COMPOSITIO MATHEMATICA

J. BOURGAIN

A geometric characterization of the Radon-
Nikodym property in Banach spaces

Compositio Mathematica, tome 36, n°1 (1978), p. 3-6
<http://www.numdam.org/item?id=CM_1978__36_1_3_0>

© Foundation Compositio Mathematica, 1978, tous droits réservés.

L’acces aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique 1’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=CM_1978__36_1_3_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

COMPOSITIO MATHEMATICA, Vol. 36, Fasc. 1, 1978, pag. 3-6
Noordhoff International Publishing
Printed in the Netherlands

A GEOMETRIC CHARACTERIZATION OF THE
RADON-NIKODYM PROPERTY IN BANACH SPACES

J. Bourgain*

Abstract

It is shown that a Banach space E has the Radon-Nikodym
property (R.N.P.) if and only if every nonempty weakly-closed
bounded subset of E has an extreme point.

Notations

E, ||| is a real Banach space with dual E’. For sets A CE, let c(A)
and ¢(A) denote the convex hull and closed convex hull, respectively.
If x € E and € >0, then B(x,e)={y € E;||x — y|| <€}. A subset A of
E is said to be dentable if for every € > 0 there exists a point x € A
such that x& ¢(A\B(x, €)).

Suppose that C is a nonempty, bounded, closed and convex subset
of E. Let M(C)=sup{x|;xeC} If fEE', let M(,C)=
sup{f(x);x€C}, and for each a>0, Ilet S(f,a, C)=
{x€eC;f(x)=M(f, C)— a}. Such a set is called a slice of C.

LEMMA 1: Let C and C, be nonempty, bounded, closed and convex
subsets of E, such that C,CC and C,;# C. Then there exist x € C,
fE E' and a >0 with f(x) = M(f,C)> M(f, Cy) + a.

ProoF: Without restriction, we can assume M(C)=1. Take x, €
C\C,. By the separation theorem we have fi€ E’' and «a;>0 with
filx) > M(fi, C) + a;.

Let @ = a,/3. Using a result of Bishop and Phelps (see [1]), we
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obtain x € C and f € E’ such that f(x) = M(f, C) and ||f — fi|| < «.
Therefore f(x) = f(x) > fi(x) —a > M(f,, C))+2a > M(f, C)) + a.

LEMMA 2: Let C be a nonempty, bounded, closed and convex
subset of E. If for every € > 0, there exist convex and closed subsets C,
and C, of C, such that C = ¢(C,U Cy), C,# C and diam C,=< ¢, then
C is dentable.

Proor: Take € >0 and let C,, C, be convex and closed subsets of
C, such that C = ¢(C,U C,), C;# C and diam C,<¢/2. By Lemma 1,
there exist x € C, f € E’ and a > 0 with f(x) = M(f, C)> M(f, C)) + a.

Let d = diam C and consider the set

o={an+a-nysnec,necandae [$55.1])

It follows immediately that Q is a closed, convex subset of C and
xZ Q. Suppose z;, z, € C\Q. We find z}, z5 such that z;,E€ ¢(C,UC,),
Z/#Z Q and ||zi— z}| <€/6 (i =1,2). There exist yi € C, yi € C, and
A €10, €/12d], with zi= Ayt + (1 —A)yi (i = 1,2). We obtain:

, , € €
lev— 2l <llzi = 24+ S=lyi= v+ Myl = i+ Mlyi- i+ = e

This implies that C\Q C B(x,€) and therefore ¢(C\B(x,€)) C Q.
Because x& Q, we have that xg& ¢(C\B(x, €)), which proves the
lemma.

THEOREM 3: If the Banach space E hasn’t the RNP, there exists a
nonempty, bounded and weakly-closed subset of E without extreme
points.

ProoF: If E hasn’t the RNP, there is a closed and separable
subspace of E, which hasn’t the RNP (see [4]). Therefore we can
assume E separable.

Let C be a non-dentable, convex, closed and bounded subset of E.
By Lemma 2, there exists € >0, such that if C = ¢(C,U C,), where
C,, C, are closed, convex and diam C,=<e¢, then C = C,. Suppose
C = U ,en+ B,, Where B, is the intersection of C and a closed ball with
radius €/2. By induction on p €N*, we construct sequences (N,),,
(V,), and (e,),, where N, is a finite subset of N’, V,=
{(X0s Auws fu); @ € N,} a subset of Cx[0,1]X E" and «, >0, with the
following properties:
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(1) N, is the projection of N, on the p first co-ordinates (p € N*).
@) Swien, Awn =1 (0 EN*, 0 € N,).

B) X0 = Zwien,. AwiXwal <1127 (p EN*, @ € N)).

4) fo(xs)=M(f,,C) (p EN*, 0 € N,).

(5) S(fwir aps1, C) C S(for ap, C) (p EN*, (@, i) E N,y).

©6) S(fua,,C)NB, =0 (p EN*, ® €EN,).

(In (2) and (3), i is the summation index).

CONSTRUCTION:
(1) Take N, ={1} and A, =1. Applying Lemma 1, we find x, € C,
fi € E’ and a,> 0 such that f,(x;) = M(f;, C) and S(f;, a;, C) N B, =§.
(2) Suppose we found N,, V, and a,.
Take w € N,.
Let S ={x € C; 3f € E’ such that f(x) = M(f, C)
> sup f((C\S(fu, @), C)) U B,.1)}

By lemma 1, we obtain easily
C=c((C\S(fu ap, C))U B, US).
Because diam B,.; < e, this implies

X, EC=C((C\S(fu, ap, CHUS)

Thus there are sequences (a,)» in C\S(f., a,, C), (b)) in c(S) and
(ty)m 1n [0, 1], with x, = im e (tm@m + (1 — ) b).
Because f,(twam +(1—ty)b,) < M(f,, C)—tna, it follows that
lim . t,, = 0 and thus x, = lim e b, € ¢(S).
Take m, € N*, X (w,i) (S S, A(a,_,‘) (S [0, ]], f(a,,,') eE' (1 =i< mm) and
B. > 0, such that:
(1) ity Awi) = 1.
) X0 = Zi2% A wirXwall < (1/2°11).
3) fwiXwi) = M(fwin, C) 1=i=m,).
(4) S(f(w,i)a Bw’ C) C S(fwa aps C) (l = i = m)
(5) S(f(w,i)’ Bws C) N Bp+| = 6 (1 =i=< m‘,,).
Finally, let
Ny ={(w,i); o EN, and 1 =i=m,}
Vp+l = {(x(a),i)’ /\(w,i)’ f(w.i); ((D, l) € NP+1}
a,+ = min{B,; @ € N,}.
We verify that this completes the construction. Now, for every
p EN* and w € N,, we define

Yo = ],,1590 2 )\(w,il)- .- )\(w,q ..... i X(@ir.. Q)
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where for each v €N* the summation happens over all integers
it,...,i, satisfying (w,i,...,0,) € N,.,. It is clear that these limits
exist. Furthermore, we have for each p EN* and w € N,:

(D Yo = Zwien,,; MwiYwir
(2) Yo € S(fur @, C).

(In (1) is i the summation index).

We will show that R ={y,; p €EN* and o € N,} is the required set.

If z€ C, there exists n €N* such that z € B,. By construction
U = N,en, (E\S(f., a, €)) is a weak neighborhood of z and U NR is
finite. Hence R is weakly closed and we also remark that R is discreet
in its weak topology. It remains to show that R hasn’t extreme points.
Take p EN* and w € N,

Then there is some n € N* with y, € B,. Clearly, n> p. Since
Yo € ¢(Ugen,(S(fo, an, C)NR)), and for each €N, we have
S(fa, an, C)N B, =@, y, is not an extreme point of R.

This completes the proof of the theorem.

COROLLARY 4: A Banach space E has the RNP if and only if every
bounded, closed and convex subset C of E contains an extreme point
of its weak*-closure C in E".

Proor: The necessity is a consequence of the work of Phelps (see
[5D.

If now E does not possess the RNP, there exists a bounded,
weakly closed subset R of E without extreme points. Clearly C =
¢(R) does not contain an extreme point of its weak*-closure.
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