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For a semisimple Lie group admitting discrete series Enright and
Varadarajan have constructed a class of modules, denoted Dp,À (cf.
[3]). Their infinitesimal description based on the theory of Verma
modules parallels that of finite dimensional irreducible modules. The
introduction of the modules Dp,a in [3] was primarily to give an
infinitesimal characterization of discrete series but we feel that [3]
may well be a starting point for a fresh approach towards dealing with
the problem of classification of irreducible representations of a

general semisimple Lie algebra.
In order to give more momentum to such an approach we first

construct modules which broadly generalize those in [3]. We briefly
describe them now.

Let go be any real semisimple Lie algebra, go = ko + po a Cartan
decomposition and 0 the associated Cartan involution. Let g = k + p
be the complexification. Let U(g), U(k) be the enveloping algebras of
g, k respectively and let Uk be the centralizer of k in U(g). For each
03B8 stable parabolic subalgebra q of g we associate in this paper a class
of irreducible k finite U(g) modules having the following property:
Like finite dimensional irreducible modules and like the Enright-
Varadarajan modules DP,,,, any member of this class comes with a

special irreducible k-type occurring in it with multiplicity one, with an
explicit description of the action of Uk on the corresponding isotypi-
cal k-type. We obtain these modules by extending the techniques in
[3].
To see in what way these modules are related to the 0 invariant

parabolic subalgebra q we refer the reader to §2.
When our parabolic subalgebra q is minimal in g and when rank of

g = rank of k, the class of U(g) modules which we associate to this q
coincides with the class of modules Dp,À of [3] (with a slight difference



54

in parametrization). On the other hand when q = g is the maximal

parabolic subalgebra, the class we obtain is just the class of all finite
dimensional irreducible representations of g. If k has trivial center,
the trivial one dimensional U(g) module is not equivalent to any of
the modules Dp,À of [3]. This gap is bridged by the introduction of our
class of U(g) modules for every intermediate 03B8 invariant parabolic
subalgebra q between q = g and q = a 03B8 invariant Borel subalgebra of
g.

We have to point out that the knowledge of [3] is a necessary

prerequisite to read this paper. If an argument or construction needed
at some stage of this paper is parallel to that in [3] then instead of
repeating them, we simply refer to [3].

§1. 0-stable parabolic subalgebras

As in the introduction, g = k + p is the complexified Cartan decom-
position arising from a real one go = ko + po. Let 0 be the Cartan
involution. Let b be the complexification of a fixed Cartan subalgebra
bo of ko. Then the centralizer of b in g is a 0 stable Cartan subalgebra
h of g. We can write

where a = p FI h. Let ao == a n go and ho == h n go. Let L1 be the set of
roots of (g, h). For a in L1, denote by ga the corresponding rootspace.

(1.2) LEMMA: Let rk be a Borel subalgebra of k containing b. Let q
be a 03B8 stable parabolic subalgebra of g containing h and assume that
q contains rk. Then q contains a 03B8 stable Borel subalgebra r of g such
that (i) h C r and (ii) rk C r.

PROOF. Let u be the unipotent radical of q. Define a () invariant

element p, of hX(== Homc(h, C)) by p,(H) = trace (ad(H)lu). Let H03BC
in h be defined by À (H§) = (A, 03BC,) for every À in hX. (Here and in the
following the bilinear form is the nondegenerate one induced by the
Killing form of g). Then
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Then one can see that

Let Ck be the open Weyl chamber in ibo for (k, b ) defined by the
Borel subalgebra rk. Since we assumed that rk C q, it follows from 1.5
that

Let a be in à. If a is identically zero on b, it would follow that b is

not maximal abelian in k. Hence a is not identically zero on b. Let Ck
be the open subset of Ck got by deleting points of Ck where some a
belonging to à vanishes. Then Ck is the disjoint union

of its connected components and one has

Choose an index M between 1 and N such that

Now choose an element Xj in Ck,; and consider the weight space
decomposition of g with respect to ad(Xj). We now define a Borel
subalgebra r’ of g by,

(1.10) r’ = the sum of the eigenspaces for ad(Xj)
with nonnegative eigenvalues.

If we define 

then clearly Pi is a positive system of roots in à and r’ = h + 1,,,,,P, gl.
Since Xj belongs to k clearly both r’ and Pi are 0 stable. 1.9 implies
that for every a in P M, a (H,,) is nonnegative. Hence from 1.4 and 1.5
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Also since XM belongs to Ck, (1.10) implies that

(1.13) rk is contained in rM. (q.e.d.)

(1.14) COROLLARY: Let rk be as in Lemma 1.2. Let r be a 0 stable

Borel subalgèbra of g containing rk. Then r equals one of the N Borel
subalgebras ri of (1.10).

PROOF: Since r contains b, r contains a Cartan subalgebra of g
containing b. h is the unique Cartan subalgebra of g containing b.

Hence r contains h. In the proof of Lemma 1.2 take q = r. Then it is
seen r = rM.

(q.e.d.)

Rather than starting with a Borel subalgebra rk of k containing b,
we want to start with an arbitrary 0 invariant parabolic subalgebra of
g and recover the set up in Lemma 1.2. For this we prove the

following lemma.

(1.15) LEMMA: Let q be an arbitrary 0 stable parabolic subalgebra
of g. Then q contains a Borel subalgebra of k.

PROOF: Let Ad(g) be the adjoint group of g and Q the parabolic
subgroup with Lie algebra q. Let G" be the compact form of Ad(g)
with Lie algebra ko + ipo. Note that G" is 0-stable. It is well known

that Gu rl Q is a compact form of a reductive Levi factor of Q (cf. [8,
§ 1.21). But Gu n Q is o stable since G" and Q are 0 stable. Thus,
going to the Lie algebra level, q has a reductive Levi supplement
which is 0 stable. In this reductive Levi supplement we can surely
find some 0 stable Cartan subalgebra h’ of g. Then, as in the proof of
Lemma 1.2, we can find an element 703BC in h’ such that 0(H§) = H’
and such that q is the sum of the nonnegative eigenspaces of ad(H 03BC).
Since Hl’ lies in h’ n k, clearly it follows that q contains a Borel

subalgebra of k.

(q.e.d.)

(1.16) COROLLARY: Let r by any e stable Borel subalgebra of g.
Then r n k is a Borel subalgebra of k.
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§2. The objects r, r’, P, P’ and the choice of P" associated with a 8
stable parabolic subalgebra q

Now let q be a 0 stable parabolic subalgebra of g. By (1.15) we can
find a Borel subalgebra rk of k contained in q. We fix a Cartan

subalgebra bo of ko contained in rk. Let ao be the centralizer of bo in

po. Then ho = bo + ao is a 0 stable Cartan subalgebra of go. Let

h = b + a be its complexification. Note that h C q. By (1.2), we can
find a 0 stable Borel subalgebra r of g such that rk C r and r C q. One
has then h C r. There is a unique Borel subalgebra r’ of g contained in
q such that

(2.1) r f1 r’ = h + u, where u is the unipotent
radical of q.

Since O(r’) has the same property, we have O(r’) = r’. Let rk = r’ f1 k.
Then by (1.16), rk is a Borel subalgebra of k. We observe that rk is
the unique Borel subalgebra of k such that

(2.2) rk rl rk = b + uk, where Uk is the unipotent
radical of qk(= q rl k).

We denote by Wk the Weyl group of (k, b) and by Wg the Weyl
group of (g, h). Wk is naturally imbedded in Wg as follows: if s

belongs to Wk then s normalizes b, hence also normalizes the cen-
tralizer of b in g which is precisely h. Thus s belongs to Wg.
We will now define two distinguished elements of the Weyl group

Wk. Let t be the unique element of Wk such that t(Pk) == - Pk. Next we
denote by T the unique element of the Weyl group Wk such that

T(Pk) = Pk. The class of U(g) modules associated to q will be

parametrized by some subsets of hX. We now prepare to describe

these. Let Ak be the set of roots for (k, b). Whenever possible we will
denote elements of àk by 03B8 while elements of L1 (= the roots of (g, h))
will be denoted by a. For a root 03B8 in dk, denote by X, a nonzero root
vector in k of weight ç. For a in L1, we denote by Ea a nonzero root
vector in g of weight a. Let P and P’ be the sets of positive roots in
0394 defined respectively by r and r’. Next let Pk and P’ k be the sets of

positive roots in àk defined respectively by rk and rk. Let 5 and 8’
denote half the sum of the roots in P and P’ respectively and let 6k
and S k denote half the sum of the roots in Pk and P’ k respectively.



58

Let P" be a 0 stable positive system of roots in à such that if r" is
the corresponding 0 stable Borel subalgebra of g then

(2.5) REMARK: If one takes P" = P’ then (2.3) and (2.4) are clearly
satisfied. If q is a Borel subalgebra, then P’ = P and any P" which
satisfies (2.3) also satisfies (2.4). If q = g, then P’=-P; the only
candidate which satisfies (2.3) and (2.4) is P" = P’.
We can now describe the modules that we want to construct. As

usual for a in P denote by Ha the element of ibo + ao such that
À(Ha) = 2(À, a)/(a, a) for every À in hX Similarly for ç in Pk, denote
by H§ the element of ib o such that A (H§) = 2(À, cp )/( cp, 03B8) for every À
in bX (Note: The Killing form of g induces a nondegenerate bilinear
form on b which in turn induces one on bX )

Let F(P" : q, r) be the set of all elements 03BC in hX with the following
properties:

(2.6) 1£(H,,) is a nonnegative integer for every a in P".

(2.7) 03BC, (H ) is nonzero for every 03B8 in Pk and 1£(H,)
is nonzero for every a in P rl - P’.

EXAMPLE: Suppose u belonging to hX is such that ¡..t(Ha) is a

positive integer for every a in P". Then one can show that u belongs
to F(P" : q, r). The method of showing that g (H k) is nonzero for

every cp in Pk can be found in the proof of (3.6).
We now use some definitions and notations from [3, §§2, 5] (cf. also

§§3, 5 here). Let U k be the centralizer of k in U(g). Let 03BC e
F(P" : q, r). Our aim is to construct a k-finite irreducible U(g) module,
denoted Dp":q,,{..t) in which the irreducible k type with highest weight
- t( T¡..t + T5 - T5k - 5k) (cf. 3.7) occurs with multiplicity one and such
that on the corresponding isotypical U(k) submodule, elements of Uk
act by scalars given by the homomorphism XP,-JL-5 (cf. §5).

(2.8) REMARK: Fix q and r. For any compatible choice of P" and
for any element 03BC in F(P": q, r), we will show (cf. 3.6) that (i)
- it - 5(Ha) is a nonnegative integer for every a in P rl - P’ and (ii)
T¡..t + T5 - T5k - 5k(H;J is a nonnegative integer for every ç in Pk. Now
define F(q, r) to consist of all g in hx satisfying (i) and (ii) above. In
general F(q, r) properly contains Up,,F(P": q, r). Our constructions
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and proofs in §§3, 4, 5 go through perfectly well for any 1£ in F(q, r)
and so we do have a k-finite irreducible U(g) module in which the
irreducible k type with highest weight - t(Tu, + T8 - T8k - 8k) occurs
with multiplicity one and such that on the corresponding isotypical
U (k) submodule elements of Uk act by scalars given by XP,-IL-S. We have
restricted ourselves to the subsets F (P" : q, r) rather than all of F(q, r)
only because condition (ii) is the definition of F(q, r) is quite in-

comprehensible.

§3

Choose and fix an element u in F(P" : q, r) as in §2 (cf. (2.6) and

(2.7)). For facts about Verma modules that we will be using we refer
to [1,2,5,6].

Let M be any U(g) module. Let Q be a subset of dk. An element v
of M is said to be Q extreme if X, . v = 0 for every ç in Q. For A in
bX v is called a weight vector of weight 03BB with respect to b if

H . v = 03BB(H) - v for all H in b. By J(M) we denote the set of all A in
bX for which there exists a nonzero weight vector of weight k in M,
which is Pk extreme where Pk is the positive system of roots in làk
defined in §2. For ç in dk, M is said to be X, free if Xp ’ v = 0 implies
v = 0. For a subalgebra s of g, M is said to be s -finite if every vector
of M lies in a finite dimensional s submodule of M. For any q in 7Tk,

let m (~) denote the subalgebra of g spanned by the elements X~, X-~
and H k. For the notion of U(k) module of ’type Pk’ we refer to [3,
§2].
Let Po be a positive system of roots of à and let A G hi The Verma

module Vg,Po,A of U(g) is defined as follows: It is the quotient of U(g)
by the left ideal generated by the elements H - A(H), (H E h) and

Ea(a E Po). The Verma modules of U(k) are defined similarly. We
will suppress g and write V Po,A for the Verma module Vg,Po.A.
We have the inclusions h C r C q (cf. §2). Let 7T be the set of

simple roots for P. The parabolic subalgebras of g containing r are in
one to one correspondence with subsets of ir. The subset of 7T

corresponding to q is got as follows: Let in hX be defined by
u(H) = trace(ad H)lu. Then

From standard facts about parabolic subalgebras (cf. [8, §1.2]) we
know that elements of P n - P’ are of the form L miai where mi are

nonnegative integers and ai are in 7T(q). For a in à the element Sa of
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W, is the reflection corresponding to a. It is given by sa(A) ==
À - 2(À, a)/(a, a) - a. We now define a U(g) module W, by

considered as a U(k) module it has some nice properties.

(3.4) LEMMA: W, considered as a module for U(k) is a weight
module with respect to b ; i.e. W, is the sum of the weight spaces with
respect to b. Denoting also - JL - 8 the restriction of - JL - 8 to b, all
the weights are of the f orm - li - 3 - Y- n;ç; where ’Pi are elements of P
and ni are positive integers. Finally the weight spaces are finite
dimensional and the weight space corresponding to - JL - 8 is one

dimensional.

PROOF: Since as a U(g) module W, is the sum of weight spaces
with respect to h = b + a, the first statement is clear. Since no root a

in A is identically zero on b, we can pick up an element H in b such
that for every a in P, a(H) is real and positive. As a U(g) module,
the weights of W, with respect to h are of the f orm -,6 - 1 m;a;
(ai E P, in; nonnegative integers). By considering the action of H it is
clear that weight spaces of W, with respect to b are finite dimensional
and the weight space of b with weight - JL - 8 is one dimensional.

Finally since P is 03B8 stable the restriction to b of the weights with
respect to h are of the form - &#x3E; - à - 1 n;ç, where ’Pi are in P and ni

nonnegative integers.
(q.e.d.)

(3.5) COROLLARY: The U(k) submodule of W, generated by the

unique weight vector in W, of weight - JL - 8 is isomorphic to the

U(k) Verma module Vk,Pk-g-8 . W, is X-cp free for every ’P in Pk.

PROOF: Let v, be the nonzero weight vector in W, of weight
- ju - 5 - vj 1 is killed by every element of [r, r] hence in particular by
every element of [rk, rk]. On the other hand let i be the unique Borel

subalgebra of g such that r rl r = h and let n (r) be the unipotent
radical of r. If rk = r f1 k, then rk is the unique Borel subalgebra of k
such that rk n rk == b. Let U(n(r)) and U(n(rk)) denote the cor-

responding enveloping algebras considered as subalgebras of U(g).
One knows that W, is U(n(r)) free, [2]. Hence in particular it is

U(n(ik» free. The corollary now follows from [2, 7.1.8].
(q.e.d.)
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There is an ascending chain of U(k) Verma modules containing
Vk,Pk,-IL-S. This chain will give rise to a chain of U(g) modules, which
is fundamental in the work [3].

Recall the two distinguished elements t and T of Wk from §2. The
highest weight of the special irreducible representation of k which the
U(g) module Dp": q,,(JL) will contain is described in the corollary to the
lemma below.

(3.6) LEMMA: (i) - JL - S(Ha) is a nonnegative integer for every a in
P rl - P’ and (ii) TJL + TS - TSk - Sk(H;J is a nonnegative integer for
every ’P in Pk.

PROOF: By (2.4), (2.7) and (2.8), one sees that - JL(Ha) is a positive
integer for every a in P f1 - P’. The elements of P rl - P’ are non-
negative integral linear combinations of elements of 1T( q). Since

S(Ha) = 1 for every a in 7r(q) it now follows that - JL - S(Ha) is a

nonnegative integer for every a in P f1 - P’.
To prove (ii) first suppose ç lies in Pk n Pk. We will show that

TJL - Sk(H;J and TS - TSk(H;J are both nonnegative integers. For this it
is enough to show that T03BC,(H is a positive integer for every ç in Pk
and that Tô(H) is a positive integer for every cp in TPk. By (2.6) there
exists a finite dimensional representation of g having a weight vector
v of weight ju with respect to the Cartan subalgebra h and such that v
is annihilated by [r", r"] (cf. (2.3)). Since rk C r", v is in particular
annihilated by [rk, rk]. It is clear from this that 03BC(H, is a nonnegative
integer for every ç in P’. In view of (2.7), JL(H;J is then a positive
integer for every ~ in Pk. Note that TPk == Pk. Hence TJL(H;J is a

positive integer for every cp in Pk- It remains to show that r8(H,) is a
positive integer for every ç in TPk. For this consider the represen-
tation p of g having a weight vector v of weight 8 with respect to the
Cartan subalgebra h and annihilated by [r, r]. Clearly then v is

annihilated by [rk, rk], hence 8(H;J is a nonnegative integer for every
cp in Pk. To show that à(Hj is nonzero we give the following reason:
one can easily see that the stabilizer of v in g is exactly r. If S (H is
zero for some ç in Pk, then X_cp would stabilize v. But X-, does not
belong to r. Hence à(Hj is a positive integer for every ç in Pk, so
that TS(Hb is a positive integer for every (p in TPk.
Now suppose cp lies in Pk n - P k. Let r(q) be the maximal reductive

subalgebra of q defined by r(q) = h + LaEPn-p,(ga + g-a). By (ii) - li -
S(Ha) is a nonnegative integer for every a in P n - P’. Hence, if

n,(q) == LaEPn-p’ 9", there exists a finite dimensional representation of
r(q) and a weight vector for h of weight - JL - S annihilated by all of
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n,(,), hence in particular by k rl nr(q). Observe that Pk rl - P’k is pre-
cisely the set of roots in Pk, whose corresponding root spaces span
k rl nr(q). Thus there exists a finite dimensional representation of
b + ¿q;EPkn-Pk( C . X, + C - X-,) with a weight vector for b of weight
- ¡..t - 8 annihilated by X, for every ç in Pk n - Pk. Hence we
conclude that - ..t - 8(H;J is a nonnegative integer for every ç in

negative integer for every cp in Pk n - Pk. On the other hand T8k =

8 k = half the sum of the roots in P k, while 8k + 8k(H;J = 0 for every cp

in Pk n - Pk. Thus TJL + T8 - T8k - 8k(H;J is a nonnegative integer for
every ~ in Pk n - Pk.

This completes the proof of (3.6). (q.e.d.)

is a nonnegative in-

PROOF : Clear since - tPk = Pk. (q.e.d.)

Let 7Tk be the set of simple roots of Pk. For ç in Pk, let s~, be the

reflection sl{&#x3E; (A) == A - A (Hl{»’P of b X. If ç lies in ITk, S, is called a simple
reflection. For w in Wk, the length N(w) of w is the smallest integer
N such that w is a product of N simple reflexions. A reduced word
for w is an expression of w as a product of N(w) simple reflections.
Choose any reduced word for the element Tt of Wk. Following the
notation in [5, §4.15], we write it as

where and w in Wk write

Having chosen the element
we now define elements .Li of bX as follows:

(3.9) Note that m1 = (Tt)’ ILm+1 = - li - 5 and that ILl and &#x3E;m+i are

independent of the reduced expression (3.8). We now define the

positive integers ei by



63

With i£i defined as above, the following inclusion relations between
Verma modules are well known [2, 6] :

Define elements VI, v2, ..., V.+l of Vk,Pk,lLm+1 as follows: vm+i is the

unique nonzero weight vector of Vk,Pk,lLm+1 of weight &#x3E;m+i. For i =

1, 2,..., m, Vi = X-",ii v;+l. Then one knows that vi is of weight 1£i and
that Vk,Pk,1L1 = U(k)vl. Associated to the reduced word (3.8) and 1£
in F(P" : q, r) is a fundamental chain of U(g) modules:

W, C W2 Ç: ... C Wm+,. It will turn out that WI and Wm+1 are in-

dependent of the reduced expression (3.8). They are defined as

follows: W, is defined to be Vp,-,-&#x26; as in (3.3). Then Wm+i is given by
the following lemma.

(3.12) LEMMA: There exists a U(g) module Wm+1 = U(g). vm,l
such that (a) WI is a U(g) submodule of Wm,,, (b) v, belongs to

U(k)vm+,, (c) vm+l is a Pk extreme weight vector (with respect to b) of
weight ILm+I, (d) Wm+l is X_cp free for all q; in Pk and (e) Wm+I is a sum
of U(k) submodules of type Pk.

PROOF: Start with the inclusion of Vk,Pk,ILI in Wi given by Corollary 3.5
and the inclusion of Vk,Pk,ILI in Vk,Pk,lLm+l given by 3.11. By 3.5 we know that
W, is X-ç free for every ç in Pk. Now [3, Lemma 4] gives us the module
Wm+l with the properties required in the lemma. (One easily sees that the
results of [3, §2] do not depend on the assumption there that rank of
g = rank of k). (q.e.d.)

(3.13) REMARK: If V and V are Verma modules for, say, U(k)
then the space of U(k) homomorphisms of V into V has dimension
equal to zero or one. Thus the inclusion of Vk,Pk,ILI into Vk,Pk,lLm+1 given
by (3.11) is independent of the reduced expression (3.8) for Tt. Hence
also the U(g) module Wm+l and the inclusion of W, in Wm+l with the

properties listed in Lemma 3.12 can be chosen to be independent of
the reduced expression (3.8).
Having defined Wi and Wm+i as above, now for any given reduced

word for Tt such as (3.8), we define submodules W2, W3, ..., Wm of

Wm+l by

where vi are the elements of Wm+, defined after (3.11). We have
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Wi C W2 Ç: ... C W.,, because vi belongs to U(k)v;+i, (i = 1,..., m).
The properties of this chain of U(g) modules are summarized below
from the work of [3, §3]:

(3.15) W, = V P,-JL-8 and each W is the sum of its weight spaces with
respect to b. Moreover as a U(k) module W is the sum of
U(k) submodules of type Pk.

(3.16) Each Wi is a cyclic U(g) module with a cyclic vector vi,
which is a Pk extreme weight vector of weight ¡.Li with respect
to b, i = m + 1.

(3.17) The Pk extreme vectors of weight gi in Wl are scalar multiples
of v;; for i = 1, ..., m + 1, the vector vi does not belong to
Wi-i.

(3.18) Each W is X-, free for every ç in Pk and Wi+,/Wi is m (’Tli)
finite (i == 1,..., m ).

(3.20) Let w be in Wk. Let i = 1,..., m. Suppose W’(lLm+l) belongs
to J(Wi). Then N(w) equals at least m + 1 - i.

We will not prove the properties (3.15) to (3.20) here since they are
essentially proved in [3, Lemma 5]. Though (3.20) has the same form
as [3, Lemma 5, vi] its proof is different in our case. It is important to
first know the case i = 1 of (3.20) to carry over the inductive ar-

guments of [3, §3] to our situation. To this end we prove the following
lemma. Before that we make the following remark.

(3.21) REMARK: Let H’ be the element of h defined by (H’, H)
trace (ad Hl u), for every H belonging to h, where u is the unipotent
radical of q. Since q and h are 0 invariant O(H’) = H 9; hence H q
belongs to b. One can easily prove the following: For every a in

P f1 - P’, a (H q) equals zero; for every a in P n P’, a (H q) is a

positive real number; and for every cp in Pk f1 - P k, ç(H§) equals zero
while for every cp in Pk n Pk, cp (H q) is a positive real number.

(Observe that any cp in Pk n - P’ k is the restriction to b of some a in

P n - P’).
Now we come to the lemma which is basic to carry over the

inductive arguments of [3, §3].
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(3.22) LEMMA: Let w be in Wk. Suppose w’(,m+,) belongs to J( W,).
Then N(w) is greater than or equal to m.

PROOF: Since W’(ILm+I) belongs to J( Wl) it is in particular a weight
of W, of for b. Hence by (3.4), W’(ILm+.) is of the form 1£ 1 - Y- niadb,
where ni are nonnegative integers and ai are in P. That is W(ILm+1 +

Write Hence

where ni are nonnegative integers and ai are in P. The left side of the
equality in (3.23) is the sum of wt(J.L:n+1 + 5k) - (il ’m+ + Sk ) and (1£ m ’+ +
Sk) - T(J.L:n+1 + Bk). We claim that (3.23) implies

is contained in

To see this enumerate the elements of Pk fl - wt Pk in a sequence
(Eh E2, ..., Ek) such that El is a simple root of Pk and Ei+l is a simple
root of SEI... SEI Pk (i = 1, ..., k - 1). Then wt = SEk ... SEI (cf. (5,
4.15.10] and [7, 8.9.13]). By induction on i one can show that (J-L :n+l +

8k) - SEi... SEI (J-L:n+l + 8k) can be written as :¿=l dj,iEj where dj,i are

positive integers. Thus (J-L :n+l + 8k) - wt(..t :n+l + 8k) can be written as
dIE 1 + d2E2 + ... + dkEk where d; are positive integers. Similarly
(J-L:n+l + 8k) - T(J-L:n+l + 8k) can be written as dÍE Í + d2E2 +... + dÍzE Íz
where di are positive integers and (E Í, ..., E Íz) is an enumeration of

Pk n - TPk. With these observations we can write

where d’,,..., dÍz, dl,..., dk are positive integers. Let Hq be the

element of h defined by (H’,H)=trace(adHlu), where u is the

unipotent radical of q. Then Hg belongs to b. We can apply remark

(3.21) to (3.25) and conclude that [- T(IL:n+1 + 8k) + Wt(IL:n+1 + 8k)](H)
is a strictly negative real number unless (3.24) holds. But by looking at
the right hand side of (3.23) and applying remark (3.21), we see that

[-’r(il ’mll + 8k) + wt(IL :n+l + Sk)](Hq) is a nonnegative real number.
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Thus we have proved the validity of (3.24). Now (3.24) implies that
N(wt) is less than or equal to N(T). But note that N(wt) =
N(t) - N(w), while N(T) = N(t) - N(,rt) - N(t) - m. Hence N(w) is

greater than or equal to m.
(q.e.d.)

(3.22) enables us to carry over the inductive arguments in [3, §3]
without any further change and obtain the properties (3.15) to (3.20).

§4. The k-finite quotient U(g) module of wm+i

The difference between the special situation in [3] and our more
general situation becomes more apparent in this section which paral-
lels [3, §4].

Start with an arbitrary reduced word (3.8) for rt and let

W, C W2 C ... C Wm,, be a fundamental chain of U(g) modules
satisfying (3.15) through (3.20). Recall W, = Vp,-1L-8. Recall the subset
7T(q) ç: 7T corresponding to the parabolic subalgebra q. For a in 7T and
À in hx define sx(,k) = sa(A + 8) - 8. By Lemma 3.6, - IL - 8(Ha) is a
nonnegative integer for every a in P n - P’, hence in particular for
every a in -03C0(q). Thus one has the inclusion of the Verma modules

VP,S(-IL-l)) Ç Vp,-,,-5 for every a in 7T(q). We now define a U(g)
submodule

As is well known the Verma modules have unique proper maximal
submodules. Let I be the proper maximal U(g) submodule of V P.-1L-8.
Then each V P.s(-1L-8) (a E 7T(q)) is contained in I. Hence

(4.2) v, does not belong to Wo.

Now fix some i, (i = 1, ..., m). Define a U(g) submodule (relative
to some reduced word (3.8) for Tt) Wi of Wm,i as follows: Let Wi,o be
the U(g) submodule of all vectors in Wm+l that are m(,qi) finite

mod W-i; once Wi,o,..., W;,p-l are defined, Wi,, is the U(g) sub-
module of all vectors in Wm+l that are m (’TI;+p) finite mod W,,p-i,
p = 1, 2,..., m - i. We have Wi,o C ... C W,m-;. We then define W =
Wi,m-i. Define
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Thus for each reduced expression (3.8) for Tt, we have defined a U(g)
submodule W of Wm+1.

(4.4) PROPOSITION: For any reduced word (3.8) for Tt, define the
U(g) submodule W of Wm+l as above. Then Vm+I does not belong to
W. If À E bx is such that Wm+l has a nonzero Pk extreme weight vector

(with respect to b) of weightk which is nonzero mod W, then (,rt)’,k is
a Pk extreme weight of Wd Wo.

PROOF: We refer to the proof of [3, Lemma 9].

Since we do not have a full chain of U(g) modules corresponding
to a reduced word for t as in [3] but only a shorter chain cor-

responding to a reduced word for Tt, we have to work more to obtain a
k-finite quotient U(g) module of Wm,,. We now define

(4.5) Wx == L W, the summation being over all reduced expressions
(3.8) for Tt.

(4.6) LEMMA: vm+1 does not belong to Wx. Let k E bX be such that
there is a Pk extreme vector in Wm,l of weight A which is nonzero

mod Wx. Then (-rt)’À(H k) is a nonnegative integer for every ’P in

Pk n - P k.

PROOF: vm+1 is a Pk extreme weight vector in Wm+l of weight p,m+1.
From (3.7) and the definition of ,m+1, we know that ,m+1(H is a

nonnegative integer for every ç in Pk. Now suppose vm+1 belongs to
Wx. Since Wx == L W, Wx is a quotient of the abstract direct sum EB W,
the summation being over all reduced words (3.8) for Tt. We can then
apply [3, Lemma 7] and conclude that for some reduced word (3.8)
for Tt, the corresponding W has a nonzero Pk extreme vector of
weight p,m+1. This vector has to be a nonzero scalar multiple of Vm+I in
view of (3.17). Hence vm,l belongs to that W. But this contradicts
(4.4). This proves the first assertion in (4.6).
Next let À be as in the lemma. Let c be the reductive component of

q defined by c = h + LaEPn-p{ga + g-a). We claim that Wll Wo is

c-finite. For this it is enough to show that the image 91 in W,/ Wo of v 1
is c-finite. For any a in ir(q) the submodule Vg,p,sx ,(ml) of Wl coincides
with U (g )XÁ:(Ha)+I . VI (cf. [2, 7.1.15]). Thus we have Wo =

LaE1T(q) U(g)XÁ:(Ha)+I . vi. Hence the annihilator in U(g) of vl contains
U(g)XÁ:(Ha)+1 for every a in 7r(q). This suffices in view of [2,7.2.5] to
conclude that f, is c-finite. Thus Wl/ Wo is c-finite.
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IJet Ck = c rl k. Then in particular WI/WO is ck-finite. But note that

Now choose some reduced word (3.8) for Tt and relative to it define
W as in (4.3). Note that W C Wx. For À as in the lemma, choose a Pk
extreme weight vector v in Wm+I which is nonzero mod WX and is of
weight À. Then v is in particular nonzero mod W. Hence from (4.4),
(Tt)’ À is a Pk extreme weight of Wl/ Wo. Since Wi/ Wo is ck-finite, it

now follows that (Tt)’ À (H;J is a nonnegative integer for every ’P in

Pk n - P k.
(q.e.d.)

For our proof of the k-finiteness of Wm+,I Wk, we need one more
lemma.

(4.7) LEMMA: Let 11 be in bX. Suppose q (H §) is nonnegative for every
ç in Pk. Let s be in Wk. Suppose (Tts l’q (H §) is nonnegative for every ç in
Pk n - P. Then N(Tt) == N(Tts) + N(s-l).

PROOF: (Tt s)’ 11 == Tt s (11 + 5k) - 5k. Since q(H) is nonnegative for
every Cf) in Pk, TtS (’YJ + Dk)(H;) is negative for every Cf) in - Tts Pk. Also
- 5k(H is negative for every cp in Pk. Hence (TtS)’11(H;J is negative
for every ç in (- TtS Pk) n Pk. Hence the assumption impliés

complement of

Note that t . So, the complement
Hence from (4.8) we have

be an enumeration of the elements of

such that E is a simple root of Pk, E2 is a simple root of

Because of (4.9) we can further assume (E 1, ...,,Ej) is an enumeration of

Then ç ) belongs to 7Tk. One can show that rt = s,,,, ... sE, and a reduced
word for Tt is
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(cf. [5, 4.15.10] and [7, 8.9.13]). Similarly Tts = SEl... sE, and a reduced
word f or Tts is

Note that N(Tt) = m and N (,rts) = j. Now from (4.10) and (4.11) it is

clear that s-1 = s’Pi+B ... s’P/n is a reduced word for s-’. These ob-
servations substantially prove the lemma.

(q.e.d.)

(4.12) REMARK: With the data assumed in Lemma 4.7 we have

actually proved more than what is asserted in (4.7): There exists a
reduced word Tt == S’PI... S’PiS’PÍ+B ... S’P/n for Tt such that S-1 ==

s’Pi+B ... s’P/n.

The following proposition gives the k-finite U(g) module quotient
of Wm+,.

(4.13) PROPOSITION: The U(g) module Wm+i/ Wx is k-finite.

PROOF: Let Vm+l be the image of vm,l in Wm+.I Wx. Since

u(g)v-m+l = Wm+,l Wx, it suffices to prove that U(k). Vm+l has finite

dimension over C. For this again, by well known facts [2, 7.2.5] it

suffices to prove that the annihilator of gm+l in U(k) contains X-e’ç" for
every ç in Irk, where e(ço) = Ilm@I(Hk) + 1(observe that in view of
(3.7), gm+J(Hk) is a nonnegative integer for every ç in lTk). Thus it

suffices to show that for every ç in 7Tb

Suppose (4.14) is not true. Choose a cp in 7Tk, such that Xe-(’I)v,,,, does
not belong to Wx. Then XEtvm+i is a Pk extreme vector of weight
s§(&#x3E;m+i) in W.,, which is nonzero mod Wx. Hence by (4.6),

(Tts,1’&#x3E;m+i(H§,) is a nonnegative integer for every cp’ in Pk rl - P k. We
can now apply (4.7) and (4.12) and conclude that there exists a

reduced word

for Tt such that
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Take the reduced word (4.15) for Tt in (3.8) and consider the cor-
responding modules Wm and W. By definition Wm C W. But in the
fundamental chain W, C ... C Wm Ç Wm+, associated to the reduced
word (4.15) for Tt, the module Wm is simply U(g) - X:;)Vm+l. This is
clear from the definitions (cf. (3.14) and the definition of vi after

(3.11)) and (4.16). Thus it follows that Xttvm+i E W C Wx. But this is
a contradiction to the hypothesis. Thus (4.14) is true and proved and
with that also the k-finiteness of Wm+,I Wx.

(q.e.d.)

§5

Let b be a Cartan subalgebra of k and h its centralizer in g, so that
h is a 03B8 stable Cartan subalgebra of g. Let P be a system of positive
roots for (g, h) such that 0(P) = P. Let

and

The following fact is standard if b = h, but it remains true in our

general case.

(5.1) LEMMA: Let U" be the centralizer of b in U(g). If the set P of
positive roots satisfies OP = P, we have a unique homomorphism

such that for any y in Ub

PROOF: We have

and this decomposition is stable under ad H for every H in h, i.e.

ad H(U(n- + h» C U(n- + h) and ad H( U(g)n+) C U(g)n+. For y in
U", let y = yo + yj be its decomposition with respect to (5.4). Define
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I3p(Y) = yo. We claim 6p(y) belongs to the subalgebra U(h) of U(n-+
h). Since y is in ub, yo and y are also in Ub . Let S(n - + h ) and S(h)
denote the symmetric algebras and À the symmetrizer map of S(n- +
h ) onto U ( n - + h ). Then for H in b, k -’(yo) is annihilated by ad H
(extended as a derivation to S(n- + h)). It is enough to show that
A -I(yO) belongs to S(h). Using (1.14), one can show that there exists
an element Xp in b such that a (Xp) is a nonzero real number for

every a in à (= the roots of (g, h)) and such that P consists of

precisely those a in à such that a (Xp) is positive. It is then clear that
in S(n- + h), the null space for ad XP is just S(h). Since

ad X(A -I(yO)) = 0 for every X in b, in particular ad Xp(A -I(yO)) = 0.
Hence k-’(yo) belongs to S(h), so that f3p (y) belongs to U(h ).
Now suppose y and y’ are in Ub. Let y = yo + YI and y’ = yo+ y be

their decomposition with respect to (5.4), so that I3p (y) == yo and
.Sp(y’) = y. Then yy’ == YoYÓ+ YoYÍ + YIYÓ+ YIYÍ. Clearly yoyi belongs
to U(h) and YoYÍ + YIYÍ 1 belongs to U(g)n+. Also YIYÓ E
U(g)n+ - U(h) Ç U(g) U(h)n+. Thus yoy’ 0 is the component of yy’ in
U(n- + h) with respect to (5.4). We already know that this component
is in U(h). Thus I3p is a homomorphism of algebras. (q.e.d.)(q.e.d)

The centralizer Uk of k in U (g ) is contained in Ub . As usual

interpret elements of S(h) as polynomials on hX For any cp in hx
define a homomorphism xp,, of Uk into C as fôllows:

The main results of the previous sections can now be formulated.
Let bo be a Cartan subalgebra of ko and b its complexification. Let

q be a 0 stable parabolic subalgebra of g containing b. The centralizer
h of b in g is a Cartan subalgebra of g and q contains h. Let r be a 03B8

stable Borel subalgebra of g contained in q (cf. (1.15) and (1.2)). Let P
be the set of positive roots for (g, h) corresponding to r. Define the 03B8

stable Borel subalgebra r’C q by (2.1). Choose a 0 stable positive
system P" of roots of (g, h) having properties (2.3) and (2.4). Denote
by F(P" : q, r) the set of all elements m in hX having properties (2.6)
and (2.7). Now choose a g in F(P": q, r) and recall the objects
associated to it in §§3, 4.

We can now state

(5.6) THEOREM: Let q be a e stable parabolic subalgebra. Let

IL (E F(P": q, r). Let WP":q,r == Wm+,I Wx (cf. (3.12) and (4.5)). Then

Wp": q,,.(JL) is a k finite U(g) module having the following properties :
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(i) WP":q,r(JL) = U (g) ùm+i , where vm,l is the image of the vector Vm+l
of Wm,,. The irreducible finite dimensional representation of k
with highest weight - t( TIL + T5 - T5k - Sk) occurs with mul-

tiplicity one in WP":q,r(IL). The corresponding isotypical U(k)
submodule of WP":q,r is U(k)fm+,; on this space elements of U’
act by scalars given by the homomorphism XP,-IL-S.

(ii) If TA is an irreducible finite dimensional representation of k with
highest weight À with respect to Pk, then the multiplicity of ’TA in

W pn : q,r(JL) is finite ; it is zero if À is not of the form (tT)’(- IL

- 5 - L epEPmep’P)I b where m, are nonnegative integers.

PROOF: By (4.13), we know that Wp":q,lIL) is nonzero and k-finite.
By (4.6) the vector vm,l of Wm+l does not belong to WX. The image of
vm,i in Wp":q,lIL) is Pk extreme of weight (tT)’(-IL-5)==
-t(T&#x3E; + Tô - Tô - ô) (which is dominant by (3.7)) and this image
generates an irreducible k-module with highest weight - t( TIL + T5 +
T5k - Sk) with respect to Pk.

Based on the preceding sections one can complete the proof of the
theorem in the same way as [3, Theorem 1].

It is easy to conclude from (5.6) that Wp": q,r(IL) has a unique proper
maximal U(g) submodule and hence Wp": q,r(IL) has a unique nonzero
quotient U(g) module which is irreducible. We denote this U(g)
module by Dp": q,r(JL). The following theorem is now immediate from

(5.6).

(5.7) THEOREM: Let li E F(P" : q, r). Up to equivalence there exists
a unique k-finite irreducible U(g) module DP":q,r(IL) having the follow-
ing property: The finite dimensional irreducible U(k) module with

highest weight - t( TIL + T5 - T5k - 5k) (with respect to Pk) occurs with
multiplicity one in DP":q.r(IL) and the action of uk on the cor-

responding isotypical U(k) submodule is given by the homomorphism
XP,-IL-S.
The uniqueness follows from the well known theorem of Harish

Chandra [4]: An irreducible k-finite U(g) module M is completely
determined by a nonzero isotypical U(k) submodule of M and the
action of Uk on it.
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