which has been algebraically
investigated by [12]. See §2 for further details.
We now say a few words about the organization of the material in

this paper. §2 contains some preliminary results and in §3 we prove
Theorems 1 and 2. In §§4-8 we prove Theorems 3-7. In §9 we prove a
result (Theorem 8) which calculates the kernel of a certain map of
Whitehead groups. This generalizes a result of Farrell [9]. Theorem 8
may be paraphrased as follows. Let (Z, p, B) be a Hurewicz fibration,
where B is a finite wedge of 1-spheres and the fiber F has the

homotopy type of a finite complex. If i is the inclusion map i : F4 E,
then Theorem 8 computes the kernel of

The constructions in §9 are made more geometric by replacing e with
a finite "wedge" of mapping tori.

2. Preliminaries

If p: E ---&#x3E; B is a map and B 1 C B, we use E Bi 1 to denote p -1(B 1)
and we let Eb = p-1(b), for each b E B. If p’: E’--&#x3E; B is another map,
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then f: E ---&#x3E; E’ is said to be fiber preserving (f.p.) provided that

f (Eb) = Eb, for each b E B. The restriction of f to Eb is denoted by
fb: Eb --&#x3E; E’. A fp. map f : E ---&#x3E; E’ is said to be a fiber homotopy
equivalence ( f . h. e.) if there exists a f.p. map g : E--&#x3E; E such that fg
and gf are f.p. homotopic to their respective identities. We will

abbreviate ordinary homotopy equivalence by h.e.
If f : E - B is any map, where B is path connected, then we define

(Bj is the space of paths in B.) Define p : 6(f) - B by p(e, w) = 03C9 (1).
p : E(f) ---&#x3E; B is the mapping path fibration of f: E --&#x3E; B. There is a h.e.

g : E ---&#x3E; E(f) such that pg ~ f. For any bo E B, the fiber of E(f) over bo
is

F(f ) is called the homotopy fiber of f : E ---&#x3E; B.

The following result will be used several times in the sequel. For a
proof see [8] for the case in which B is a countable complex and see
[14] for the general case.

THEOREM 2.1: Let p: E-B, p’: E’----&#x3E; B be Hurewicz fibrations,
where B is a connected ANR, and let h: E- E’ be a f.p. map such
that hbo: Eb0 ---&#x3E; Ebo is a h.e., for some bo E B. Then h is a f.h.e.

The above result gives us the following useful theorem.

THEOREM 2.2: Let p: E ---&#x3E;B, p’: E’---&#x3E; B be Hurewicz fibrations,
where E, B and all the fibers have the homotopy types of countable
complexes. If f: E ---), E’ is a h.e. such that p’f = p, then f is homotopic
to a f.h.e.

PROOF: Assume that B is connected and choose bo E B, eo E Ebo.
The condition p’f ~ p gives us a homotopy H : E x I ---&#x3E; B such that

Ho = p and Hl = p’ f. Lifting H we get a homotopy H : E x I ----&#x3E; E’ for

which Û, = f. Then g = Ho: E ---&#x3E; E’ is homotopic to f and g is f . p. The
homotopy exact sequences of the two fibrations give us a com-

mutative diagram,
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Here e’= g(eo) and by the five lemma (g 1 bo)* is a h.e. Then we apply
Theorem 2.1. ·

In the sequel we will need a considerable amount of Q-manifold
machinery. Our basic reference for this is [3]. It would be time

consuming to give a complete description of the material from [3]
which we will need, but here is a list of some of the highlights.

1. Z-sets and Z-set unknotting ([3, Theorem 19.4]).
2. The classification theorem for simple equivalences in terms of

homeomorphisms on Q-manifolds ([3, Theorem 38.1]).
3. The triangulation theorem for Q-manifolds ([3, Theorem 36.2]).
4. The ANR theorem, which says that every locally compact ANR

times Q is a Q-manifold ([3, Theorem 44.1]).
It will be convenient to know how to change bases in fibering
problems.

THEOREM 2.3: Consider f: M - B, where M is a compact Q-mani-
fold, and B is a compact ANR, and let g: B ---&#x3E; B’ be a simple
equivalence of B to another compact ANR. Then f fibers iff gf fibers.

PROOF: Since g: B ---&#x3E; B’ is a simple equivalence we have a

homeomorphism 0: B x Q --&#x3E; B’x Q which is homotopic to g x ld.

Choose a homeomorphism a: M x Q --&#x3E; M homotopic to the pro-

jection map. Assuming that f fibers we have a fiber bundle projection
map p : M ---&#x3E; B. It is easy to check that the composition

is a fiber bundle projection homotopic to gf..

In a similar fashion we can establish the following [0, 1 )-stable
result.

THEOREM 2.4: Consider f: M - B, where M is a Q-manifold and B
is a locally compact ANR, and let g: B ---&#x3E; B’ be a h.e. of B to another
locally compact

Here is a mild generalization of Anderson’s result [1] ] to fiber

bundles over ANRs. The result is also true for ANR Hurewicz

fibrations over ANRs.

THEOREM 2.5: Let p 1: Ej- B and P2: E2 ---&#x3E; B be compact Q-mani-
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fold fiber bundles such that B is a compact connected ANR and let
f: E1 ---&#x3E; E2 be a f.h.e. If bo E B, then r(f) = i*x(B)r(f 1 (EI)bo), where
x(B) is the Euler characteristic of B and i is the inclusion (E2)bo 4 E2,
and r denotes Whitehead torsion.

PROOF: For the moment assume that B is a finite complex. Choose
any other basepoint b, E B. We will first prove that j*T(f ) 1 (EI)b) ==
i.,(f 1 (E1)bo)’ where j : (E2)bl 4 E2. Choose a path (1J: I ---&#x3E; B from bo to

bl. Over w(I) we have trivial bundles. This induces homeomorphisms
a:(EI)b,-(EI)b, and 8:(E2)b,-(E2)b, so that a is homotopic to

(EI)bo 4 E, and 03B2 is homotopic to (E2)bo 4 E2. Thus we have a homo-
topy commutative diagram,

simplex in B we can also prove that T(f 1 (EI)b,) and T(f 1 
have the same image in Wh 7r,(E,). This follows because if

then we have a homotopy commutative diagram

where the inclusions are simple equivalences.
We now begin the proof. Let dim B = n and let B’ be the (n - 1)-

skeleton of B, where bo E B’. Then we get restricted fiber bundles

be the n-simplexes of B. Using the Sum Theorem

where we have omitted obvious inclusion-induced maps. Since
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we are done for the case in which B is a finite complex. For the
remainder of the proof we show how to reduce the general case to
this case.

Our first observation is that if B is any compact Q-manifold, then
the above proof goes through. We just replace B by K x Q, for some
finite complex K, and argue inductively over the skeleta of K times
Q. More generally, if we multiply everything by Q we obtain Q-
manifold fiber bundles Ei x Q -&#x3E; B x Q, where B x Q must be a Q-
manifold. We get a f. h. e. f x ld : El x Q ---&#x3E; E2 X Q. The above special
case implies that

where i’ is inclusion. Projecting back to E2 we get r(f) =
1*x(B)T(f ) 1 (EI)bo) and we are done..

COROLLARY 2.6: With pi: Ei --&#x3E; B as above let g : E1 --&#x3E; E2 be a map
such that p2g = pi and assume that Wh irl«EI)b,) = 0. If g is a h.e.,
then g is a simple equivalence.

PROOF: Using Theorem 2.2 we have g ~ g’, where g’ is a f.h.e.
Then

We will also need the notion of a mapping torus. For any com-

pactum X and map p: X ---&#x3E; X, the mapping torus of ~ is the com-

pactum

where -- is the equivalence relation generated by (x, 0) -- (cp (x), 1). It

is clear that there is a natural map T(,c) --&#x3E; S’ so that each point-
inverse is naturally identified with X.

Finally we introduce the group P(M) needed in Theorem 7. For

any compact Q-manifold M let P(M) denote the group of isotopy
classes of homeomorphisms of M which are homotopic to the iden-

tity. Here are some facts about P(M) which appear either explicitly
or implicitly in [4].

1. If M is 1-connected, then P(M) is trivial.
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If h: M ---&#x3E; M is a homeomorphism homotopic to the identity, then h
determines an isotopy class of homeomorphisms in P(M). To save
notation we will identify h with this isotopy class in P(M). Thus in §8
a statement such as f = g actually means that f is isotopic to g, where
f and g are homeomorphisms homotopic to the identity.

3. Proofs of Theorems 1 and 2

We begin with the proof of Theorem 1. The basic step is the

following result.

LEMMA 3.1: Let N be a Q-manifold, E - Sn be a fiber bundle with
fiber N x [0, 1), and let f: Sn x N x [0, 1) E E be a f.h.e. Then f is fiber
homotopic to a homeomorphism.

PROOF: Using Theorem 4.1 1 of [5] there is a f.p. embedding g: Sn x
N x [0, 1) ---&#x3E; E such that each gx : N x [0, 1 ) - Ex is a Z-embedding and
such that g is fiber homotopic to f. Let Sn x N x [0, 1) be identified
with Sn x N x [0, 1) x 101 in Sn x N x [0, 1 ) x I. Our strategy is to show
that we have a f . p. homeomorphism of pairs,

This implies that the inclusion g(S" x N x [0, 1)) 4 E is fiber homo-
topic to a homeomorphism, thus completing the proof of our lemma.
Let Dn C Sn be any n -cell.

ASSERTION: There exists a f.p. homeomorphism of Dn x N x

[0, 1) x I onto E 1 Dn which agrees with g on Dn x N x [0, 1).

PROOF oF ASSERTION: Choose any f.p. homeomorphism a : Dn x
N x [o, 1) x I - E 1 Dn. We must replace a by a’ so that a’ 1 Dn x N x
[0, 1) = g. Consider the f.p. Z-embedding

It will suffice to construct a f . p. homeomorphism of D" x N x [0, 1] x I
onto itself which extends gi.
We now use the fact that g, is a f.h.e. Choose any bo E Dn and

consider (gl)b,: N &#x3E; [0, 1) ---&#x3E; N &#x3E; [0, 1) &#x3E; I, which is a h.e. It follows

from [3, Theorem 21.2] that there exists a homeomorphism u : N x[0, 1) x I - N x [0, 1] x I extending (gl)bo. D fine 92: D" x N x [0, 1) ---&#x3E;

Dn x N x [0, 1) x I by (92)b = (g,)bo, for all b’ E D". Then g2 is a "con-
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stant" f.p. Z-embedding. Using the homeomorphism u it is clear that

g2 extends to a f . p. homeomorphism of D" x N x [0, 1) x I onto itself.
So, to finish, all we need is a f . p. homeomorphism of D" x N x [0, 1) x
I onto itself which composes with gl to give g2.
To see this, let 0,: D" ---&#x3E; Dn be a homotopy such that 03B80 = id and

03B81(Dn) = lb,l. Then define a f . p. homotopy

by (03B2t)b = (g.)Ot(b). Clearly /3o= gi and 03B21 = g2. Moreover, this is a f.p.
proper homotopy. By Theorem 5.1 of [5] we conclude that there
exists a f.p. homeomorphism r of D" x N x [0, 1) x I onto itself such
that rg, = g2. This completes the proof of the assertion.

Now let G be the homeomorphism group :Je(N x [0, 1) x 1, N x
[0, 1)), the space of all homeomorphisms of N x [0, 1) x I onto itself
which are the identity on N x [0, 1). For each b E S" let 0(b) be the
space of all homeomorphisms cp : N x [0, 1) x I - Eb such that cp = gb
on N x [0, 1). This makes E ---&#x3E; S" into a fiber bundle with structure

group G, which we call a G-bundle (see [16, p. 90]). We will show that
E is trivial as a G-bundle. This will imply that there is a f.p.
homeomorphism of pairs,

as was our strategy. To show that E is trivial for all n, all we have to

do is prove that G is contractible.

Choose any h E G. If f : [0, 1) x 1 - [0, 1) x I is any homeomorphism
which is the identity on [0, 1) x 101, then it is easy to isotope f to a
homeomorphism f’rel[0, 1) x {0}, where f’ is also the identity on
101 x L This same idea easily shows that h is isotopic to h’rel N x

[0, 1), where h’ is the identity on N x 101 x I. Using a variation of the
well known Alexander trick define h 1 = ld and for 0 - t  1 define

where cpt : N x [ t, 1 ) x I N x [o, 1 ) x I is defined by linearly
homeomorphing [t, 1) to [0, 1). Then h defines an isotopy of h’ to ld
rel(N x 101 x I ) U (N x [0, 1)). All of these isotopies depend continu-
ously on h. Thus G is contractible. ·

REMARK: The above method of proof can be used to prove that a

f.h.e. between any two fiber bundles, with fiber N x [0, 1), is fiber

homotopic to a homeomorphism.
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We now use Lemma 3.1 to prove the following result.

LEMMA 3.2: Let 6 - B be a Hurewicz fibration over a countable
complex and assume that all the fibers are h.e. to countable com-

plexes. Then î is f . h. e. to a fiber bundle over B with fiber a Q-
manifold.

PROOF: Without loss of generality assume that B is connected and
use [3, Theorem 28.1] to choose a Q-manifold N which is h.e. to the
fibers of 6 -B. We will induct over the n-skeleta of B, Bn, to

inductively build our fiber bundle. For n = 0 it is clear that 6 ) I Bo is
f.h.e. to a fiber bundle over Bo with fiber N x [0, 1). Passing to the
inductive step as sume n &#x3E;0 and let f 1: î 1 B,---&#x3E; E, be a f. h. e., where
Ei - Bn is a fiber bundle with fiber N x [0, 1). We will extend f to a
f.h.e. f: e 1 Bnll ---&#x3E; E, where E-Bn+i is a fiber bundle extending
Ei - Bn. For simplicity of notation we assume that Bn+l = Bn ~~,
where à is a single (n + 1)-simplex.

By restriction we get a f.h.e. fo: 6 ) 1 dà ---&#x3E;El 1 dà. By Theorem 2.1 it

suffices to extend f o to a f . p. map f2: e 1 à ---&#x3E; E2, where E2 is a
fiber bundle extending El 1 dà ---&#x3E; ad. Since 6 ) I ad is f . h. e. to ad x N x

[0, 1), we may replace e laà by dà x N x [0, 1) and consider the

following reduction of the problem: If fo: dà x N x [0, 1) --- &#x3E; El 1 dà is a
f.h.e., then fo extends to a f . p. map f2: à x N x [0, 1) - E2.

To see how this reduction implies the general case choose a f.h.e.

,6: e 1 dà ---&#x3E; ad x N x [0, 1) be a fiber homotopy inverse of ao. Given a
f . h. e. fo: î 1 dà ---&#x3E; El 1 dà, we get a f . h. e. foao.B: e ad - E1 1 as. The
reduction implies that foao extends, and since (3 extends it follows
that f003B1003B2 extends. Since f o is fiber homotopic to foaof3 we conclude
that fo extends.

To verify the reduction we first use Lemma 3.1 to see that f o is fiber
homotopic to a homeomorphism a : ad x N x [0, 1) ---&#x3E; El 1 dà. Thus all
we have to do is show how to extend a to a f.p. map 03B1:~ x N x

[0, 1) ---&#x3E; E2. Define

where the attaching is made by a. Then a automatically extends to a
f.p. map of ~ x N x [0, 1) onto E2. ·

Finally, we will need the following result.
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LEMMA 3.3: If f : M ~ B is a map between locally compact ANRs,
where B is connected, then the homotopy fiber of f has the homotopy
type of a countable complex.

PROOF: For definiteness choose a basepoint bo E B. Let a: M ~
Q x [0,1) be any closed embedding and define f’: M ~ B x Q x [0, 1)
by f’ = (f, a). Choose the basepoint bo == (bo, 0, 0) in B x Q x [0,1) and
consider the homotopy fiber F(f’).

ASSERTION 1: F(f) is h.e. to F(f’).

PROOF: Define ç : @(f) - W(f’) by ç(x, w ) = (x, w ’), where w ’ fol-

lows a straight-line path from ( f (x ), a(x) to ( f (x ), 0, 0)), for 0 ~ t ~ 1/2,
and for %= t = 1, w’ follows the path w in B x {0} x {0} == B from

w" = projo w (proj: B x Q x [0, 1) ---&#x3E; B). We leave it as an easy exer-

cise for the reader to prove that cp and 03C8 are homotopy inverses.

ASSERTION 2: F(f’) is an ANR.

PROOF: Observe that f’ is a closed embedding. Consider the space

the space of paths ending at b’. It follows from [13] that ,f2 is an ANR.

Clearly F(f’) is a closed subset of M x fl. Choose (x, ù» Ei M &#x3E; f2
which is close to F(f’). Then we must have w(0) close to f’(x). If they
are sufficiently close, then there is a canonical path in B x Q x [0, 1)
from f’(x) to w(0). By composing this canonical path with w we
obtain a new path w’ E il which starts at f’(x) and ends at b’. Thus

(x, w) - (x, w’) defines a retraction r: U --&#x3E; F(f ’), for U some suitable

neighborhood of F(f’) in M x fl. Therefore F(f’) is an ANR.
Finally, it follows from [15] that the ANR F(f’) has the homotopy

type of a countable complex. M

PROOF OF THEOREM 1: We are given a map f : M ---&#x3E; B, where B is a

locally compact ANR. It follows from [15] that B is a h.e. to a

countable complex, and therefore by Theorem 2.4 we may assume
that B is a countable complex. Without loss of generality assume that
B is connected. Let p : 6 - B be the mapping path fibration with fiber

F(f), and let g : M - 6 be a h.e. such that pg = f. Using Lemma 3.2
there is a fiber bundle q : E - B, with fiber a Q-manifold N, which is

f.h.e. to p: î --&#x3E; B. We therefore obtain a h. e. g’: M E such that
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qg’::::::: f. Then g’x id: M &#x3E; [0, 1) --&#x3E;, E x [0, 1) is homotopic to a

homeomorphism h : M x [0, 1) - E x [0, 1) by [3]. Clearly

is a fiber bundle projection homotopic to fo proj: M x [0, 1) ---&#x3E; B. B

PROOF oF THEOREM 2: The machinery we have used for the proof
of Theorem 1 has analogues for l2-manifolds. The knowledgeable
reader can easily supply the details..

4. Proof of Theorem 3 and its Corollary

For the proof of Theorem 3 we will first need the following result.

LEMMA 4.1: Let N be a compact Q-manifold, E ---&#x3E; Sn be a fiber
bundle with fiber N, and let f; Sn x N ---&#x3E; E be a f.h.e. If N is (n + 1)-
connected, then f is fiber homotopic to a homeomorphism. Moreover,
if n = 0 we only need assume that Wh 7TI(N) = 0, and if n = 1 we only
need assume that N is 1-connected.

PROOF: Following the proof of Lemma 3.1, f is homotopic to a f.p.
Z-embedding g : S" x N - E. It suffices to show that we have a f . p.
homeomorphism of pairs,

If n = 0 it follows from the assumption Wh 1TI(N) = 0 that each

inclusion gb(N) 4 Eb is homotopic to a homeomorphism. Since Sn -
{bh b2l this is all we need for our desired f.p. homeomorphism of
pairs.

If n ? 1 we proceed as in Lemma 3.1 and show that E ----&#x3E; Sn may be

regarded as a G-bundle, where G is the homeomorphism group
H(N x I, N). All we need to do is show that E ---&#x3E; Sn is trivial as a

G-bundle. For this it suffices to prove that G is (n - 1 )-connected. It
follows from [4] and [11] that 7To(G) == 0 for N 1-connected, and in

general 7Tk-l( G) = 0 for N (k + 1)-connected..

LEMMA 4.2: Let 6 - B be a Hurewicz fibration over a finite n-
complex and assume that all the fibers are h.e. to a compact Q-
manifold N. If N is n -connected, then Z is f . h. e. to a fiber bundle over
B with fiber N. Moreover, if n = 1 we only need assume Wh 7r,(N) = 0,
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and if n = 2 we only need assume N to be 1-connected.

PROOF: Using Lemma 4.1 we can prove Lemma 4.2 just as Lemma
3.2 followed from Lemma 3.1. ·

PROOF oF THEOREM 3: We are given a map f : M ---&#x3E; B, of a com-
pact Q-manifold to a compact, connected ANR B which is simple
equivalent to a finite n-complex. By Theorem 2.3 we may assume that
B is a finite n-complex. Let 6 - B be the mapping path fibration and
use Lemma 4.2 to conclude that î is f . h. e. to a fiber bundle p : E ---&#x3E; B,
whose fiber is a compact Q-manifold. Thus we have a homotopy
equivalence g: E - M such that fg = p. We define our obstruction to
be T(g) E Wh 7TI(M).

To see that T(g) is well-defined we assume that there is another
such h. e. g, : El ---&#x3E; M, where Ei - B is a fiber bundle whose fiber is a

compact Q-manifold. It follows from Corollary 2.6 that the torsion of
the composition g-’gi: Ei - E is zero, thus r(g)= r(gl).

If T(g) = 0, then g is homotopic to a homeomorphism h: E ~ M,
and f is therefore homotopic to the bundle projection M E - B.
On the other hand assume that f is homotopic to a bundle projection
M -&#x3E; B. The h. e. g: E - M must have zero torsion by Corollary
2.6. ·

PROOF OF THE COROLLARY: The homotopy sequence of f : M - B

gives us an exact sequence

thus 7TI(M) = 0 and Wh irl(M) = 0. This implies that our obstruction
to fibering is zero. ·

5. Proof of Theorem 4

We first introduce some notation which will be used throughout this
section. Let E ~ B represent a Hurewicz fibration, where B is a

compact ANR h.e. to a wedge of n 1-spheres. Choose a basepoint
bo E B and assume that eb, is h. e. to a finite connected complex. Let

{a;}i=l be a collection of maps, ai: (SI, *)---&#x3E;(B, bo), such that t[aillï.1
freely generates iri(B, bo). Each map ai may be regarded as a map of

(I, aI ) to (B, bo), and the homotopy lifting criterion implies that ai can
be covered by a map 03B1i: Ebo X I ---&#x3E; e such that (ai)O = id. We call
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a characteristic map corresponding to ai. It is

well-known that cpi is a h.e. and its homotopy class is uniquely
determined.

DEFINITION OF THE OBSTRUCTION: Define a homomorphism

by sending T in Wh 03C01(Eb0) to ((ld - (cp,)*)T, ... , (ld-(cpn)*)T), where *
as usual indicates induced homomorphisms on Whitehead groups.
Choose any h.e. h of Eb0 to a finite complex K. We define our
obstruction, O1(E), to be the image of

is a homotopy inverse of h.)

LEMMA 5.1: : ûl(î) is well defined.

PROOF: Let g : eb,, ---&#x3E; L be any other h.e. from Eb0 to a finite com-

where the last equality follows from the formula for the torsion of a
composition (see [6, p. 72]). The same formula gives us r(k) +
k*T(k-’) = 0. Substituting this into the above equation gives us

lies in Image (03B8) ~

We will need the following classification result.

LEMMA 5.2: Let e ---&#x3E; B and E’ ~ B be Hurewicz fibrations of the
type described at the beginning of this section, with characteristic

maps cp;: Ebo ~ Ebo and cpi: Eb0 ---&#x3E; Ebo. Then a h.e. h : eb ---&#x3E; Ebo extends to a
f.h.e. of e onto E’ ifl h homotopy commutes with all of the charac-
teristic maps, i.e. ç )h = hcp; for each i.
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PROOF: This follows immediately from Theorem C of [17]. ~

PROOF oF THEOREM 4: The proof naturally splits into two parts.
I. Existence. First assume that î is f . h. e. to a fiber bundle E - B

with fiber a compact Q-manifold. Let {t/1}i=1 be the characteristic
maps of E ---&#x3E; B. If f : e E is a f. h. e. and h == f 1 eb,,: Îb,, --* Eb,,, then by
Lemma 5.2 we have t/1ih ::::::: h~i, for each i. Up to simple homotopy type
we may regard Ebo as a finite complex, so in order to prove that

CI(e) = 0 it will certainly suffice to prove that T(t/1i) = 0. Since E - B
is a fiber bundle its characteristic maps may be chosen to be

homeomorphisms. But homeomorphisms of Q-manifolds are always
simple equivalences.
On the other hand assume that CI(e) = 0. Then there is a compact

Q-manifold N and a h. e. h : Îbo ---&#x3E; N such that

for some torsion 7-(EWh’ffl(Îb,,). Thus (ld - (’P)*)T==h;IT(h’Ph-I).
Choose a compact Q-manifold M and a h.e. f : N ~ M such that
7-(f) = -f*h*(,r). Then we calculate (again using the composition for-
mula) :

Let ti = fhoi(fh)-’: M ---&#x3E; M and let g; : M - M be any homeomor-

phism homotopic to 03C8i (which exists since 03C8i has zero torsion).
Let B’ be a wedge of n 1-sphères and let b’ 0 be the wedge point. For

each i let T(gi) be the mapping torus of gi and let E’ be the space
formed by sewing the T(gi) together along their common base, M.
Then we have a natural projection p’: E’---&#x3E; B’ so that

(1) E’---&#x3E; B’ is a fiber bundle with fiber M,
(2) E" is the common base of the T(gi),
(3) the characteristic maps of E’ - B’ are {gi}ni=1 (corresponding to

loops a j in B’).
Let u : B --- &#x3E; B’ be a h. e. such that u (bo) = ho and uai = 03B1i, for each i.

Form the pull-back, E = {(b, e’) I u(b) = p’(e)}:
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Then p : E --&#x3E; B is a fiber bundle with fiber M. Since gi =-- fh~i(fh)-1 and
since the gi are the characteristic maps of E --&#x3E; B we conclude by
Lemma 5.2 that e is f.h.e. to E. ·

II. Classification. Define G to be the subgroup of Wh 03C01(Eb0) con-
sisting of all elements T such that (n - 1)T =

(ld-(’PI)*)TI + ... + (ld - (’Pn)*)Tn, for torsions 03C4i~Wh -ul(eb.). We
prove that the simple equivalence classes of compact Q-manifold
fiber bundles over B which are f.h.e. to î are in 1-1 correspondence
with the quotient group H = Kernel (0)/(Kernel (o) ~ G), where two
Q-manifold fiber bundles, Ei-&#x3E;B and E2 --&#x3E; B, are in the same simple
equivalence class if there exists a simple homotopy equivalence from
El to E2 which is also a f . h. e. Choose a fixed compact Q-manifold
fiber bundle E - B and a f.h.e. f: 6 - E. Choose any other compact
Q-manif old fiber bundle Ei - B and f . h. e. fi: 6 - Ei. Put h = f 1 eb.
and h f eb,,. Then we get a h. e. hh 1 ’: (EI)b,, Eb,, and a torsion
03C4(hh1-1) E Wh 7TI(Ebo).

ASSERTION 1: h*’T(hh; ’) E Kernel (0).

PROOF: It follows from Lemma 5.2 that (hh1-1)03C81i~ ipi(hh-’), for
each i, where the 03C8i, are the characteristic maps for E - B and the 03A8i1
are the characteristic maps for Ej - B. Since E &#x3E;B and Ei - B are

compact Q-manifold fiber bundles we must have r(qij) = r(qj’) = 0. Thus

or (ld - (Iii),),r(hhi = 0. Since hcp = «ph we can easily check that
ld - (ç;)*)h§l ’T(hh /’) = 0. This proves Assertion 1.

We then define R(hl) to be the image of h*’T(hh; ’) in H. Thus R is
a function from the collection of f.h.e.’s fi: e---&#x3E; El to the group H.

There are several properties of R which need to be established in

order to finish the proof of Theorem 4.

ASSERTION 2: R is onto.

PROOF: Choose any r E Kernel (0). Thus (ld - (cp;)*)T=0 for each i.

Choose a h.e. g of Eb. to a compact Q-manifold N such that

,r(g)=-g*h*(,r). (Recall that g:Eb,,---&#x3E;N can be chosen so that

7-(g-’) = -g*’,r(g) É Wh 7TI(Ebo) realizes any torsion in Wh 7TI(Ebo).) A
simple torsion calculation gives us T(ghcpi(gh)-’) = 0. Just as in the

proof of Theorem 4 (Part I) we can construct a compact Q-manifold
fiber bundle El --&#x3E; B such that (EI)bo = N and a f . h. e. f1: eEl such
that hi = fi 1 ebo = gh. Then R(f1) is the image of h*’,r(hhi 1) in H.
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Computing, we have

This completes Assertion 2.

compact Q-manifold fiber bundles, then f2f î ’: E1 ~ E2 is a simple
equivalence iff R (f 1) = R(f2).

PROOF: Assume that fJl1 is a simple equivalence. It follows from
Theorem 2.5 that 0 = r(f2f 1 1) = j*(1 - n)T(h2h11), where j is the in-

clusion (E2)bo 4 E2. Using Theorem 8 we have

for torsions

Computing, we have

This proves that R(hi) = R(h2).
On the other hand assume that R(fl)=:R(f2). From the above

calculations we see that (h2);IT(h2htl) E Kernel (0) rl G. This implies
that there are torsions Th ... , Tn E Wh lrl«E2)b,) such that

where the gé are the characteristic maps for E2---&#x3E;B. It follows from

Theorem 2.5 that T(f2fll) == j*(1 - n)T(h2h11) and it follows from

Theorem 9.1 that

6. Proof of Theorem 5

We will need some general notation. Let f: M --- &#x3E; B be the map

given in the statement of Theorem 4. Let p : 6 - B be the mapping
path fibration of f: M ---&#x3E; B which has fiber iF(f) = Eb0, and let g : M - 6
be a h. e. such that pg = f.

The First Obstruction. We define our first obstruction to be

where O1(E) was defined in §5. Recall that Ci(f) vanishes iff e is f.h.e.
to a compact Q-manifold fiber bundle.
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PROOF oF THEOREM 5 (Part I). We show that the vanishing of Ci(f)
is a necessary condition for f to fiber. Assume that f = f’, where f’ is
the projection map of a compact Q-manifold fiber bundle. Then by
Theorem 2.2 we must have g homotopic to a f.h.e. from the bundle
f’: M - B to the fibration 6 - B. Thus O1(f) = 0. ~ 

The Second Obstruction. Assume that O1(f) = 0 and let h : M - E

be a h. e. such that qh = f, where q : E - B is a compact Q-manifold
fiber bundle. Let i be the inclusion map Îboc--&#x3E; î and define Û2(f) to be
the image of the torsion h*’T(h) in Wh 7Ti(M)/(l - n)g*’i, Kernel (0).

LEMMA 6.1: O2(f) is well-defined.

PROOF: Let hl: M El be an alternate choice for h. We must

prove that

Using Theorem 2.2 we see that hlh-’ is homotopic to a f.h.e. a: E---,&#x3E;,

El. Thus by Theorem 2.5 we calculate

where T is the torsion of the h.e. h Ih -1 1 Eb. It follows from the proof
of Theorem 4 (Part II) that (ld - (#;)*)T=0, for each i, where the 03C8i
are the characteristic maps for Ei - B. So, multiplying both sides of
the above equation by g*(h1)*-1 we get what we need..

PROOF oF THEOREM 5 (Part II): Assume that f = f’, where f’: M ~
B is a compact Q-manifold fiber bundle. Since C2(f) is well-defined

we may choose E = M and h = id. Clearly O2(f) = 0.
On the other hand assume that O2(f ) = 0. This means that h*-1 (h) ==

g*’(1 - n)i*(T), for some T E Kernel (0). We may write h as gig, where
gi: 6 -E is a f.h.e. Choose a compact Q-manifold N and a h.e.

a : Ebo ---&#x3E; N such that r(a) = - a*«gl),bo)*(,r). Calculating we get

which is zero because T E Kernel (0). (Recall that 03C8i is a charac-

teristic map for E --&#x3E; B, which must have 0 torsion because it can be

chosen to be a homeomorphism.) Using the proof of Theorem 4 (Part
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II) we can construct a compact Q-manifold fiber bundle El---&#x3E; B such
that (EI)bo = N and a f . h. e. â : E --&#x3E;El extending a. Put j : (EI)bo 4 El
and calculate to get

which is easily seen to be zero. Thus âgig : M - Ei is homotopic to a

homeomorphism which implies that f is homotopic to a compact

Q-manifold fiber bundle projection. ·

7. Proof of Theorem 6

We first introduce some notation for this section. It follows from

Theorem 2.3 that we may replace B by S’. Let p: î ---&#x3E; S’ be the
mapping path fibration of f : M ---&#x3E; SI, where F(f) = Eb0, and let h : M -
E be a fixed h.e. so that ph = f.
We use ~ : F(f) --&#x3E; iF(f) for a characteristic map corresponding to a

choice of a generator for 7TI(SI).

The First Obstruction. The first obstruction is just the obstruction

61(f) of Theorem 5. We must show that the group in which O1(f ) lies
is isomorphic to a subgroup of Wh 7TI(M). This is the group

If i is the inclusion map F(f) --&#x3E; e, then it is shown in Theorem 8
that Kernel (i*) == (ld - ç*)Wh 03C01,F(f). Thus Cokernel (0) is isomor-

phic with a subgroup of Wh 03C01(E) == Wh ?ri(M).

The Second Obstruction. We will need some more notation.

Choose a finite complex K and a h.e. g : @(f) - K, and let 03C8: K - K
be the map gc,og-l. Represent SI by {e21Titl I 0 _ t  1}, where bo = 1, and
let T (Ji) --- &#x3E; S’ 1 be the natural map of the mapping torus to SI. The
fibers of T(qi) --&#x3E; S’ are all naturally identified with K.
We leave it as a manageable exercise for the reader to construct a

h. e. a: e --&#x3E; T (tp) such that a Eb0 g, a takes e e 2-it 1 1 2 - _ t  1} to
T(#) ) 1 le 2-it 1 1 ~ t  1}, and a is f.p. over le 2,il l 0  t1 We then
define our second obstruction to be

where h : M - 6 is as chosen above.
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LEMMA 7.1: : (J2(f) is well-defined.

be alternate

choices. We must prove that

and for this it suffices to prove that T(ala-l) = 0. (Just use the formula
for the torsion of a composition.) 

Then ala-1 restricts to give h.e.’s of A to Ai, B to BI and A n B to
Ai n BI. Using the Sum Theorem for torsion we have

where a, b and c are inclusion-induced homomorphisms into

Wh wiT(#i). It is easy to see that aT(ala-1 1 A) = bT(ala-1 1 B).
Clearly A n B:= K’U K" (two disjoint copies of K) and Al n BI ==
KI’U K;’ (two disjoint copies of K,). Computing torsions we get

where we have omitted the necessary inclusion-induced homomor-

phisms. It is easy to see that

and therefore T(a la -1) = 0 by the above formula. ~ 

PROOF oF THEOREM 6: We first assume that f = f’, where f’: M ~
S’ is the projection map of a compact Q-manifold fiber bundle. It

follows from the proof of Theorem 5 (Part I) that Ci(f) = 0. By
Theorem 2.2 we have h = h’: M ~ E, where h’ is a f . h. e. Since O2’(f) is
well-defined we may choose a : 6 - T(#) = M , to be (h’)-’: e M,
where 03C8 is a characteristic homeomorphism of the bundle f : M - S’.
Then T(ah) = 0 and consequently 6((f) = 0.
On the other hand assume that O1(f) = 0 and ()2(f) = 0. Since ()l(f) ==

0 we have a f. h. e. a: ’î ---&#x3E; E, where E ---&#x3E; S’ is a compact Q-manifold
fiber bundle. In the definition of ()2(f) we may take T(03C8) = E. Then
O2’(f) = 0 implies that we have T(ah ) = 0. Thus ah is homotopic to a
homeomorphism..
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8. Proof of Theorem 7

We will first need some preliminary results on homotopies. Our
main result is Corollary 8.3.

LEMMA 8.1: With M and B as in the statement of Theorem 7, let

F: M x I - B be a map such that Fo = Fi. Then F = G rel M x 10, 1},
where G : M x I ---&#x3E; B is of the form G(m, t) = rtFo(m), for some homo-
topy r: B x I ---&#x3E; B satisfying ro = ri = ld.

PROOF: Let à C B’ be the set of maps a : I - B such that a (0) =
a(1). There is a natural map p: A --&#x3E; B given by p (a) = a (0). This map
is a fibration. The fiber is a disjoint union of contractible open subsets
(B is a K(r, 1) and the fiber is f2B.)
Let S be the space obtained from à by identifying a - a’iff a is

homotopic to a’ rel {0, Il. Certainly Î is a covering space of B where
the components of S correspond to free homotopy classes of loops
and the sheets in a component correspond to 7TI acting on based
loops. 
There is a natural map (the quotient) q: à A covering the identity

on B. This map takes components in the fiber of à to points in the
fiber of ~ in a 1-1 fashion. By Theorem 2.1, q is a f.h.e. and has a
fiber homotopy inverse, ql:,j --- &#x3E;,à. We can therefore find a f . p.
deformation retraction s:,àxI---&#x3E;,à such that so=ld and sl(,à)=
q1(A).
Each m E M determines a loop in B by m - Ft(m), 0  t  1. This

defines a map k : M --&#x3E;,à such that Ft(m) = k(m)(t). Define G : M x I --&#x3E;

d by Gu(m) = suk(m). Then Go(m)[t] = Ft(m), Gu(m)[0] = Gu(m)[1] _
f (m ) and Gi(m ) is a path depending only on f(m). Defining Gt(m) ==
GI(m)[t] we have a homotopy from Fo to FI. Because Gt(m) depends
only on f(m), we can write Gt(m) = rtFo(m), for some r: B x I ---&#x3E; B

satisfying ro = ri = ld.

REMARK: The above result is true (with the same proof) for B any
K(7r, 1).

LEMMA 8.2: Let us choose B as in Theorem 7 and let r: B x I --- &#x3E; B

be a homotopy such that ro = ri = ld.

(1) If n &#x3E;_ 2, then r is homotopic to the constant identity homotopy
rel B x {0,1}.

(2) If n = 1, then r is homotopic (rel B x 10, 11) to a "standard

rotation."
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PROOF: Let 13 be the universal cover of B and cover r by r: 13 x
I - B so that ro = ld. 71 is a deck transformation properly homotopic
to ld. It is therefore the identity if n ? 2. Thus, all loops rt(b),
0 = t = 1, are null-homotopic for n 2?: 2. The component of S contain-
ing the null-homotopic loops covers B trivially. The cover à consists
of disjoint trivial sheets for n = 1. Thus an argument similar to

Lemma 8.1 homotopes r to a constant for n 2?: 2 and to a "standard
rotation" for n = 1. (If B = S’, a "standard rotation" is a rotation

through an integral multiple of 360°. For B = S’, the homotopy
equivalence defines a standard rotation.) M

COROLLARY 8.3 Let us choose M, B as in Theorem 7 and let

91, g2: M ---&#x3E; B be homotopic maps. Then any two homotopies from g,
to g2

(1) are homotopic (rel g, and g2) for n 2?: 2, and
(2) differ by a "standard rotation" of B for n = 1.

The First Obstruction. For convenience we will henceforth refer to

the fiber bundle f , : M - B as f , : Mi - B. By Theorem 2.2 we see that
ld : MI ---&#x3E; M is homotopic to a f.h.e. g : Mi - M. Choose bo E B so that

F == Mbo. The first obstruction is P1(f1) = T(gho) E Wh 7r,(F), where

gho: (MI) b,, - F.

LEMMA 8.4: P1,(f1) is well defined.

PROOF: Let g’: Mi - M be another f.h.e. homotopic to ld. Both g
and g’ are obtained by lifting homotopies from fi to f. Thus g and g,
depend only on the homotopy class (rel f1 and f ) of the homotopy
from fi to f. If n - 2 we conclude by Corollary 8.3 that g’ = g and
therefore T(gbo) = T(geo). For n = 1 choose a characteristic map ~: F-&#x3E;

F which is a homeomorphism. By Corollary 8.3 we have gbo = cpkgbo,
for some k ? 0. Computing we get

We showed in the proof of Theorem 4 (Part II) that (ld - ’P*)T(gbo) == 0.
Thus T(gbo) = 03C4 (gb0) ~

The Second Obstruction. Assume that -ôP,(f 1) = 0. We have ’r(gbo) =
0 and therefore gbo: (MI)b ---&#x3E; F is homotopic to a homeomorphism
91: (Ml)b,, ---&#x3E; F. Choose characteristic maps ’Pi: F ---&#x3E; F, 1  i  n, where

each ~l is a homeomorphism. Similarly, choose characteristic maps
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It is easy to check that 0 is a homomorphism since g;(F) is

PROOF: First assume that n &#x3E;_ 2. Then all we have to do is show
that if g2: (MI)b,, ---&#x3E; F is another homeomorphism homotopic to

P(F) is abelian it is easy to see that

which implies that
For n = 1 let g2: (MI)b --- &#x3E; F be any homeomorphism homotopic to

q;kgbo. Then we must show that q; -lgll/Jg11 and lp-lg2i/lg2 have the same
image in Cokernel (0). We have just shown above that ÇO-192IP92’ and
q; -1(q;kgl)I/J(q;kgI)-1 have the same image. But

and therefore

So it remains to be shown that any element of the form epkhep-kh-l lies
in Image (0), for h E P(F). But this follows from interated use of the
formula

PROOF oF THEOREM 7: First assume that there is a f.p. homeomor-
phism h : Mi - M such that h = ld. Then g, = h 1 (MI)bo: (MI)bo -&#x3E; F is a
homeomorphism and T(h I (M,)bo) = 0. This proves that P1(f1) = 0. For
the second obstruction it can easily be argued from the existence of h
that g 1 lfg î 1 is isotopic to ’Pi, for 1 - i :5 n. (Or we can refer to [7].)
Therefore P2(fl) = 0.
On the other hand assume that -OPI(fi) = 0 and -0»2(f2) = 0. Now

éPi(fi) = 0 implies that there is a homeomorphism g1 : (MI)b,,---&#x3E;F which
is homotopic to g l 1 (MI)bo: (M, )bo -~ F, where g : MI --- &#x3E; M is a f . h. e.
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homotopic to ld. Now P2(f I) = 0 implies that

for some a E 1P(F). Thus ’PlgI«Pigl1 1 is isotopic to cp ’acpa-1, which
implies that (a-lgI)f/!i(a-lgI)-1 is isotopic to ’Pi, for each i. By [7] this
implies that a -’gl extends to a f . p. homeomorphism of Mi onto
M. ·

9. Computation of a Kernel

Our main result is Theorem 8. We will first need the general
construction of Lemma 9.1 below. For notation let X~ B be a map
and let B p B be a covering space. Form the pull-back,

where X =={(x,e)If(x)==p(e)}. Each deck transformation ço: É ---&#x3E; Ê
induces a deck transformation iP: X - X defined by iP(x, e) = (x, q;(e)).

f, f2 - 
P

LEMMA 9.1: Let Xi - B and X2---&#x3E; B be maps, B --&#x3E; B be a
covering space, and let h: XI---&#x3E; X2 be a homeomorphism such that
f2h :-- fi. If the pull-back X, is connected, then there exists a

homeomorphism h : ’X1 --&#x3E; IÎ2 such that h covers h and h commutes
with the deck transformations of X, and X2 which are induced by the
deck transformations of 13.

PROOF: Since f 2h = f 1 there is a homotopy F: XI x I --&#x3E; B so that Fo
is the composition BÀi#Xi ’ B and FI is the composition
Ài # XI X2-4 B. Note that Fo can be lifted to X, B.
Therefore F: Xl x I - B can be lifted to F: Xl x I - 13 so that Fo = f 1
This induces a map h : Xi - X2 defined by h(x, e) = (h(x), Êl(x, e)). We
leave it as an exercise for the reader to check that h fulfills our

requirements..

LEMMA 9.2: Let K be a finite complex and let ç: K ---&#x3E; K be a

homotopy equivalence. If T(q;) is the mapping torus of q; and i is the

natural inclusion K4 T(~), then i*(ld - ç*) = 0, where i* and ç* are
the induced homomorphisms on the Whitehead groups of K and T(ç).
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PROOF: Choose any torsion T E Wh 7r,(K). We must prove that
i*(T) = i*cp*(T). By [6] we may represent T by a pair [L, K], where L is
a finite complex containing K as a deformation retract. This means
that T = T(f ), where f : L - K is any deformation retraction. It then

follows that cp*T(f) may be represented by [L U cp K, K] (we assume
that cp is a PL map). Applying i* we observe that i*,r(f) may be
represented by [L U T(ç), T(ç)] and i*cp*,r(f) may be represented
by [L U cpT(cp), T(ç)]. But if = içof, and this implies that [L U
T(cp), T(cp)] and [L U cpT(cp), T(ç)] represent the same torsion in

Wh irl(T(ço». M

LEMMA 9.3: Let K be a finite connected complex and let çi : K ---&#x3E; K

be a homotopy equivalence, for 1  i  n. Define X to be the space
formed by sewing the mapping tori T(çoi) together along K == K x 101
K x 111 in T(CPi). Then the kernel of the inclusion-induced map

PROOF: It follows from Lemma 9.2 that each element of G lies in
the kernel of i*. For the other half we will assume n = 2. The other
cases can be treated similarly. 
Choose any torsion T E Wh 7T,(K) for which i*(r) = 0. As in Lemma

9.2 we may represent T by a pair [L, K]. The condition Í*(T) = 0

implies that the inclusion X4X U L is simple. Multiplying by Q and
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applying [3, Theorem 29.4] there is a homeomorphism h: X x Q-
(X U L) x Q which is homotopic to the inclusion. Using Z-set un-
knotting we may assume that h 1 X x 101 = id. There is a natural map
f : X ---&#x3E; B = S U S2 so that K is sent to the wedge point of B and
T(~i) is wrapped once around Si’. We choose notation so that f-l(b) is
a copy of K, for each b E B, and passing down the "rays" of T (cpi)
covers a path wrapping counterclockwise around Si’. That is, in the
representation T(cp) = K x [0, 1](--, passing from 0 to 1 corresponds
to going counterclockwise around S’. Let Xi = X U L and define

fi: XI ---&#x3E; B by the composition Xi - X B, where the first map is
obtained by taking a deformation retraction of L onto K. Above is a
picture of XI, where L is represented by a segment added to K =

T(Wi) n T(CP2).

Form the pull-backs as in Lemma 9.1,

where Ê is the universal covering space of B. The homeomorphism h
lifts to a homeomorphism h : X x Q - Xi x Q for which h ) X x {0} =
id and h commutes with the deck transformations of X x Q and
Xl x Q which are induced by the deck transformations of B.
B is a 1-complex such that p takes each vertex to the wedge point

of B and p wraps each 1-simplex once around S) or S2. Let A be the
following subset of the plane.

We may identify AI with a subcomplex of B so that p wraps the
horizontal 1-simplexes in AI around S; and the vertical 1-simplexes
around S2. Choose notation so that the positive directions on AI
correspond to the clockwise directions on S; and S2. Let Tl be the
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deck transformation of B taking (0, 0) to (1, 0) and let T2 be the deck
transformation taking (0, 0) to (0, 1).

Let

and choose a finite connected subcomplex An of B so large that

Then A and A’ divide , into com-

ponents as pictured.

The components are named so that

and note that each Ki has a standard

identification with K. We observe that the pair [A, Ki] represents the
0 torsion of Wh 7r,(K) and [A’, KJ represents the given torsion

T E Wh 7TI(K).

An easy torsion calculation gives us

Let Si: X x Q ---&#x3E; X x Q be the deck transformation induced by Ti. Since
h commutes with the induced deck transformations we observe that

Thus
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It is easy to see that [Si ’(B2), K] = [B2, K] and | 
Substituting all this in (*) above we get

We now compute the left-hand side of (**). Note that

Substituting this into (**) above we get

This is all we need..

THEOREM 8: Let ’î ---&#x3E; B be a Hurewicz fibration, where B is h.e. to a
wedge of n 1-spheres and the fiber F = Eb0, is h.e. to a finite connected
complex. If i is the inclusion map FÙ 6 and {pJi=1 is the collection of
characteristic maps ç;: F --- &#x3E; F, then the kernel of i* : Wh 7r,(F) ---&#x3E;
Wh 03C01(E) is

PROOF: By taking a h.e. of a wedge of n 1-spheres to B and

forming the pull-back, we may assume that B is a wedge of n

1-spheres, B = SlU ... U Sn. Choose bo E B to be the wedge point
and let p,: F - F be the characteristic maps. Let a : eb, --&#x3E; K be a h. e.
of eb,, to a finite complex. Define ; = acpa -’ : K - K and form the
space X - B of Lemma 9.3. We leave it as a manageable exercise for
the reader to construct a h. e. Q : 6 - X such that

homotopy commutes. Then Kernel (i*) = Kernel (j*a*) and all we

need is Lemma 9.3. ~
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