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CURVATURE ON HOLOMORPHIC PLANE CURVES II

Linda Ness

Introduction

Let C : f (y, z) = 0 be a holomorphic curve with an ordinary double
point at Pand let Ct : f + t = 0. Let B be an open ball centered at P
which is so small that B n C = C1 U C2 where Cl and C2 are non-
singular connected holomorphic curves and C1 ~ C2 = {P}. For

sufficiently small t, Ct ~ B is nonsingular.
As in Part 1 [3] we will assume that all holomorphic curves are

endowed with the metric induced by the Fubini-Study metric on C 2.
The Fubini-Study metric on C2 is given by

where y and z denote the usual coordinates on C2.
Here CI and C2 are Riemannian surfaces as well as Riemann

surfaces. In Part 1 we obtained a formula for the Gaussian curvature

and studied the Gaussian curvature on Ct fl B in the more general
case that C had an ordinary singularity at P. In Part II we will study
the closed geodesics on Ct f1 B and the lines of constant Gaussian
curvature on Ct fl B, when C has an ordinary double point at P.
From Part 1 [3] we recall

THEOREM 1: Let C C e2 be a holomorphic curve defined by
f (y, z) = 0. The Gaussian curvature at a nonsingular point of C is

given by
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where

(H(f) is the affine hessian of f.)

We now state the first main result in Part II. For convenience in

referral, we number the theorems consecutively throughout Parts 1
and II.

THEOREM 3: Let D be a small solid cone with vertex at P and with

the line tangent to Cl at P as its axis. Let D2 be the image of Dl under
the unitary transformation of C2 that fixes P and interchanges the
tangents to CI and C2. Let û, = Ct fl B - Dl - D2. Given M &#x3E; 0 there
exists E &#x3E; 0 such that if - E  t  E

(i) K on Û,  -M  0.
(ii) êt is homeomorphic to a cylinder.
(iii) ét is geodesically convex.
(iv) In ét there is a smooth closed geodesic rand every other

smooth closed geodesic in Ct consists in going around r more
than once.

The second main result in Part II is a picture of the curves of
constant curvature on B fl Ct in the case that neither branch of Co has
a flex at P.

1. Proof of Theorem 3

After a unitary transformation we may assume that P = (0, 0) and
z = 0 is tangent to C at P. We give the proof for the case that the
other tangent at P is y = 0. The proof of the more general case is a
straightforward generalization of the following argument. Hence we are
assuming that

(3) f(y, z) = yz + ay3 + by2z + cyz2 + dz3 + higher order terms

and that in B, f may be f actored as f = f1 12 where

Here RI and R2 have terms of order 2 or more; R1 contains no y2 term
and R2 contains no Z2 term. Let Ct : f = 0 fl B. In this case the cones
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are defined by

for some small positive number a.

Part (i) follows immediately from Corollary 2 of Theorem 2.

PROOF oF ii: In the equation defining C, substitute z = 03B2y. This is
an analytic change of coordinates on C,. Then

+ terms of order at least 4 in y.

where h is analytic and bounded away from 0. Thus C, is topologi-
cally equivalent to the annulus

PROOF oF iii: The following is well-known [4] :

LEMMA 1: Suppose M is a compact Riemannian surface and D C
M is open and connected. D is geodesically convex if a geodesic exists
through every boundary point of D such that all the points of D in a
neighborhood of the boundary point lie on one side of the geodesic.

Hence it suffices to prove that the geodesic curvature on the boun-
daries of ét has the correct constant sign.

LEMMA 2: Let Et denote the boundary curve of êt defined by

For t sufficiently small the sign of the geodesic curvature kg on Et is
constant and is given by the sign of (a2/1 + a2) - t

PROOF: We may take y to be a local coordinate in a neighborhood
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of Et. Then we may view Et as the image of a real analytic function

Let h (y )dydy give the induced metric. Then with respect to the arc
length parameter s

This follows by rewriting the classical formula [5] for kg in terms of
complex coordinates. With respect to the parameter

We will show the sign of #h ·|y’|kg is given by the sign of 03B12/1 + a 2 -
1/2 for t sufficiently small by showing

We may assume that in a neighborhood of the boundary curve, C, is
the graph of a holomorphic function z,(y). Then one can calculate
using z = aeiBy on Et and writing zt(y) = z(y)

y’
Now as t ~ 0, zy - 03B1e i03B8 on Et so y -~ i/2.

Also as t ~ 0, YZyy - 2ae’o hence y,/y’’ ~ i/2.
To evaluate (8) recall that
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Hence h ( y, 03B1ei03B8y ) ~ 1 + |03B1|2 as t - 0. By calculating hy one can show
hyy’~ - i03B12 as t ~ 0. Q.E.D.

Finally we must check the meaning of the sign of kg on Et. Project
Et onto the complex line z = 0; the tangent and geodesic curvature
vectors of the projected curve 7T(Et) are just the projections of the
tangent and curvature vectors of Et. For t sufficiently small we may
assume

Hence 03C0(Et) is swept out in the clockwise direction. By the lemma kg
is negative on Et. Thus the curvature vector points toward the origin.
The other bounding curve is the image of Et under a unitary

transformation which preserves geodesic curvature. Thus the signs
are compatible.

PROOF oF iv: We will prove the following more general

PROPOSITION: Consider a geodesically convex subdomain M of a
Riemannian surface such that 1TI(M) == Z and the Gaussian curvature
is bounded away from zero by a negative constant. Then there exists a
unique smooth closed simple geodesic F and every other smooth
closed geodesic in M consists in going around r more than once.

PROOF: It is known that if N is a compact Riemannian manifold,
then every free homotopy class of loops has a minimal length member
which is a smooth closed geodesic. The proof of this result as given in
[1] is valid when the hypothesis of compactness is replaced by
geodesic convexity. To prove uniqueness, suppose there were two
distinct smooth closed geodesics 11 and 12. If li and 12 intersect, when
lifted to the simply connected covering space they bound a lune L
with f KdA  0 which contradicts Gauss-Bonnet. If li and l2 do not
intersect, there exists a geodesic y C M which realizes the minimum
distance between li and 12. When li, 12, and y are lifted to the simply
connected covering space, we obtain a geodesic rectangle R where

f R KdA  0 which again contradicts Gauss-Bonnet.

REMARK: For t ~ 0, H1(Ct,Z)=Z and any element of H1( ét, Z),
t ~ 0 is called a vanishing cycle [2]. Theorem 3 shows that there exist

unique smooth geodesic representatives of the vanishing cycles.
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1 claim that one can draw the following picture of the curves of
constant curvature on B fl Ct, for sufficiently small t, in the case that
neither branch of Co has a flex at the singular point.

In this case for sufficiently small t, Ct ~ B fl Ci and c, fl B f1 C2 each
contain exactly three flexes. The dots denote the six flexes. The nipples
denote the areas of positive curvature.
The other assumptions made on drawing this picture are 3 co

depending on t and the coeflicients of the third degree terms of the
defining equation such that: (1) for c0  c  2 the set K-1(C) has six
components each of which is a simple closed curve. (2) If M denotes
min K and then K-1(M) is a simple closed curve in B fl Ct and (3) if
M  c  co, K-1(c) consists of two disjoint simple closed curves, one
on each side of k --- M.

We outline the analytic proof of the picture in the case that the
singular point P = (0, 0) and the tangent lines are the axes. Hence we
are assuming as in Section 1 that

We will denote by Q(r~B) the polycylinder

Fix q so small that Q(~) C B and hence Co fl Q(~B) is the union of two
analytic branches defined by (4) and (5). We consider the following
subregions of Q( ’YI )
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Hence we have the following diagram of the projection of Q(~) into
the 1 y 1, 1 z plane.

We now introduce a change of coordinate on R1 and R3. Let t = T3.

R, and R3 are each invariant under these coordinate changes which

just expand the regions along the parabolas y = ’Yz2 and z = yy2
respectively, |~|  1/,q.

LEMMA: With respect to the (y’, z’) coordinate system in RI as t - 0

(i) (Ct n R,) the curve 0 = 1 + z’y’ + d(z’)3
(ii) K ~ 2 - 4|y’/z’2|2 on Ct n R1 

(iii) If d~ 0 the three flexes on Ct fl RI approach
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(iv) The outer boundary of Ct fl RI given by

The convergence in (i) and (ii) is uniform on compact subsets in the
(y’, z’) space. The analogous results hold for Ct n R3.

PROOF: Straightforward computation.

By the previous lemma, then, we can obtain a picture of the curves
of constant curvature

on ct rl RI for t very small by considering the curve

and the subsets Py C C where

Note that if t is small enough the image of Ct in the Iyl, Izl plane lies
in an arbitrarily small neighborhood of the image of Co, which if q is
small enough lies in an arbitrarily small neighborhood of (|y| = 

LEMMA: On R2 fl Ct, for t sufficiently small

where 0  03B4(t)  1/~2 and 03B4(t) ~ 0 as t - 0.

PROOF: Straightforward computation.

LEMMA: On Ct n R 1
(i) For y &#x3E; |d|, Py is a simple closed curve.
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If d ~ 0
(ii) When y = Id 1, Py is a simple closed curve minus one point at 00.

(iii) For y  |d|, Py consists of three disjoint simple closed curves
(iv) limy~0, Py = (0, #1ld) which are the flexes.

PROOF: Obvious.

An analogous lemma holds on c, n R3.
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