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REPRESENTATIONS OF THE GROUP OF SMOOTH

MAPPINGS OF A MANIFOLD X INTO A

COMPACT LIE GROUP

I.M. Gelfand, M.I. Graev, A.M. Ver0161ik

Abstract

Some important nonlocal representations of the group Gx con-
sisting of C°°-mappings of a Riemannian manifold X to a compact
semisimple Lie group G are constructed. The irreducibility, as well as
non-equivalence of the introduced representations corresponding to
different Riemannian metrics are proved. The ring of representations
is calculated.
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Introduction

In this paper the unitary representations of the group Gx of smooth
functions on a manifold X taking values in a compact Lie group G
are being built.
According to the idea of a paper [20], one can construct irreducible

nonlocal representations of the group of measurable G-valued func-
tions on X, G being a Lie group, in the case when the unity
representation is not an isolated point in the space of irreducible
unitary representations. Such a construction for groups G = SU(n, 1)
and G = SO(n, 1) is realized in [20] and [21]. The other examples of
groups of this kind represent the groups of isometries of a Eucledean

space, as well as solvable and nilpotent groups (cf. Araki [2], Streater
[17], Guichardet [8], [9], Delorme [5], Parthasarathy-Schmidt [13] et
al.).

In the case of compact Lie groups G the unity representation is an
isolated point, and it is impossible to follow the scheme of [20]. If,
however, one takes the group Gx of continuously differentiable
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mappings instead group of measurable mappings then it is possible to
construct for fhis group a series of irreducible nonlocal represen-
tations. The idea of this construction is to consider at first the group

0’(X; G) of smooth sections of the 1-jet fibre bundle j 1(X ; G) ---&#x3E; X (cf.
§1); the initial group Gx is naturally imbedded in the 0’(X; G) as a
subgroup. As 03B81(X ; G) may be regarded as a group of functions

taking values in the skew-product G . (# x ... x #), # being the Lie
dimX

algebra of the group G (cf. §I), and as the unity representation of this
skew-product is not isolated, so it is possible, following the pattern of

[20], to build nonlocal irreducible representation for 03B81(X ; G) and to
restrict it on the subgroup GX. Here in this paper we study the

representations of the group Gx obtained in this way.
The constructions of this kind of the representations of the group

Gx have been found, after the appearance of [20], by the authors of
the present paper and, independently, by Parthasarathy and Schmidt
[14], R.S. Ismagilov [11], Albeverio and Hoeg-Krohn [1]. The ir-

reducibility of these representations for G = SU(2) in the case

dim X &#x3E; 5 had been proved by R.S. Ismagilov [11].
As communicated to the authors A. Guichardet, P. Delorme had

been studied the representations of the group Gx, where G is a

compact Lie group. It is being proved in the present paper the

irreducibility of the representations for the group Gx, where G is any
compact semisimple Lie group and dim X &#x3E; 2.

The case dim X = 1 remains open at the moment, the difficulty
being connected with the more complicated, than for the spaces X of

greater dimension, character of the restriction of the representation of
the group Gx on the subgroup AX, where A C G is the Cartan

subgroup.
We use in this paper, in a systematic way, the technique of

Gaussian measures, which has been for the first time used in the

study of nonlocal irreducible representations of current groups in

[20], [21] ] and which has proved very useful for verifying the ir-

reducibility and non-equivalence of functional group representations
(see also [22]).
Here is the brief contents of the paper.
We consider, in § 1, jet fibrations over X and the groups connected

with them and we explain the main idea of the construction of the
representation. We also introduce there the Maurer-Cartan cocycle,
which plays a significant role in this construction. The §2 is of subsidiary
character. There we give an account of what is connected with the
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construction EXPO T. This construction is more or less explicitly
described in [2], [8], [13], but the usage of Gaussian measures, which
began in [20], [21], allows to develop a systematic theory. It will be set
forth in detail somewhere else. In §3 we construct the representations of
the group Gx and formulate the principal results of the paper. The
proofs of the main theorems are given in §§4 and 5.

In some papers of physical nature (see, for instance, [ 18], [3]) it was
considered the so-called Sugawara algebra. The authors have noticed
that the corresponding group is the central R1-extension of the group
03B81(X ; G) (see above). (If we take G = R 1, then we get the generalized
functional Heisenberg group). We construct, in §6, nonlocal ir-

reducible unitary representations for this group as well.

§ 1. The jets of smooth functions with values in a Lie group and
Maurer-C artan cocycle

Here we introduce the principal definitions concerning the group
C~(X ; G): the fibre bundle of k-jets, the group of sections of this fibre
bundle, k-jet imbeddings etc. The description of the most important
classes of representations of the group C~(X ; G), both local and
nonlocal, becomes more transparent if one passes to the group of

sections of the k-jet fibre bundle (cf. section 3 of this paragraph). The
most important for our purposes is the definition of the Maurer-

Cartan cocycle, given in section 2.

1. The group GX - C~(X ; G) and its jet extentions. Let G be an
arbitrary real Lie group, X - a real connected C°°-manifold. Consider
the set C~(X ; G) of C°°-mappings g : X --&#x3E; G such that g(x) = 1 outside
of some compact set (depending of g). Let us supply the set C~(X ; G)
with the natural topology. The group operation in C~(X ; G) is defined
pointwise: (9192)(X) = gl(X)g2(X). We shall denote the topological group
C-(X; G) by Gx.
Let us define now the k-jet imbedding of the group Gx (k =

0, l, ...). Recall that the k-jet of a mapping X - G in a point xo E X
is, by definition, the class of smooth mappings X --&#x3E; G, all of them

taking the same value at xo, and such that all corresponding partial
derivatives of these mappings up to the k-th order, taken at xo,

coincide. One can define the k-jet space at a point xo E X as follows.
Consider a subgroup GXXO,K of GX, consisting of such functions g: X --&#x3E;
G that g(xo) = 1 and all partial derivatives of g up to the k-th order are
equal to zero in a point xo. It is easy to verify that GXXo,k is a normal
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subgroup of the group GX ; the space of k-jets in a point xo is

naturally identified with the factor group GX/G ô,k.
It is clear that the factor-groups GX/G k corresponding to different

x E X are isomorphic. The group GxlGxx is, moreover, uniquely
defined, up to isomorphism, by the group G, number k and dimension
m of the manifold X. We shall denote this group by Gm and call it the
Leibnitz group of order k and degree m of the group G.

In what follows we consider for the most part the case k = 1. Then
G’ - G - (&#x26; x ... X &#x26;), with &#x26; - the Lie algebra of G, i.e. Gm is a

m

skew-product of the direct sum of m copies of Lie algebra OE and the
group G; representation of the group G on OE x ... x (S is adjoint
representation. The group Gi can easily be described as well (see
[14]). In the general case the group Gm is a skew-product of G and a
nilpotent group Um, which space is a sum of several copies of the
space OE ; the formula of the group rule in Gm for arbitrary k and m is
actually rather complicated.

Let us define a k-jet fibre bundle jk(X; G) &#x3E; X, which is a fibration
over X with fibre corresponding to x E X consisting of all the k-jets
in a point x. The structure of a fibre bundle is introduced in jk(X ; G)
in a natural way.’
The fibre bundle jk(X; G) gives reason to the following definition

generalizing the definition of a vector bundle:

DEFINITION: Let H be a connected Lie group. A smooth fibre

bundle e with the standard fibre H and the structure group Aut H
(= the group of all continuous group automorphisms of H) will be
called a group bundle with a group H.

A group bundle with an additive group Rn (or Cn) is a vector bundle
in usual sense, that is why our notion presents a ’noncommutative’
analogue of a vector bundle. The sections of a group bundle form a
group, since each fibre has a group structure. A trivial group bundle

with a group H and base X is a fibering H x X --&#x3E; X, and the group of
all its smooth sections is the group Hx.
The jet fibre bundle j k (X ; G) ---&#x3E; X defined above is a group bundle

in the sense of our definition with the group Gm, m = dim X. This
bundle is not trivial unless the tangent bundle be so. Every fibre of
this bundle over x E X is canonically provided with a structure of the
group G xl Gx GM.

Let us denote by 03B8 k(X ; G) a space of all differentiable sections,

’It is a more traditional approach to consider jk(X ; G) to be a fibre bundle over X x G. The
definition in the text is however, more suitable for us.
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with compact support, of k-jet bundle jk(X ; G) ---&#x3E; X supplied with
usual topology. The space 03B8 k (X ; G) is a group with regard to point-
wise multiplication in the fibres.

Notice that there are defined natural group epimorphisms
0k+I(X ; G)- ok(X ; G), k = 0, 1,... ; in particular, epimorphism
0’(X; G) --&#x3E; 0°(X; G) = GX.

DEFINITION: We call a k-jet imbedding a map

defined by: (Jkg)(x) is the k-jet of a function g in a point x E X.
The following is fairly evident: Jk is a group monomorphism.

REMARK: All proposition of this section remains true if one sub-

stitutes the group Gx by the group of differentiable sections of any
group bundle over X with the group G, jk(X ; G) by the corresponding
k-jet fibre bundle etc.

2. The group 03B81(X ; G) and Maurer-Cartan cocycle. As we shall deal
with the case k = 1 let us examine the group (J1(X; G) in greater
detail. For every x E X the elements of a factor group GXIG;l may be
considered as the pairs (g(x), a (x)), where g(x) E G and a (x) is a

linear mapping of tangential spaces TXX-Tgx&#x3E;G, i.e. a (x) E
Hom (Tx, Tg(x»). Consequently, one can put into correspondence to
each element of the group 03B81(X ; G) a map TX --&#x3E; TG of the tangential
sheaves which is linear on the fibres. It is easy to see that this

correspondence is an isomorphism of the group 01(X; G) and the
group (TG)TX of all differentiable mappings TX - TG with compact
support, which are linear on the fibres.

Further, the right trivialization of the tangential shief TG permits
us to identify each tangential space TgG with the space TeG ~ # and
thus defines an isomorphism TG G - # of the group TG and a
semidirect product G - #. Therefore the group (TG)TX is isomorphic
to a skew-product of the group Gx and an additive group 03A91(X ; #) of
all differentiable mappings ’TX-&#x3E;@ with compact support and linear

on the fibres, i.e. a group of (S-valued 1-forms on X.

Consequently, there are determined the canonical isomorphisms of
the groups :

where 03A91(X; #) is the space of all differentiable #-valued 1-forms
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with compact support on X, and the action V of Gx on 03A91(X; OE) is
an adjoint action in every fibre:

REMARK: We have two different imbedding of Gx into 03B81(X; G):
J1 : GX ~ 03B8’(X ; G) and G x --&#x3E; G x - 0 C G x - f2’(X; (9) -

Since Gx is acting on f2’(X; (b) and there is a natural epimorphism
03B81(X; G)- GX, then it is defined in 03A91(X;#) also an action of the
group 03B81(X; G).

Let us introduce the Maurer-Cartan 1-cocycle. Making use of the
isomorphism 03B81(X; G) ~ Gx - f2’(X; W), define a 1-cocycle a of

03B81(X ; G) taking values in f2’(X; (M) by the following formula. Given
e E 8’ (X ; G), 1.e. i = (g, (o), where g E Gxl . E n’(X; @), let

DEFINITION: A restriction of the 1-cocycle a on the subgroup
J1GX ~ G’ will be called Maurer-Cartan cocycle and denoted by 03B2.
Therefore

For 03B2 to be a 1-cocycle means that for every gh g2 E GX it satisfies

It is not hard to prove that the conception of the Maurer-Cartan
cocycle is natural with respect to the diffeomorphisms of manifolds
X --&#x3E; Y.

Owing to the extreme importance of the Maurer-Cartan cocycle we
shall give a direct definition of it. Denote by dg a differential of a map
g : X - G,

Let R : TG - OE be the right trivialization. Then we have
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REMARK 1: Let : TX - TX be a map, preserving each fibre and
linear on it. Then the map

is a 1-cocycle to the group Gx again. The set of such cocycles forms a
linear space. It is interesting to find out whether every 1-cocycle of
Gx with values in f2l(X; @) is cohomological to a cocycle of the form
(2) with 8 the Maurer-Cartan cocycle.

REMARK 2: The group G1m ~ G - (@ x ... x @) is represented with
m

invariant scalar-product in the space @ x ... x (S and possesses a
m

1-cocycle with values in this space, defined by

The 1-cocycle a of 03B81(X; G) introduced above can be defined locally
in the following way. Assume that we have some local coordinates in
X, and so the isomorphism Hom (Tx, @) ~ @ x ... x @, m = dim X is

m

defined. Thus the formula for the cocycle a may be written as

follows:

Thus the existence of the Maurer-Cartan cocycle for a group Gx is
connected with the existence of the 1-cocycle ao for Gm.

3. Representations of the group Gx. By using k-jet imbeddings
Jk : Gx ~ 03B8k(X ; G) one can construct various representations of Gx.

Consider at first arbitrary unitary representation ir of the group Gm.
Fix a point xo e X and define an isomorphism GX/G ô,k ~ Gm. A
representation of the group Gx can be defined by

The representation (3) is an analogue of the partial derivative in xo.
For instance, let G =R1, then G=R1(f)Rm; if 03C0 is a one-dimen-

sional representation of Gm : (03BEo, 03BE1, ... , 03BEm)~exp (i  m o as03BEs), then

T’1T(g) is a one-dimensional representation g-exp[1(aog(x)+
3lJJf=1 Qs(aglaxS))x=XQ]. For G = SU(2), k = 1 and m = 1 such represen-
tations were described for the first time in [6]; they were constructed
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there directly by passing to a limit, like that used in the definition of a
derivative.

The representations (3) are local ones since they depend on k-jets
in a point xo E X only. Similarly, one can define representation of GX
depending on k-jets in a finite number of points.
More interesting representations of the group Gx arise due to the

existence of nonlocal irreducible representations of the group

03B8k(X ; G), the restrictions of which to JkGX remain irreducible.
In [20] there was given a construction of nonlocal representations

for a current group, i.e. a group of functions on X taking values in
some Lie group. For that construction to be applicable is necessary
that the unity representation of the coefficient group be not isolated in
the space of all its unitary representations, or, in more general terms,’
that the first cohomology group with values in the space of some

unitary representation of the coefficient group be non-trivial.
Since the local structure of the group 03B8k(X ; G) is similar to that of

the group c~(X: Gm), m = dim X, the construction of [20], [21] can be
applied to 0’(X; G) if the unity representation of Gm is not isolated.
That is the case when G is a compact semisimple Lie group and k = 1,
for Gm then possesses an orthogonal representation in the space
@ x ... x OE and, as we have seen, there exists a non-trivial 1-cocycle

m

of the group Gm with values in that space.
For the group Gx, with G a compact semisimple Lie group, there

arises, consequently, a nonlocal unitary representation. We em-
phasize that though this representation is not local, thus resembling
the representations constructed in [20], it does not admit any ex-

tention even to the group of continuous mappings X G, because its
construction makes use of the 1-jet imbedding.

§2. Some subsidiaries preliminary facts

In the present paragraph we set forth some general definitions and
statements, which will be used for the construction of representations
for Gx, as well as in the proofs of the main theorems.

1. The space EXP H. Let H be a real nuclear countably Hilbert-

’ In all examples known to the authors the existence of a unitary representation of a
Lie group with non-trivial first cohomology group accompanies the non-isolation of the
unitary representation in the space of unitary representations. Moreover, such a

representation admits a deformation which is at the same time a deformation of the
unity representation. However, the necessity of such coincidence is not yet established.
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norm space, and let (, ) be some inner product in it. Denote by H a
completion of H in the norm llhll = (h, h)1/2 and by H’ a dual to H.
Then there are natural embeddings H C H C H’.

Let us define in H’ a Gaussian measure u with the zero mean and a

correlation functional B(hi, h2) = (hl, h2), by its Fourier transform

This measure g will be called a standard Gaussian measure in H’.

Let us introduce a complex Hilbert space L 2(H’) of all square-

integrable with respect to g functionals on H’. The functional f2 E
L 2(H’), identically equal to unity on H’, will be called the vacuum
vector.

We shall determine a natural isomorphism of the space L 2H’) and
another space which we call an exponential of H’ and denote EXP H.

Let He be a complexification of H and SnHe (n = 1, 2,...) the
symmetrized tensor product of n copies of Hc. Let also S°Hc = C.
Call an exponential EXP H of a space H, or Fock space correspond-
ing to H, a complex Hilbert space

To establish an isomorphism EXP fi == L,(H’) consider in the

space EXP fi the set of vectors

The set is known to be total in EXP H [81, i.e. its linear span is

dense in EXP H. Consider a mapping of the set lexp h} into the space

One proves that this mapping conserves the inner product and so, by
virtue of the totality of the sets {exp h} and {ei(o,h)} in EXP H and
L 2(H’) correspondingly, the mapping (1) can be uniquely prolonged
up to an isomorphism of the spaces:
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We call thus defined isomorphism the canonical isomorphism between
the space L,(H’) 2 and its Fock model EXP H = 0 n=o Sn Hc. Notice
that the canonical isomorphism puts in correspondence the vacuum
vector f2 e L2(H ’) and the vector 1 = exp 0, as well as the subspace
of deneralized Hermitian polynomials of degree n and the subspace
SnHc in EXP H (see, for instance, [23], [12]).

REMARK: If there are two triples of spaces HIC 17, CH,, H2 C
H2 C H2 with H- = H2, and /LI, IL2 are standard Gaussian measures in
H Í and H2 correspondingly, then there exists a canonical isomor-
phism L2{HD ~ L 2 2(H’)- It arises from canonical isomorphisms
between this space and the Fock space.

2. The representation EXPI3 V. Consider a topological group G and
an orthogonal representation V of G in the space H. Let us extend
the representation V to the space H’ D H dual to H, by

for any F E H’, h E H.
Consider a l-cocycle 13 of the group G with values in H, i.e. a

continuous mapping 03B2 : G ~ H which for every gt, g2 E G satisfies

Given a representation V and a 1-cocycle /3, we shall construct a new
representation, U, of the group G in the space L’(H’) EXP H, by

Call the representation U an exponential of the initial representation
V of G (with respect to the 1-cocycle /3) and denote it EXPO V. Now
let us point out some simple properties of the representations
EXP 13 V.

(1) Let the 1-cocycle 03B2, 03B2: G ---&#x3E; H be cohomological, i.e. there

exists such a vector h0 E H that B’g -,Bg = V(g)ho - ho for each

g E G. In this case the representations U = EXPO V and U’ =

EXP 03B2’ V are equivalent.
We can observe, indeed, that for every g E G, U’(g) = A% U(g)A-’

where Ah,, is defined by (A%O)(F) = ei(F,hO&#x3E;cp(F).
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(3) LEMMA 1. Let Vc be the complexification of a representation V,
snvc (n = 1, 2, ...) a symmetrized tensor product of n copies of the
representation Vc, SoVc a unity representation. If 6 = 0, then

To prove the lemma it suffices to pass to the Fock model of the

representation space.
Notice now that given a l-cocycle 13 : G - H and an arbitrary bounded

linear operator A in H which commutes with the operators of the

representation V, the function

is a 1-cocycle of G taking values in H, too. Thus, with every 1-cocycle Q
one can connect a family of unitary representations of G in L 2(H,):

A being any bounded linear operator in H, commuting with the
operators of the representation V.

LEMMA 2 (of a tensor product): Let a = (a aIl aal2) be an arbitrarya21,a22

matrix of bounded linear operators aij: H - H, commuting with the

operators of a representation V and satisfying the condition : aa1j +
af¡a2j = 3ijE (i, j = 1, 2), E being the unity operator (i.e. a* a = 1). Then

: Define an operator in

The operator R is unitary since, as it is easy to see,
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For every

whereof the statement of the lemma follows.

COROLLARY: If Ai, A2 are invertible operators in H, then

where A = (Ar Al + Ar A2)1/2, Uo-the representation, which corresponds
to zero cocycle.

Indeed, put, for short, Bi = A*A 1, B2 = A2 A2 and notice that B1-
B1A-2B1= B2 - B2A-2B2, this operator being self-adjoint and posi-
tively definite. Consider operators a 11 = A -1 Ar, a 12 = A -1 Ar,

One easily proves that these operators satisfy the conditions of

Lemma 2. On the other hand, auA1 + a12A2 = A, a21A1 + a22A2 =

0, q.e.d.

3. The definition of the representation for a group G with respect to a
pair of 1-cocycles. Let U = EXPI3 V be the representation of G in the
space L 2(H’) defined in the section 2. It is not difficult to verify that
this representation is equivalent to the following representation Ux in
the space L 2(H’):

A being any complex number, [A[ = 1. Namely, UA(g) = AAU(g)AÀB
where AA is the operator, uniquely defined by its action on the
functionals, ei(;h)

Given another 1-cocycle (3’ of the group G with values in H we
define the operators Ûx(g) in L’(H’) by

THEOREM: The operators ÚÀ(g) are unitary and constitute a

projective representation of the group G, namely
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The proof is immediate.
We want to define now an extension of the additive group R+ by the

group G. For this purpose observe that the function a for every

91, g2, g3 E G satisfies

Consequently, a is a 2-cocycle of the group G with values in R and
therefore defines an extension 6 of R + by G. The elements of Ô are
the pairs (g, c), g E G, c E R + with the following multiplication rule:

It corresponds to the projective representation of G in the space
L 2(H’) defined above an (affine) unitary representation of the group
G, given by

4. The singularity conditions for two measures. Recall that two

measures, li and v, in the space X are said to be equivalent if for
every measurable set A C X the conditions IL(A) = 0 and v(A) = 0
hold simultaneously. The measures 1£ and v are called mutually
singular if there is a measurable set A C X such that IL(A) = 0,
v(X - A) = O.
The lemma which follows is well known in the theory of the

Gaussian measure spaces.

LEMMA 3: Let IL be the standard Gaussian measure in the space
H’. The measures p, and li(- + x) are mutually singular if and only if
x ~ H.

PROOF: We may assume that H = 12 and li is a product measure,
IL = m1 x ... x mn X ... where dmi(t) = (203C0)-1/2 e-11/2 dt; x = (xl, ...,
Xn, ...). The measure g + x) is a product measure either and there-
fore, by virtue of the zero-one law, the measures IL and IL(. + x)
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are either mutually singular or equivalent. By virtue of Kakutani
theorem the measures 1£ and IL (. + x) are equivalent if and only if

Ilk f Vdmk . dmk(. + x) &#x3E; 0. The easy verification shows that this

happens if and only if k x  00, i.e. x E H.

LEMMA 4: Let IL be the standard Gaussian measure in H’ and v a
measure in H’ satisfying v(H) = 0. Then the measure IL is mutually
singular with the convolution IL * v of the measures IL and v.

(A convolution of the measures IL and v is defined by (IL * v)(.) =
f IL(. - x)dv(x).)

PROOF: Assume that the measures IL and 1£1 = g * P are not mu-

tually singular. Then (di£lldi£) = p &#x3E; 0 on a set of positive 03BC-measure.
Since IL1(.) = f IL(’ - x)dv(x) then, by the Fubini theorem, p (y)=
f [di£ (y - x)ldIL(y)]dv(x) &#x3E; 0 for y in the set mentioned above. Hence,
there exists a set B, v(B) &#x3E; 0, such that [d&#x3E;(. - x)ldg] &#x3E; 0 for each

x E B. But then g and 1£ (- - x) are not mutually singular, and con-
sequently, by Lemma 3, x E H, in which case v(H) &#x3E; 0. We came to a

contradiction with the assumption.

5. The spectral measures. Let G be an abelian (not necessarily lo-
cally compact) topological group possessing a countable base of open
sets, G the group of its continuous characters, U a unitary represen-
tation of G in the complex Hilbert space H. By applying the spectral
theorem (see, for example, [4]) to the C*-algebra, generated by the
operators of the representation U, we get the following decom-
position : There exists an isomorphism of the space X onto the direct
integral of Hilbert spaces,

with 03BC a Borel measure on G, which transfers the operators U(g),
g E G into the operators

The measure g on G is defined by U uniquely up to equivalence
and is called the spectral measure of the representation (3). The

representation (3) of G in the space fG Hxd&#x3E;(x) is called the spectral
decomposition of the initial representation U. If dim Hx = 1 for a.e. X
it is said that the representation U has a simple spectre.
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We give here some statements of the spectral measures.
(1) Two representations of G are disjoint if and only if their

spectral measures are mutually singular.
(2) The spectral measure of the sum of two representations of G is

equivalent to the sum of their spectral measures.
(3) The spectral measure of the tensor product of two represen-

tations of G is equivalent to the convolution of their spectral
measures.

(4) The weakly closed algebra generated by the operators (3)
in the space f IP Ydi£ (X) coincides with the algebra of the

operators of multiplication by an arbitrary u-measurable function
a (X): f (X) -a (X)f (X) (i.e. this algebra is isomorphic to L,’ (C;), see, for
example, [4]).

In the §4 we shall make use of the following generalization of the
statement 4):
Assume that a unitary representation of the group G can be

decomposed into a direct integral of representations

(3 is a measure space with the measure v).
It means that U is equivalent to the representation in the direct

integral of Hilbert spaces Ye = f: H03BEdv(03BE) given by

U03BE being a representation of G in H03BE.

LEMMA 5: If the representations U03BE1, U03BE2, are disjoint for almost
every (with respect to v) 03BE1 ~ e2, then the weakly closed operator
algebra generated by the operators U(g), g E G contains the operators
of multiplication by every bounded v-measurable function
a (03BE) : f(03BE)~a(03BE)f(03BE).

COROLLARY: Let a representation U of G be decomposed in a

tensor product of two representations, U = U’o U’, with the cor-

responding spectral measures ji’ andu". If the measures IL’(. + Xi) and
IL’(’ + X2) are mutually singular for almost every X1 ~ X2 (with respect
to IL"), then the weakly closed operator algebra generated by the

operators U(g), g E G, contains all operators E@ U"(g), g E G (and,
therefore, all operators U’(g) 0 E).
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Indeed, let U" = f! U"di£"(x) be the spectral decomposition of the
representation U". Then U = f G (U’@U()d&#x3E;"(x). Since the spectral
measure of the representation U’o U,’ is IL’(. + X), then, by the
conjecture made above, the representations U’ @ U’X, and U’ @ U§g
are disjoint for almost all (with respect to IL") Xl "# X2. It follows from
the Lemma 5 that the weakly closed operator algebra generated by
the operators U(g), g E G, contains the operators of multiplication by
the functions ag(X) = X(g), i.e. the operators E@ U"(g).

§3. Nonlocal représentations of the Group G . The ring of
representations

1. Construction of the representations of the group Gx. Let us begin
to study of the representations of Gx which are connected with the
Maurer-Cartan cocycle (see § 1). From now on we shall consider only
those Lie groups G for which their Lie algebra possesses an inner
product invariant under the adjoint action of the group G. In par-
ticular, all compact and all abelian Lie groups satisfy this condition.

In order to construct a representation of Gx we assume that X has
a structure of a Riemannian manifold. This structure induces an

orthogonal structure in the tangent bundle TX, as well as a strictly
positive smooth measure dx on X.

Let us introduce an inner product in the space 03A91(X) of R-valued
1-forms of the COO class, with compact support by the formula

where (,)x is an inner product in the conjugate tangential space T-*X.
Let us also fix an inner product in the Lie algebra K of G which is
invariant under the adjoint action of the group G.

Consider now the space il1(X; 0153) = il1(X) @ 0153 of differentiable

K-valued 1-forms on X with compact support. The orthogonal struc-
tures in the spaces 03A91(X) and K introduced above induce the or-
thogonal structure in their tensor product f2’(X; K). It is clear that

the latter inner product in il 1(X ; K) is G X-invariant.
Denote by H the pre-Hilbert space f2’(X; K), by H its completion

in the norm introduced in H, by fF a space conjugate to H and by IL
the standard Gaussian measure in 3W.

Let us define, according to the general definition given in the

section 2 of §2, the new unitary representation U = EXPO V of the
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group Gx. For that purpose we shall extend the representation V of
G X f rom H to the space F D H by the formula

Let 03B2 be a Maurer-Cartan 1-cocycle, that is 03B2g = R -dg (see § 1 ).
Define a unitary representation U of the group GX in the space L2 m (F)
by

Note that the representation U depends on the Riemann space

structure in X.

We formulate now the main results of the paper.

THEOREM 1: If G is a compact semisimple Lie group and dim
X &#x3E; 2, then the representation U = EXPG V of the group Gx is ir-

reducible.

THEOREM 2: Let G be a compact semisimple Lie group. Then the

representations U of Gx corresponding to different Riemannian

metrics on X are not equivalent.

The proof of the theorems 1, 2 will be given in §5.’ It rests upon the
results of §4 where the restriction of the representation U of GX to
an abelian subgroup is studied. Note that the main results of §4 are
valid for the case dim X &#x3E; 2 only. The problem of irreducibility for
the representation U in the case dim X = 1 still remains open.

REMARK 1: The representation U of GX is a restriction to J1 Gx ~ 
GX of the representation Û of the group 03B81(X; G) ~ Gx . f2’(X; K) in
the space L 2(F) defined in the following way (see § 1 ).
Let aE(J1(X;O), i.e. a = (g,w), gEOX, wEn1(X;). Then

The representation !7 is an "integral of representations" in the

sense of [20, 21]. Its irreducibility can be easily derived from the
theorems of [20, 21]. Thus theorem 1 is asserting that the represen-
tation Ï7 remains irreducible when restricted to the image of Gx.

’ The notion of a spherical function of the representation U given in §5 allows one to
prove Theorem 2 in a différent way (independently of §4).
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REMARK 2: The construction of the representation U of Gx
presented above can be transferred in a natural way to the group 0(e)
of all differentiable sections with compact support of an arbitrary
fibre bundle e over X with a fibre G. One can easily see that the
theorems 1 and 2 are true for groups 0(e) as well.

Indeed, there is in X an open dense submanifold Xo C X such that
the fibration elx,, is trivial and consequently 03B8(03BElxo) ~ Gxo. When X is
replaced by Xo, the space of the representation remains the same, and
so the statements concerning the irreducibility and non-equivalence
of the representations of the group 0(e) become analogous to those
concerning representations of Gx, namely to the Theorems 1 and 2.

REMARK 3: Denote W’(X; G) the completion of Gx in the metric

W’(X; G) is an analogue of Sobolev space 4"(X).’
(For example, if G = SU(n) and dim X = 1, then W1(X; G) =

{g ( . ) 1 f x (L i,k 1 g ik (x) 12) dx  oo}.)
One sees from the formulae defining the representation U of Gx

that this representation can be extended to a representation of the
group W’2(X; G).

REMARK 4: Representations U = EXPG V of GX induce the Her-
mitian representations of its Lie algebra (ijx. The latter represen-
tations can be extended to the representations of the complexification
(&#x26;c)x of (bx. The explicit formulae for the operators of these (non-
Hermitian) representations of the algebra «(ijc)x can be easily put
down as finite sums, if one uses the Fock model of the representation
space. If, for example, G = SO(n), then (ijc = st(n, C). Therefore, our

representations give rise to (non-Hermitian) nonlocal representations
of the current algebra st(n, C), which depend on 1-jets.

2. Representations of the group GX connected with subbundles of the
tangent bundle TX. Let us define now a more wide class of represen-
tations of GX. Let E be an arbitrary differentiable subbundles of the
tangent bundle TX. Consider the restrictions of 1-forms w E 03A91(X; K)

’ This analogy is noticed also in [1], where the representation under consideration
(defined independently and in a different way) is called the energy representation.
There is in [1] useful realization in the space of functions on the trajectories of Group
-Wiener process (for dim X = 1).
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to the subbundle E. They form a linear space which we denote by HE.
In this space, as in the initial one, there is a naturally defined

representation, VE, of the group GX. Let 03B2 be the Maurer-Cartan

cocycle. Then for any g E Gx define 03B2Eg as a restriction of the

mapping 03B2g: TX --&#x3E; K to the subbundle E. It is clear that 03B2E is a

1-cocycle of Gx taking values in HE.
Let there be a Riemannian manifold structure T on X. This struc-

ture induces an inner product in the space HE which is invariant

under the representation VE of Gx. Denote by UE,T an exponential of
the representation VE, which is connected with the cocycle 03B2E:

The next theorem is a consequence the theorem 1.

THEOREM 3: If G is a compact semisimple Lie group and dim X &#x3E; 2
then the representation UE,T of GX is irreducible.

To prove it let us decompose the fibre bundle TX into an or-

thogonal sum TX = E ~ Ej of the fibration E and its orthogonal
complement El. Evidently,

Therefore, the irreducibility of U E,T = EXP~03B2E VE is an immediate con-
sequence of that of the representation EXP 03B2 V.

THEOREM 4: Let G be a compact semisimple Lie group. Then the

representations UE,,T, and UE2T2 of GX are equivalent if and only if
E, = E2 and the inner products in the space HE, = HE2 induced by the
Riemannian structures 03C41, 03C42 on X coincide.

The proof of this theorem is similar to that of the theorem 2 (cf.
§5).

3. Decomposition of the tensor product of representations U =

EXP 03B2 V. The representations U = EXPO V of Gx defined in the first
section depend on the Riemannian space structure T on X. To

emphasize this circumstance we shall denote them by UT =

EXP 03B2 ( V, T). We may, on the contrary, consider the Riemannian

metric as fixed, the parameter of a representation being the 1-cocycle
of the group Gx originated from the Maurer-Cartan cocycle as it was
explained in the Remark 2, section 2 of § 1.
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More exactly, let To be a fixed Riemannian metric on X, (,)x an inner
product it induces in Tx, x E X. Consider an arbitrary Riemannian
metric T on X and let (,)T,X stand for the inner product in Tx, x E X
induced by T. The latter inner product can be represented in the form

UT(x) : Tx - Tx being a self-adjoint positive linear operator. Observe
that the function x F--&#x3E;u,(x) defines the Riemannian metric T on X in a
unique way.

Define the operator AT in the space f2’(X; OE) by

where luT(x)1 = det uT(x). Evidently, A, commutes with the operators
of the representation V. It follows that if 8 is the Maurer-Cartan

cocycle, then the function

is a 1-cocycle of Gx, too.

LEMMA 1: There is an equivalence of the representations of GX :

PROOF: Let IL’T{}’ ILT be the standard Gaussian measures in 3W =

(.Q1(X; (S))’ which are induced by the Riemannian metrics To, T on X.
It easily follows from the definition of the operator A, that the

correlation functionals B03C4o’ BT of these measures are connected by

Evidently, the mapping ei(.,Cd) H ei(.,ATCd) extends to the isomorphism of
Hilbert spaces L 2@(F) --&#x3E; L2(F) which transfers operators of the

representation EXPO ( V, T) into operators of the representation
EXPAT03B2 ( V, ro).

In what follows we shall consider representations EXP03B2,(V,,ro)
with A an arbitrary self-adjoint positively definite linear operator in
the space f2’(X;(4) commuting with the operators of the represen-
tation V of GX. Using Lemma 2, §2, of tensor products, we obtain.
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LEMMA 2:

where A=(Ai + A2)1/2, EXPO V is the representation corresponding the
zero cocycle (it does not depend on the Riemannian space structure
on X).

The following theorem presents a decomposition of the tensor
product of the representations which are examined and enables us to
calculate the additive generators of the ring of representations.

THEOREM 5: The representation EXPA103B2 (V, 70) 0 EXPA203B2 (V, 70) of
the group Gx can be decomposed into a continual direct sum of the
representations of the form

where A = (Ai + A2)1/2 and Vx° (xo E X ) is a representation of GX in the
space (Mc, given by

PROOF oF THEOREM 5: It is a consequence of Lemma 1 of §2 that

EXPO V = 0153:=o snvc where Vc is the complexification of the

representation V, Sn Vc is a simmetrized tensor product of n copies of
the representation Vc. The representation S"Vc may, in its turn, be
decomposed into a continual direct sum of the representations
Vxi @... (x) V"n. Namely, Sn VC is equivalent to finite multiple of a
continual direct sum of the representations

where the integral is taken over a domain gn C X" which is funda-
mental with respect to the permutation group of xl, ..., xn. To com-
plete the proof of the theorem one has to make use of Lemma 2.

COROLLARY: Let A be a symmetric positively-definite linear

operator in the space il l(X; K), commuting with the action of the
group GX, and W a local finitely-dimensional representation of GX.
Then the representations of the form EXPAO (V, To)@ W are the

additive generators in the ring of representations they generate.
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We shall point out that Theorem 5 is proved for a manifold X of
any dimension and an arbitrary Lie group G satisfying the conditions
given in the beginning of the Section 1.

REMARK 1: If G is a compact semisimple Lie group, dim X &#x3E; 2 and
xi,...,xn are différent points of X, then the representation
EXP A. (V,’rO) xQ Vxl @ ... yx Vxn of Gx is irreducible. The proof of
this statement can be given along the same lines as for Theorem 1.

REMARK 2: Lemma 2 and Theorem 5 can be easily formulated in
terms of Riemannian metrics on X.

where T is a Riemannian metric uniquely defined by the equation

for the definition of

THEOREM 5’: If dim X# 2, then the representation EXPG (V, ri)
@ EXP (V, T2) can be decomposed into a continual direct sum

of the representations of the form EXPO (V, T) x0 Vxi @ ... 0 VXn (n =

0,1, ... ) the Riemannian metric T being defined as in the Lemma 2.

The similar statements take place for a tensor product UE,,l @ UE,T2
of the representations described in section 2, where E is an arbitrary
subbundle of the tangent bundle TX.
Let us formulate now some statements concerning tensor products

U EI,TI O U E2,T2 with El ;j. E2.
If El n E2 = 0, then there exists such a Riemannian space structure

T on X that UEI,11 (x) U E2,T2 ~ U EI+E2,T’ This Riemannian structure is

defined by the conditions: (a) El and E2 are mutually orthogonal in
the metric on TX induced by T, (b) the Riemannian structures T, ri

induce the same inner product in the space HE; (i = 1, 2) (see section
2).
1 The equation (1) can fail to have a solution UT (X ) in the case dim X = 2.
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If Ei n E2 = E~ 0 and E is also a subbundle of the tangent bundle,
then let Et C Ei designate the orthogonal complementation to E in E;
with respect to the metric induced by Ti (i = 1, 2). Then we have an

isomorphism U E;,’T; == U Et,7";@ U E,7";’
Consequently,

This reduces the problem of decomposition of the tensor product
U El,Tl 0 UE2,T2 to the cases considered above.

§4. Restriction of the representation U of the group GX to an abelian
subgroup

Let G be a compact semisimple Lie group, X a connected open
manifold of the class C°°, U = EXPO V the representation of the
group Gx in the space L§(F) constructed in section 1 of §2.

Let 91 be an arbitrary Cartan subalgebra of the algebra K, A C G -
the Cartan subgroup corresponding to U. Let us put UX for the
additive group of differentiable C°° mappings a : X ~ U with a com-

pact support and exp for the exponential mapping Ux --&#x3E; AX.
Define the representation W of the group UX in the space L2(F) by

Since 03B2 (exp a) = da, the operators W (a ) have the following form:

We proceed now to the calculation of the spectral measure of the
representation W. Notice that the character group (Ux) ", of UX is

isomorphic to (UX )’ _ (C(X))’ @ OE (the isomorphism is given by the
correspondence F F---&#x3E;,yF (.) = ei(F,». The spectral measure can be there-
fore considered as a measure in the space (Ux)’ conjugate to Ux.
Let m denote the orthogonal complementation in OE to U : K =

U@m. Let Fu C F, Fm C F be the subspaces of, correspondingly,
U-valued and m-valued generalized 1-forms on X, and ILa, Um be the
standard Gaussian measures in 3W* and f.. It is clear that ’f

Fu @ Fm, IL = IL x I£m and
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LEMMA 1: The representation W of the group Ux can be decom-
posed into the tensor product W = Wu @ Wm of the representations in
the spaces L2 and Lm(f}’m) which are defined by

This lemma is a straight consequence of (1), if one notes that

V(exp a ) is acting trivially on Fu.

COROLLARY: The spectral measure of the representation W is

equivalent to the convolution of the spectral measures of Wu and Wm.

LEMMA 2: The spectral measure of the representation Wu is

equivalent to thie Gaussian measure on (UX )’ with the zero mean and
the correlation functional

(the angular brackets denote the inner product in f?’(X; 21) C
03A9’(X;@)).

PROOF: Consider the differentiation operator

Evidently, its kernel is zero.’ Let

be the mapping conjugate to d. It follows from the formula (2) for

operators Wu(a) that the image d*,uâ of gx is the spectral measure of
Wu. It is well known that a linear transformation transfers a Gaus-
sian measure into a Gaussian one, the correlation functionals of these

measures being connected by the formula

Consequently, Bd-,,(ai, a2) = (dai, da2). The lemma is proved.

’ 
Since X is open, 21 x does not contain constants.
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Our aim now is to find the spectral measure of the representation
Wm. Let Hc be the complexification of the space f2’(X, m), Vm - the
representation of Ux in Hc given by

Denote by Sn Vm the symmetrized tensor product of n copies of the
representation Vm, n = 1, 2,..., and by S° Vm the unity representation.

This lemma follows immediately from Lemma 1, §2.

Define for any root a of the algebra @ (with respect to U) and any
xo E X a distribution CP;o E (Ux)’ by

LEMMA 4: The spectral measure vn of the representation S"Vm is
concentrated on the subset of distributions of the form cp;l + ... + cp;:.
Moreover, on each subset {cp;l + ... + cp;: 1 Xl, ..., Xn E X} where

al, ..., an are fixed, the measure vn is equivalent to the measure

dx 1 ... dxn.

PROOF: It suffices to check the statement for the case n = 1. Let tnc
denote the complexification of m and (Ma C me the rooted subspace
corresponding to the root a. Consider the subspaces Hê =
il l(X) @ (Ma of the space Hc = il l(X) @ me. They are orthogonal for
différent a, Ux-invariant and

(A is the set of all roots).
The representation operators Vm are given on each subspace Hé by

It is clear that the spectral measure of the representation Vm in the
subspace Hé is concentrated on the subset of the distributions CP:,
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x E X defined by (5), this measure being equivalent to dx under the
identification q;; Hx E X. It follows that the spectral measure of the
representation Vm in the whole space He is concentrated on the set
{q;;la E ~, x E X} and equivalent (under the identification

ç? - (x, a) e X x à) to the product of the measure dx on X and a
uniform measure on ~. Lemma is proved.

COROLLARY: The Riemannian structure on the manifold X chan-
ged, the spectral measure of the representation Wm becomes equivalent
to the former measure.

be a distribution,

where q;&#x3E;;t are given by (5). If dim X &#x3E; 2, then ç is not an element of
the completion Ux of the space x C (x)’ in the norm [[a[[ =
(da, da)1/2.

PROOF: As the distributions q;; are local with respect to x, it

suffices to prove that for every a E L1, xo E X and a neighbourhood Xo
of xo the distribution q;&#x3E; = q;&#x3E;; is not an element of the completion of the
space Uxo = C°°(Xo) @ U.

Let Xo be a sufficiently small neighbourhood of xo e X; Xl, ..., x n
local coordinates in Xo; el, ..., eT and orthonormal basis in U. We do
not lose in generality if assume that Xo is the open unit ball with

centre xo. Let us represent the elements a E Uxo in the form

In the chosen coordinates Ilaii and (cpxo, a) are expressed as follows:

where T;; is the metric tensor in Xo;

We observe that a(ek) ~ 0 for at least one k.
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Suppose now that Cp;o is an element of the completion Uxo in the
norm Il.11. Then, by virtue of (7) and (8), there exist such functions
Wi, ..., Wm on Xo, that

’0

and at the same time

for any f E C°°(Xo). (In other words, delta function 5(x) is an element
of the completion of the space C°°(Xo) in the ’energy norm’ lifil 2 =
f xo [Li,j 7-ii(aflaxi)(aflaxj)ldx. It is known (see, for example, [ 16]) that it
is impossible, if dim X - 2.’ q.e.d.

COROLLARY 1: Let IL be the spectral measure of the representation
Wu of 2tx. If dim X &#x3E; 2 then for every distributions çi # ç2 of the
form (6) the measures &#x3E;(. + çi) and IL(’+’P2) are mutually singular.

It follows from Lemma 2, indeed, that IL is a Gaussian measure in

(%x)’ with the correlation functional B (ai, a2) = (da i, da2). As we have
seen, çi - ’P2 is not an element of the completion 2tx of 2tx in the

norm Il a = (da, da)1/2. Therefore, the statement is an immediate con-
sequence of Lemma 3, §2.

COROLLARY 2: The spectral measure IL of the representation Wu
and the spectral measure IL * Vn of the representation Wu Q snv m
(n = 1, 2, ...) are mutually singular.

Indeed, in view of Lemma 4 and 5, Vn(UX) = 0, and the statement is
an immediate consequence of Lemma 4, §2.

LEMMA 6: Let Uu be a weakly closed operator algebra generated by
operators of the representation W of the group 2fx: (W(a)4»(F) =
ei(F,da) 4&#x3E; ( V-1(exp a)F). If dim X ? 2, then the algebra Uu contains

every shift operator O(F)F--&#x3E;O(V-’(expa)F), aEE%xl and con-

sequently, every operator O(F) ~ei(F,da)4&#x3E;(F), a E 2tx.

PROOF: Let IL, v be the spectral measures of the representations
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Ww, Wm of Ux composing the tensor product W = Wu @ Wm in-
troduced in Lemma 1. It follows from Lemma 4 and Lemma 5

(Corollary 1) that the measures #L(’ + ’1’1) and #L(. + ’1’2) are mutually
singular for almost every (with respect to measure v) pair of func-
tions ~i ~ ~2 from (2fx)’. Hence, by Lemma 5, §2 (Corollary), the
weakly closed operator algebra generated by the operators W(a),
a cz Wx contains operators E@ Wm(a ), a Cz 2[x (E stands for unity
operator). Finally, observe that the operator E@ Wm(a ) is the shift
operator CP(F) ~ CP(V-1)(exp a)F).

LEMMA 7: Let Ti, T2 be two different Riemannian metrics on X and
W1, W2 the corresponding representations given by (1) of the group
21x. Then the spectral measures of W’, W2 are mutually singular.

We shall reduce now Lemma 7 to a simpler proposition. Let us
start with the remark that if Y C X is an arbitrary neighbourhood
where the metrics ri and T2 do not coincide, it suffices to prove lemma
for the restrictions of the representations W1, W2 on a subgroup
Uy C Ux. Therefore, one can without loss of generality assume that X
is a unit ball.

We decompose now the representation W’ (i = 1, 2) into a tensor
product: Wi = Wiu(x) Wim (Lemma 1), and let 1£’, v’ be the spectral
measures of the representations Wiu and Wm correspondingly. Recall
that, by Lemma 2, g’ is a Gaussian measure in (UX )’ with the zero
mean and the correlation functional Bi(a, a) = (da, da)i, where (,)i is

an inner product in f2 ’(X; U) induced in X by ri (i = 1, 2).
It is true that if the measures gl@l 1 2 are mutually singular, the.same

holds for the spectral measures li’ * v 1 and #L 2 * V2 of the represen-
tations W1, W2. It is known, on the one hand, that if two Gaussian
measures #L 1, #L 2 are mutually singular, then so are any shifts #L 1(. +
ço 1), 1£ 2(_ + Ç 02) of these measures (see, for example, [15], pp. 117-118).
On the other hand, in view of Lemma 4 (Corollary), the measures v 

1

and v2 are equivalent. Hence, the measures #L 1 * V 1 and 112 * V2 are
mutually singular. Therefore, to prove the Lemma we need to show
the mutual singularity of #L and #L 2.
At the end, let us remark that UX = R xe ... :BR;, Rai = R (r =

dim 9t), and the representations Wiu of the group UX are tensor products
of the representations of the groups IR 7. Thus, it suffices to prove the
singularity for spectral measures of the representations of each of the
latter subgroup Ri x.

Consequently, making use of the explicit expressions (7) for the
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correlation functionals (da, da)i we have reduced the proof of Lemma
7 to the proof of the following statement.

PROPOSITION: Let X be the open unity ball in IRm and Tk,(X), r’(x)
(k, l = 1, ..., m ) be differentiable functions on X with the matrices

T ’(x) =: Ilrk(x)ll, T2(X) = Ilr’(x)ll positively definite in every x E X. Let

Suppose ’f1(X) # ’f2(X). Then the Gaussian measures in (C°°(X))’ with
the zero mean and the correlation functionals B and B2 are mutually
singular.

PROOF: Consider the operators

in the a space C’(X) of differentiable functions on X with compact
support. Note that the inner products B 1(f, g) = (B’f, g) and B2(f, g) =
(B2f, g) are mutually equivalent in the space C°°(X) and also

equivalent to any inner product defined by an elliptic operator of the
form (11), and by the operator ~ = 2k=1 a2/(axk)2, in particular. The
completion of C°°(X ) in the inner product defined by ~ is the Sobolev

1 

space W2.
By theorem of Feldman, the Gaussian measures #L 1, #L 2 are

equivalent if and only if the operator BI - B2 is of Hilbert-Schmidt
class with respect to the inner product determined by each of the
forms B 1(f, g), B2(f, g).1 It is equivalent thing to say that B 1- B2 is a
Hilbert-Schmidt operator in W’2. But since B 1- B 2 is a differentiation
operator of the form (11) again, it is possible in the case B’= B 2 only.
The Proposition is proved.

REMARK: All results of this paragraph can also be formulated

without considerable change for the representations UE,T of the group
Gx determined by arbitrary subbundles E of the tangent bundle TX.

1 Formulated in a différent way (see [15], p. 130, Theorem 4), the Feldman’s theorem
says that the measures w and g2 are equivalent if and only if B1 - B2 = (B2)1/2 r(B2)l/2
with F a Hilbert-Schmidt operator.
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The analogue of Lemma 7 for these representations is the following
lemma. Let

LEMMA 8: The spectral measures of the representations WE,,,, and
WE2,T2 of the group Wx are equivalent if and only if E1= E2 and the
inner products in the space HE, = HE2 induced by the Riemannian
metrics ri, T2, coincide.

(The definitions of the space HE and the representation UE,T see in
section 2 of §3).

§5. Proof of the main theorems

1. To begin with, notice that it suffices to prove theorems 1 and 2

under the assumption that X is an open manifold diffeomorphic to Rm.
Indeed, every smooth connected manifold X, dim X = m, contains an
open submanifold Y, which is everywhere dense in X and diff-

eomorphic to Rm. It is evident that the set Fy = (il1(y; Q4»’, is a

subset of full Gaussian measure g in F=(03A91(X ; OE))’. Hence, we
have the coincidence L’(,Ify) = L)(3W) and thus the assertions of

Theorems 1 and 2 about representations of GX reduce to those of
representations of Gy.

Let, therefore, G be a compact semisimple Lie group, X an open
connected manifold, and let U = EXP03B2 V be the unitary represen-
tation of Gx in the space L(F) defined in section 1 of §3:

LEMMA 1: If dim X &#x3E; 2, then the cyclic subspace H C L§(F) of the
group Gx generated by the vacuum vector il E Lw(F) is irreducible.

PROOF: Let % C K be an arbitrary Cartan subalgebra, m its or-

thogonal complementation in (b. Let us decompose the space L(F)
into the tensor product L 2(F) = L2 L2 according to

Lemma 1, §4. Let Hu denote the space of all functionals 0 E L 2(F)
such that tIJ(. + Fm) = tIJ(.) for every Fm E 3Wm. It is also evident that

Hu is invariant under the action of operators W(a) = U(exp a),
a E Ux, and the restriction of the representation W of Ux to the
subspace Hu is equivalent to the representation Wu (see Lemma 1,
§4).
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It follows from Lemma 3, §4 (Corollary) and Lemma 5, §4 (Corol-
lary 2) that the restrictions of the representation W of the group 21x
to the subspace Hu and its orthogonal complement are disjoint.
Consequently, every bounded linear operator C in L 2 (F) which
commutes with the operators U(g), g E GX and, therefore, with the
operators W(a), a E UX leaves the subspace Hu invariant.

Let now U1 be another Cartan subalgebra in CM, such that 21 fl U1 =
0 (it certainly exists), let mi be the orthogonal complementation to 9ti 1
in CM, H91I C L 2(F) a subspace corresponding to U1. We shall verify
that H91 n Hu1 = {c03A9}. Indeed, if % n 2t, 1 = 0, then m + mi 1 = CM and

Fm + Fm, = F. Hence, if 4J E H91 n H91I, that is 0(- + Fm) =
e(. + FmI) = 0(-) for every Fm E Fm, Fm1 E Fm1, then 0(- + F) = 0(-)
for every F OE 3W and, consequently, 0 = const.

Let C be an arbitrary bounded linear operator in L 2 ( F) which
commutes with the operators U(g), g E G X. Since C, as was demon-
strated above, leaves both subspaces H91, H91I invariant and since

Hu n H91I = {c03A9}, then CQ = cil. The statement of the Lemma fol-
lows.

LEMMA 2. If dim X = 2, then the weakly closed operator algebra u
generated by the operators U(g), g E Gx in the space L 2(F), contains
the operators of multiplication by the functionals of the form

PROOF: In view of Lemma 6, §4, il contains the operators of

multiplication by ei(-,da), a E Ux, where U is an arbitrary Cartan

subalgebra in 9Ï. Consequently, il also contains every operator Au of
multiplication by ei(o,du), u E KX. It is evident that the operator of

multiplication by ei(F’B=1 V(gk)duk) equals to the product of the operators
U(gk)AukU-1(gk) and, therefore, is also an element of U.

LEMMA 3. The set M = {Lk=l V(gk)dUklgk E GX, Uk E Mx, n =

1, 2, ...} is dense in the space il l(X; ) of 1-forms in the norm

introduced there.

PROOF: The representation V of GX in the space 03A91(X;K) is a

continuai direct sum V = ff Vxdx, Vx being a representation in the
space Hx of 1-forms in x E X taking their values in K.

It is evident that these representations VX are pairwise disjoint. In
the meantime one proves that the component of the set M in every
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space Hx = Ef)m K (m = dim X) coincides with Hx. It follows that M is
dense in f2’(X; (K).

REMARK: It is a consequence of Lemma 3 that the set {03B2glg E GX}
is a total one in f2’(X; K) with respect to the norm introduced there.
This fact can be, however, established directly.

PROOF OF THEOREM I. Let H c L§(F) be the cyclic subspace for
the group G X which is generated by the vacuum vector f2. In view of
Lemma I, H is irreducible. By Lemma 2, H contains all the func-

tionals ei(.,CI), ú) E M, where M = (É Î=1 V(gk)dUkikk E GX, Uk E Kx,
n = 1, 2, ...}. Using Lemma 3, M is dense in f2’(X; (K) and, therefore,
the functionals ei(.,{J), w E M form the set total in L,(F). Con-
sequently, W = L 2(F) and Theorem 1 is proved.

PROOF OF THEOREM 2. Let Ti, T2 be different Riemannian metrics

on X, U’ and U2 the corresponding representations of the group GX.
Consider the representations of the group Ux, where % a Cartan
subalgebra of OE : Wi(a) = U’(exp a), i = 1, 2. In view of Lemma 7, §4,
the representations W’ 

1 and W2 are disjoint and, consequently, the
same is true for the representations U and U2 of Gx. The Theorem
is proved.
Along these lines Theorem 4 of the equivalence conditions for the

representations UE1,T1 UE2,, of Gx can be deduced from Lemma 8, §4.

2. Spherical function of the representation U = EXPG V. We show
here that if G is a compact semisimple Lie group and dim X - 2, then
the vacuum vector il is invariantly defined in the space of represen-
tation U = EXPG V of GX.
Let us, indeed, consider the subspace Hâ C L 2(F) introduced in the

proof of Lemma I. We have established above that (a) Hu is invariant
with respect to the representation W(a ) of the group Ux; (b) the
spectral measure of the representation W(a) in the subspace Hu is a
Gaussian measure in (Ux)’ with the zero mean; (c) the restrictions
W(a) to the subspace Hu and its orthogonal complementation are
mutually disjoint. On the contrary, it easily follows from the results
of §4 that the subspace Hu C L§(F) is determined in invariant way by
the conditions (a), (b) and (c).

Since the intersection of the subspaces Hui, where Ui runs over
différent Cartan subalgebras in K, contains the multiples of f2 only,
then the vector Q is also invariantly determined, up to a multiplier, in
the space of representation.
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We shall call the spherical function of the representation U =

EXP03B2 V the following function on GX :

It follows from the definition of operators U(g) that

The representation U is uniquely determined by its sperical function
and it is a consequence of the invariant definition of the vacuum

vector that equivalent representations U determine equal spherical
functions 03C8. One easily deduces from this fact the statement of

Theorem 2 in the case dim X ? 2.

§6. Extension of the group 81(X; G) of section
of 1-jet fibre bundle and its representations

In the papers of physical character [18], [3] and others the so-called
Sugawara algebra, accompanying a Lie algebra, is considered. It turns
out that Sugawara algebra is the Lie algebra of a certain infinite-

dimensional group which can be described in terms of the present
paper. Let us give the precise definitions.

Let X be a Riemannian manifold, G a real Lie group such that its
Lie algebra possesses an inner product invariant under the adjoint
action of the group G. Let us consider the group

of all differentiable sections with compact support of the 1-jet fibre
bundle j’(X; G) --&#x3E; X (see §I). The group 03B81(X; G) is acting in the
space f2’(X; (K) of differentiable (S-valued 1-forms on X with compact
support.
Let us introduce two cocycles of the group 0’(X; G) taking values

in n’(X; ; K). .

where 03B2 is the Maurer-Cartan cocycle.
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Define for any elements

It is clear that for every j the following is true:

Therefore, y is a 2-cocycle of the group 0’(X; G) with values in Rx.
Similarly, yo is a 2-cocycle of 0’(X; G) with values in R.
Let us verify the non-triviality of 2-cocycles y and yo. Suppose, for

example, that the 2-cocycle y is trivial. It means that there exists a

mapping c : 0’(X; G) --&#x3E; R x such that

for every fi, f2 E 03B81(X; G). Let 21 C K be an arbitrary abelian subal-
gebra, A C G a corresponding abelian subgroup. Consider the abelian
subgroup 03B81(X; A) C 01(X; G). It follows from (1) that y(f 1, f2) =

y(f2, f1) for every fi, f2 E 03B81(X; A). In the meantime it is clear that

y(f1, f2) ¥- y(f2, f 1) on 01(X; A). Therefore, y -f- O. One proves the

non-triviality of the cocycle yo likewise.
The cocycles y and yo define nontrivial extensions of the additive

groups Rx and R by means of the group 01(X; G). Let S(X ; G) and
SO(X; G), correspondingly, denote these extensions. Thus, the ele-
ments of the group S(X ; G) are the pairs (f, c), f E 01(X; G), cE Rx
with the multiplication rule

the elements of the group SO(X; G) are the pairs
c E R with the multiplication rule

Note that the group SO(X; G) is isomorphic to the factor group of
S(X; G) with the subgroup of elements type (1, c), c E IRx with

f x c(x)dx = 0.
To indicate the connection of the groups constructed above with

Sugawara algebra, let us suppose G a compact Lie group. Then Lie
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algebra of the group SO(R4 ; G x G) is Sugawara algebra, its generators
being described in [3].

Let us construct now representations of the groups S(X ; G) and
SO(X; G). Let F=(03A91(X;CS))’, and g be the standard Gaussian

measure on F. According to Sect. 3, §2 one defines a unitary re-
presentation of the group SO(X; G) in the space L2(F) for a pair of
cocycles a, ¡3 of the group 0’(X; G) by the following:

where f = (g, a) E 03B81(X ;G) and s ~ 0 is a real parameter. If G is a

compact semisimple Lie group and dim X a 2, then, making use of
Theorem I, one proves that the representation (2) is irreducible.
As the group SO(X; G) is isomorphic to the factor group of

S(X ; G), the representation (2) of the group trivially extends to a
representation of the group S(X ; G), the result being the represen-
tation of S(X ; G) in the space L§(F) given by

EXAMPLE: X = R, G = R+. In this case the elements of the group
S(X; G) are the triples (g(x), a(x), c (x )), x Ei R with the multipli-
cation rule:

The factor group of S(X ; G) with subgroup Go of elements (g, 0, 0)
with g = const., is isomorphic to the functional Heisenberg group with
8’-commutation law. The representation (3) of S(X ; G) is trivial on Go
and therefore it defines the representation of this Heisenberg group.
Authors are grateful to A. Lodkin for his English translation of the

paper.
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