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A PSEUDO-INTERIOR OF AI*

J. van Mill

Abstract

We show that the subspace AmpR of AR is homeomorphic to the
pseudo-boundary B(Q)={x € Q l 3i EN:|x;j| = 1} of the Hilbert cube
Q. This answers a question of A. Verbeek raised in [9].

1. Introduction

If X is a topological space, then the superextension AX of X
denotes the space of all maximal linked systems consisting of closed
subsets of X (a system is called linked if every two of its members
meet; a maximal linked system or mls is a linked system not properly
contained in another linked system) topologized by taking {{# €
AX |G EM}IG =G~ C X} as a closed subbase (De Groot [4]). In
case (X, d) is a compact metric space, then AX also is compact metric
(Verbeek [9]) and the topology of AX also can be described by the
metric

d(M, X) = sup min dg (S, T);
SeEM TeN

here dy(S, T) denotes the Hausdorff distance of S and T defined by
inf{e >0 | SC UA(T) and T C U.(S)}, where as usual U.(T) denotes
the e-neighborhood of T (Verbeek [9]). Reflecting on this metric, one
sees that there must be a connection between AX and the hyperspace
of all nonvoid closed subsets 2¥ of X. The hyperspace 2% is
homeomorphic to the Hilbert cube Q if and only if X is a non-
degenerate Peano continuum (Curtis & Schori [3]) and it was con-
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jectured by Verbeek [9] that AX is homeomorphic to Q if and only if
X is a nondegenerate metrizable continuum. Earlier, De Groot con-
jectured that Al is homeomorphic to the Hilbert cube, where I
denotes the real number interval [— 1, 1]. This was shown to be true in
[7]. If X is a noncompact metrizable space then AX is not metrizable,
although it contains some interesting dense metrizable subspaces such
as AcompX (Verbeek [9]). This subspace of AX consists of all maximal
linked systems which have a compact defining set, where an mls # is
said to be defined on a set M if

for all S € M there exists an S’ € M such that S’C SN M.

It is obvious that A.m,X equals AX in case X is compact, for then X
is a compact defining set for all #£ € AX. In case X is noncompact
there are many maximal linked systems which do not have a compact
defining set, for example in case X = R, the real line, |A.ompR| = ¢ While
[AR| =2°. Verbeek [9] showed that A.m,R is a dense, metrizable,
contractible, separable, locally connected, strongly infinite dimen-
sional subspace of AR which is in no point locally compact; he
conjectured that A,mpR is homeomorphic to [, the separable Hilbert
space. We will show that this is not true. In fact we will show that
AcompR 18 homeomorphic to the pseudo-boundary B(Q)=
{xeQ | JieN:|x]=1} of the Hilbert cube Q. As A, mpR is
homeomorphic to Acmp(—1, 1), which can be identified with the sub-
space of AI consisting of all maximal linked systems with a compact
defining set in (—1, 1) (Verbeek [9]), we can work in Al = Q. We will
show that A.mp(—1, 1) is a capset of Al (for definitions see section 3)
so that AI\A.mp(—1,1) is a pseudo-interior for AI and hence is
homeomorphic to [; (Anderson [2]).

This paper is organised as follows: in the second section we give a
retraction property of superextensions, which is needed to prove that
Acomp(— 1, 1) is a capset of AL The third section shows that Aomp(—1, 1)
is a capset of Al using a lemma of Kroonenberg [6].

2. A retraction property of superextensions

All topological spaces under discussion are assumed to be normal
T,; linked system will always mean linked system consisting of closed
subsets of the topological space under consideration. If G is a closed
subset of the topological space X, then we define G' as G =
{MEIX | G e M}; AX is topologized by taking {G*I G is closed in
X} as a closed subbase. This subbase has the property that each
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linked subsystem of it has a nonvoid intersection so that by Alex-
ander’s subbase lemma, AX always is compact. Moreover X can be
embedded in it by means of the natural embedding i(x) ={G C X | G
is closed and x € G}. We will always identify X and i{[X]. Every
linked system is contained in at least one maximal linked system by
Zorn’s lemma. A linked system  is called a pre-mls if it is contained
in precisely one mls; this mls is then denoted by # and we say that #
is a pre-mls for . Obviously # is a pre-mls iff for all closed sets S,
and S, such that M U{S;} is linked (i =0,1) we have SN S, #0. If S
is a closed subset of the compact metric space (X, d) then for each
€ >0 we define

B(S)={x € X | d(x, S) =€}

LEMMA 2.1: Let (X, d) be a compact metric space and let M be a
pre-mls for M€ AX. Then for each N € AX we have that 3(4, N) =
infla = 0| VS € #:B,(S)E N}.

PRrooF: Verbeek [9] proved the following

d(M, N)=min{fa=0|VSEM:B,(S)EN and VT E N : B,(T) € M}
=min{a = 0| VS € #: B,(S) E N}

and therefore inf{a=0 | VSeEM:B,(S)E N} = 3(4, N). Let us
assume that inf{a =0 |VS €M :B,(S)EN}<d(M, N). Then there
exists an ag such that 0=<g,< J(ﬂ, N) with the property that for all
S € M we have that B,(S)E N while there exists a T € 4 such that
B, (T)Z M. As M is a pre-mls for A there is an M € M such that
B.,(T)NM =§. However B,(M)€E W, so that B,(M)N T #§. Now,
as X is compact, this is a contradiction. [J

The distance between two maps f and g: X — Y, where (Y, d) is
compact metric, is defined by d(f, g) = sup.ex d(f(x), g(x)). The iden-
tity mapping on X is denoted by idy.

THEOREM 2.2: Let X be a toplogical space and let M be a linked
system in X. Then N{M*| M € M} is a retract of AX. Moreover, if
(X, d) is compact metric then the retraction map r can be chosen in
such a way that d_(r, idyx) = supyeq dy(X, M).

PrROOF: Let J be a linked system in X. Notice that N{M* | M €
M}#B. Choose N EAX and define PN ={NEWN|[{N}UM is
linked} U .

(a) PA is a pre-mls.
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It is obvious that PA is linked; so assume to the contrary that it
were not a pre-mls. Then there exist closed sets S; such that P& U
{S;} is linked (i = 0, 1) but SN S, = @. The normality of X implies that
there exist closed sets G; (i =0, 1) such that S;N G, =0=G,N S, and
GoU G, = X. Now, as ¥ is a maximal linked system one of the sets G;
must belong to N(if G; € & (i =0, 1) then there exist M; € A such that
M:NG;=0(i=0,1) so that MyN M, = @ contradicting the linkedness
of X) so that we may assume that Gy € N. Now, S, C G, implies that
M U{Gy} is linked and consequently G, € PN. This is a contradiction
since GoN S, = 9.

(b) Define r:AX - AX by r(¥)= PA. Then r is continuous.

Let G be a closed set of X and assume that r (G*) # 0. We will
show that r '(G*) is closed in AX. Choose N€& r '(G*). Then
r(¥N)€Z G* and consequently r(N) U {G} is not linked; therefore P& U
{G} is not linked. Choose N € PN so that N NG =@. Now, if N € A,
then r '(G*) is void, which is a contradiction. Therefore N € .
Choose closed sets S; (i =0,1) such that SSNN =@§=G NS, and
SoUS,=X. Then ¥ €E€AX\S;CS/, while moreover (AX\Sg)N
r''(G")=@. For assume to the contrary that there exists a £€E
AX\SHNr '(G"). Then S,E¢ and 4 U{N} is linked implies that
M U{S} is linked and consequently S, € P£C r(§¢). This is a con-
tradiction, since G € r(¢) and SN G =0.

) rAXxX)=nNn{M* I M € M} and r is a retraction.

Choose N &EAX. Then MCPNCr(N) so that rN)eE
N{M*| M € #M}. Moreover if ¥ € N{M" | M € M} then PN = A and
therefore r(N) = N.

(d) If (X, d) is compact metric, then d(r, idyx) < sup yex du(X, M).

Let a = supyex dy(X, M) and choose ¥ € AX. Take N € PN and
consider B,(N). If N € ¥ then also B,(N)E N;if N Z N then N € #
and therefore B,(N)= X which also is an element of N. It now
follows that

d(N, r(¥) =inf {a =0|VS E PN : B,(S)E N}
(lemma 2.2)

= sup dy(X, M).00
MeM
If Y is a closed subset of X, then AY can be embedded in AX by the
natural embedding jyx defined by
jyx(M):={G C X |G is closed and GN Y € M}

(Verbeek [9]). It should be noticed that jyx () is indeed a maximal
linked system. We will always identify AY and jyx(AY).
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LLEMMA 2.3: Let Y be a closed subset of X. Then M € AX is an
element of A\Y if and only if M N'Y l M € M} is linked.

ProoF: If # €AY, then{M NY | M € M} is a maximal linked sys-
temin Yandif {(MNY | M € M} is linked, then it is easy to see that
it is also maximal linked (in Y) and that jyy(M NY | Meup) =40

The importance of Theorem 2.2 now is demonstrated in the proof
of the following theorem.

THEOREM 2.4: Let (X, d) be a compact connected metric space and
let Y be a nonempty closed proper subset of X. Then for each € >0
there exists a continuous map f.:AX - AX\AY such that d(f., id\x) < e.

PRroOF: Choose € > 0 and choose two disjoint finite sets G, and G,
such that dy(G,X)<e (i=0,1). Let p€ X\Y and define F;,=
G; U{p}. Let f. be the retraction of AX onto Fy N F; as defined in
Theorem 2.2. Then d(f., id\x) < max{dy(Fy, X), dy(F,, X)}<e€ and
moreover f.(AX)NAY =0. For take ¥ € f(AX); then F,EN (i =
0,1) and (FoNY)NF;NY)=@ and consequently, by Lemma 2.3,
NEZAY. R

3. A Pseudo-interior of AT

By the Hilbert cube Q we mean the countable infinite product of
intervals [—1,1]" with the product topology. The topology is
generated by the metric

d(x, y)= Zl 27 x; — yil.

A closed subset A of Q is called a Z-set (Anderson [1]) if for each
€ > 0 there exists a continuous map f: Q- Q\A such that d(f, idg) <
€. In addition, a subset M of Q is called a capset for Q (Anderson [2])
if M can be written as M = U ., M;, where each M; is a Z-set in
Q, M; C M;,, (i EN) and such that the following absorption property
holds: for each € >0 and i EN and every Z-set K C Q there exists a
j>i and an embedding h: K — M; such that h | K N M; = idgnm, and
d(h,idg) <e. It is known that every capset of Q is equivalent to
B(Q)={x€eQ I 3i EN:|x;| =1}, the pseudo-boundary of Q, under an
autohomeomorphism of Q [2]). The complement of a capset is called
a pseudo-interior of Q and is homeomorphic to [,, the separable
Hilbert space ([2]). We will show that A.my(—1,1) is a capset of Al
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using the fact that Al = Q ([7]). It then follows that AI\A omy(—1, 1) is a
pseudo-interior for AL In [6] an alternative characterization of capsets
is given and we will make use of that characterization.

LEMMA 3.1 ([6]): Suppose M is a o-compact subset of Q such that

(i) For every €>0, there exists a map h:Q— Q\M such that
d(h,idg)<e.

(ii) M contains a family of compact subsets M, C M, C - - - such
that each M; is a copy of Q and M; is a Z-set in M,,; (i EN), and such
that for each € >0 there exists an integer i EN and a map h:Q - M;
with d(h, idg) < €.

Then M is a capset for Q.

First we will show that A.omy(—1, 1) is o-compact.

LEMMA 3.2: Aomp(—1, 1) = U::z A[—=1+1/n,1-=1/n].

PRrROOF: Choose M € Acomp(—1,1) and let M C (=1, 1) be a compact
defining set for . Then choose ny=2 such that MC
[-1+1/ny, 1 —1/ne]; from Lemma 2.3 it now follows that # €
A[—=1+1/ng, 1 = 1/ngl.

Moreover, if M EA[—-1+ 1/n, 1 ~1/n] then for all M € M we have
that also M N[—1+1/n, 1 — 1/n] belongs to 4, showing that [—1 + 1/n,
1—1/n] is a defining set for . For assume to the contrary that for
some M € M it were true that M N[— 1+ 1/n, 1 — 1/n] & M ; then there
would exist an My,€ # such that MoN[—1+1/n, 1-1/n]1NM =6,
contradicting the linkedness of {M N[-1+1/n, 1—1/n] IM € M}
Lemma 2.3).10

LEMMA 3.3: For each €>0 there exists a map f.:Al—>
AN\Acomp(—1, 1) such that d(f., idy)) <e.

ProOOF: Choose € >0. For each n=2, let F,, and F,; be finite
subsets of I such that
(i) du, F,;)<1€ (i=0,1)
(i) FopoNF, N[-1+1/n,1—=1/n]1=9
(iii) {~1,1)C FooNF,,,

and let f. be the retraction map, given by Theorem 2.2, of Al onto
M,y (FroN F;). Then d(f. idy)=sup{du(l, F,)|n=2, i=0,1}=
le < €, while moreover the image of Al is disjoint from A omp(—1, 1).
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For choose N € f.(Al) and n=2; then F,;€EN (i=0,1) and F,,N
F,;N[-1+1/n, 1—1/n]=@. Therefore N is not an element of
Al=1+1/n, 1—-1/n] by Lemma 2.3. Consequently N & Acmp(—1,1)
(Lemma 3.2).00

THEOREM 3.4: Aomp(—1, 1) is a capset for AL

ProOOF: Choose € >0 and let n =2 such that 1/n <e. Define a
retraction r:[—1,1]->[—1+1/n, 1—1/n] by

X if —1+1l/n=x=1-1/n

—1+1/n f-1=x=-1+1/n
r(x) =
1-1/n ifl-1/n=x=<1

This map can be extended to a map 7F:AI > A[—1+1/n, 1 —1/n] in the
following manner

F(M)={G C[-1+1/n,1~1/n]| G is closed and r '(G) € .M}

(Verbeek [9]). Let j:A[-1+1/n,1—1/n]— AI be the natural embed-
ding defined by j(#)=M={GCI I G is closed and G N[-1+1/n,
1—-1/n] € M}. The composition g = jor:AI - AI can be described by

g(M)={G CI|G is closed and r (G N[—1+1/n,1—1/n]) € M}.

We will show that g moves the points less than €. It is clear that
g(AI)=Al-1+1/n, 1—=1/n]. Choose M E Al and assume that
d(M, g(M)>1/n. Then there exists an M E M such that
By,(M) & g(M) (Lemma 2.1). Consequently there exists a G € g(M)
such that r''(GN[-1+1/n, 1-1/n])€ M and B,;,(M)N G =@. Now
take ap EMNr '(GN[—1+1/n, 1-1/n]). Then d(r(p), p) < 1/n and
hence r(p)e GN[-1+1/n, 1-1/n]N By, (M)C G N By,(M), which
is a contradiction. It now follows that d(g, idy;) < 1/n <e.

It is obvious that A[-1+1/n, 1—1/n]CA[-1+1/n+1, 1-1/n+1]
(n =2), so that by Theorem 2.4, Lemma 3.2, Lemma 3.3 and the fact
that A[—-1+1/n, 1—1/n]=AI=Q the family {A[—-1+1/n, 1-—
1/n]|n=2} satisfies all conditions of Lemma 3.1. Therefore
Acomp(—1, 1) is a capset for AL[]

COROLLARY 3.50 AcompR s homeomorphic to B(Q) =
{xeqQ | JieN:|x| = 1}. A\Aeomp(—1, 1) is homeomorphic to I,.

The space AR now turns out to be a very strange space. It is a
connected, locally connected (super)compact Hausdorff space of
cardinality 2° and weight ¢, which possesses a dense subset
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homeomorphic to B(Q). The closure of R in AR is BR, its Cech-Stone
compactification (Verbeek [9]).
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