Compositio Mathematica

Linda Ness
 Curvature on holomorphic plane curves. II

Compositio Mathematica, tome 35, no 2 (1977), p. 129-137
http://www.numdam.org/item?id=CM_1977__35_2_129_0
© Foundation Compositio Mathematica, 1977, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

CURVATURE ON HOLOMORPHIC PLANE CURVES II

Linda Ness

Introduction

Let $C: f(y, z)=0$ be a holomorphic curve with an ordinary double point at Pand let $C_{t}: f+t=0$. Let B be an open ball centered at P which is so small that $B \cap C=C_{1} \cup C_{2}$ where C_{1} and C_{2} are nonsingular connected holomorphic curves and $C_{1} \cap C_{2}=\{P\}$. For sufficiently small $t, C_{t} \cap B$ is nonsingular.

As in Part I [3] we will assume that all holomorphic curves are endowed with the metric induced by the Fubini-Study metric on \mathbb{C}^{2}. The Fubini-Study metric on \mathbb{C}^{2} is given by

$$
\frac{2}{1+|y|^{2}+|z|^{2}}\left(\left(1+|z|^{2}\right) d y d \bar{y}-\bar{y} z d y d \bar{z}-y \bar{z} d z d \bar{y}+\left(1+|y|^{2}\right) d z d \bar{z}\right)
$$

where y and z denote the usual coordinates on \mathbb{C}^{2}.
Here C_{1} and C_{2} are Riemannian surfaces as well as Riemann surfaces. In Part I we obtained a formula for the Gaussian curvature and studied the Gaussian curvature on $C_{t} \cap B$ in the more general case that C had an ordinary singularity at P. In Part II we will study the closed geodesics on $C_{t} \cap B$ and the lines of constant Gaussian curvature on $C_{t} \cap B$, when C has an ordinary double point at P.

From Part I [3] we recall
Theorem 1: Let $C \subset \mathbb{C}^{2}$ be a holomorphic curve defined by $f(y, z)=0$. The Gaussian curvature at a nonsingular point of \mathbb{C} is given by

$$
\begin{equation*}
K(y, z)=2-\frac{\left(1+|y|^{2}+|z|^{2}\right)^{3}|H(f)|^{2}}{\left(\left|f_{y}\right|^{2}+\left|f_{z}\right|^{2}+\left|y f_{y}+z f_{z}\right|^{2}\right)^{3}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
H(f)=2 f_{y z} f_{y} f_{z}-f_{y y} f_{z}^{2}-f_{z z} f_{y}^{2} \tag{2}
\end{equation*}
$$

$(H(f)$ is the affine hessian of f.

We now state the first main result in Part II. For convenience in referral, we number the theorems consecutively throughout Parts I and II.

Theorem 3: Let D be a small solid cone with vertex at P and with the line tangent to C_{1} at P as its axis. Let D_{2} be the image of D_{1} under the unitary transformation of \mathbb{C}^{2} that fixes P and interchanges the tangents to C_{1} and C_{2}. Let $\tilde{C}_{t}=C_{t} \cap B-D_{1}-D_{2}$. Given $M>0$ there exists $\epsilon>0$ such that if $-\epsilon<t<\epsilon$
(i) K on $\tilde{C}_{t}<-M<0$.
(ii) \tilde{C}_{t} is homeomorphic to a cylinder.
(iii) \tilde{C}_{t} is geodesically convex.
(iv) In \tilde{C}_{t} there is a smooth closed geodesic Γ and every other smooth closed geodesic in C_{t} consists in going around Γ more than once.

The second main result in Part II is a picture of the curves of constant curvature on $B \cap C_{t}$ in the case that neither branch of C_{0} has a flex at P.

1. Proof of Theorem 3

After a unitary transformation we may assume that $P=(0,0)$ and $z=0$ is tangent to C at P. We give the proof for the case that the other tangent at P is $y=0$. The proof of the more general case is a straightforward generalization of the following argument. Hence we are assuming that

$$
\begin{equation*}
f(y, z)=y z+a y^{3}+b y^{2} z+c y z^{2}+d z^{3}+\text { higher order terms } \tag{3}
\end{equation*}
$$

and that in B, f may be factored as $f=f_{1} \cdot f_{2}$ where

$$
\begin{equation*}
f_{1}(y, z)=z+a y^{2}+R_{1}(y, z) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
f_{2}(y, z)=y+d z^{2}+R_{2}(y, z) . \tag{5}
\end{equation*}
$$

Here R_{1} and R_{2} have terms of order 2 or more; R_{1} contains no y^{2} term and R_{2} contains no z^{2} term. Let $C_{t}: f_{t}=0 \cap B$. In this case the cones
are defined by

$$
D_{1}=\{(y, z):|z / y| \leq \alpha\} D_{2}=\{(y, z):|y / z| \leq \alpha\}
$$

for some small positive number α.
Part (i) follows immediately from Corollary 2 of Theorem 2.

Proof of ii: In the equation defining C_{t} substitute $z=\beta y$. This is an analytic change of coordinates on \tilde{C}_{t}. Then

$$
\begin{aligned}
\tilde{C}_{t}: 0 & =t+\beta y^{2}+y^{3}\left(a+b \beta+c \beta^{2}+d \beta^{3}\right) \\
& + \text { terms of order at least } 4 \text { in } y .
\end{aligned}
$$

$$
\text { In } \tilde{C}_{t}, \beta=\frac{t}{y^{2}} \cdot h(y, \beta)
$$

where h is analytic and bounded away from 0 . Thus \tilde{C}_{t} is topologically equivalent to the annulus

$$
\sqrt{|\alpha|} \leq|\sqrt{\beta}|<\frac{1}{\sqrt{|\beta|}} \operatorname{via}(y, z) \rightarrow \sqrt{\beta}=\frac{z}{y}
$$

Proof of iii: The following is well-known [4]:

Lemma 1: Suppose M is a compact Riemannian surface and $D \subset$ M is open and connected. D is geodesically convex if a geodesic exists through every boundary point of D such that all the points of D in a neighborhood of the boundary point lie on one side of the geodesic.

Hence it suffices to prove that the geodesic curvature on the boundaries of \tilde{C}_{t} has the correct constant sign.

Lemma 2: Let E_{t} denote the boundary curve of \tilde{C}_{t} defined by

$$
\begin{equation*}
E_{t}: f\left(y, \alpha e^{i \theta} y\right)+t=0 \quad 0 \leq \theta \leq 2 \pi . \tag{6}
\end{equation*}
$$

For t sufficiently small the sign of the geodesic curvature k_{g} on E_{t} is constant and is given by the sign of $\left(\alpha^{2} / 1+\alpha^{2}\right)-\frac{1}{2}$.

Proof: We may take y to be a local coordinate in a neighborhood
of E_{t}. Then we may view E_{t} as the image of a real analytic function

$$
\theta \rightarrow y(\theta) \quad 0 \leq \theta \leq 2 \pi
$$

Let $h(y) d y d \bar{y}$ give the induced metric. Then with respect to the arc length parameter s

$$
K_{g}=\operatorname{Im} \frac{h_{y}}{h} \frac{d y}{d s}+h \frac{d^{2} y}{d s^{2}} \frac{d \bar{y}}{d s}
$$

This follows by rewriting the classical formula [5] for k_{g} in terms of complex coordinates. With respect to the parameter

$$
k_{g}=\frac{1}{\sqrt{h \cdot} \cdot y^{\prime} \mid} \operatorname{Im}\left(\frac{h_{y}}{h} y^{\prime}+\frac{y^{\prime \prime}}{y^{\prime}}\right) \text { where } y^{\prime}=\frac{d y}{d \theta}
$$

We will show the sign of $\sqrt{h} \cdot\left|y^{\prime}\right| k_{g}$ is given by the sign of $\alpha^{2} / 1+\alpha^{2}-$ $\frac{1}{2}$ for t sufficiently small by showing

$$
\begin{gather*}
\frac{y^{\prime \prime}}{y} \rightarrow \frac{-i}{2} \text { as } t \rightarrow 0 \tag{7}\\
\frac{h_{y} y^{\prime}}{h} \rightarrow \frac{+i \alpha^{2}}{1+\alpha^{2}}
\end{gather*}
$$

We may assume that in a neighborhood of the boundary curve, C_{t} is the graph of a holomorphic function $z_{t}(y)$. Then one can calculate using $z=\alpha e^{i \theta} y$ on E_{t} and writing $z_{t}(y)=z(y)$

$$
\begin{gathered}
y^{\prime}=\frac{i \alpha e^{i \theta} y}{z_{y}-\alpha e^{i \theta}} \\
\frac{y^{\prime \prime}}{y^{\prime}}=i+2 \frac{y^{\prime}}{y}-\frac{\left(y^{\prime}\right)^{2} z_{y y}}{i \alpha e^{i \theta} y}
\end{gathered}
$$

Now as $t \rightarrow 0, z_{y} \rightarrow-\alpha e^{i \theta}$ on E_{t} so $\frac{y^{\prime}}{y} \rightarrow i / 2$.
Also as $t \rightarrow 0, y z_{y y} \rightarrow 2 \alpha e^{i \theta}$ hence $\frac{y^{\prime \prime}}{y^{\prime}} \rightarrow i / 2$.
To evaluate (8) recall that

$$
h=\frac{1}{\left(1+|y|^{2}+|z|^{2}\right)^{2}}\left(1+\left|z_{y}\right|^{2}+\left|z-y z_{y}\right|^{2}\right) .
$$

Hence $h\left(y, \alpha e^{i \theta} y\right) \rightarrow 1+|\alpha|^{2}$ as $t \rightarrow 0$. By calculating h_{y} one can show $h_{y} y^{\prime} \rightarrow-i \alpha^{2}$ as $t \rightarrow 0$. Q.E.D.

Finally we must check the meaning of the sign of k_{g} on E_{t}. Project E_{t} onto the complex line $z=0$; the tangent and geodesic curvature vectors of the projected curve $\pi\left(E_{t}\right)$ are just the projections of the tangent and curvature vectors of E_{t}. For t sufficiently small we may assume

$$
\pi\left(E_{t}\right): 0=t+\alpha e^{i \theta} y^{2} \text { and } y^{\prime}=\frac{-i y}{2}
$$

Hence $\pi\left(E_{t}\right)$ is swept out in the clockwise direction. By the lemma \boldsymbol{k}_{g} is negative on E_{t}. Thus the curvature vector points toward the origin.

The other bounding curve is the image of E_{t} under a unitary transformation which preserves geodesic curvature. Thus the signs are compatible.

Proof of iv: We will prove the following more general
Proposition: Consider a geodesically convex subdomain M of a Riemannian surface such that $\pi_{1}(M) \cong \mathbb{Z}$ and the Gaussian curvature is bounded away from zero by a negative constant. Then there exists a unique smooth closed simple geodesic Γ and every other smooth closed geodesic in M consists in going around Γ more than once.

Proof: It is known that if N is a compact Riemannian manifold, then every free homotopy class of loops has a minimal length member which is a smooth closed geodesic. The proof of this result as given in [1] is valid when the hypothesis of compactness is replaced by geodesic convexity. To prove uniqueness, suppose there were two distinct smooth closed geodesics l_{1} and l_{2}. If l_{1} and l_{2} intersect, when lifted to the simply connected covering space they bound a lune L with $\int K d A<0$ which contradicts Gauss-Bonnet. If l_{1} and l_{2} do not intersect, there exists a geodesic $\gamma \subset M$ which realizes the minimum distance between l_{1} and l_{2}. When l_{1}, l_{2}, and γ are lifted to the simply connected covering space, we obtain a geodesic rectangle R where $\int_{R} K d A<0$ which again contradicts Gauss-Bonnet.

Remark: For $t \neq 0, H_{1}\left(\tilde{C}_{t}, \mathbb{Z}\right)=\mathbb{Z}$ and any element of $H_{1}\left(\tilde{C}_{t}, \mathbb{Z}\right)$, $t \neq 0$ is called a vanishing cycle [2]. Theorem 3 shows that there exist unique smooth geodesic representatives of the vanishing cycles.

I claim that one can draw the following picture of the curves of constant curvature on $B \cap C_{t}$, for sufficiently small t, in the case that neither branch of C_{0} has a flex at the singular point.

In this case for sufficiently small $t, C_{t} \cap B \cap C_{1}$ and $C_{t} \cap B \cap C_{2}$ each contain exactly three flexes. The dots denote the six flexes. The nipples denote the areas of positive curvature.

The other assumptions made on drawing this picture are $\exists c_{0}$ depending on t and the coefficients of the third degree terms of the defining equation such that: (1) for $c_{0}<c<2$ the set $K^{-1}(C)$ has six components each of which is a simple closed curve. (2) If M denotes $\min K$ and then $K^{-1}(M)$ is a simple closed curve in $B \cap C_{t}$ and (3) if $M<c<c_{0}, K^{-1}(c)$ consists of two disjoint simple closed curves, one on each side of $k \equiv M$.

We outline the analytic proof of the picture in the case that the singular point $P=(0,0)$ and the tangent lines are the axes. Hence we are assuming as in Section 1 that

$$
\begin{equation*}
f(y, z)=y z+a y^{3}+b y^{2} z+c y z^{2}+d z^{3}+\text { higher order terms. } \tag{3}
\end{equation*}
$$

We will denote by $Q(\eta)$ the polycylinder

$$
Q(\eta)=\{(y, z):|y|<\eta \text { and }|z|<\eta\} .
$$

Fix η so small that $Q(\eta) \subset B$ and hence $C_{0} \cap Q(\eta)$ is the union of two analytic branches defined by (4) and (5). We consider the following subregions of $Q(\eta)$

$$
\begin{aligned}
& R_{1}=Q(\eta) \cap\left\{(y, z): \frac{|y|}{|z|^{2}}<\frac{1}{\eta}\right\} \\
& R_{2}=Q(\eta) \cap\left\{(y, z): \frac{|y|}{|z|^{2}}>\frac{1}{\eta} \text { and } \frac{|z|}{|y|^{2}}>\frac{1}{\eta}\right\} \\
& R_{3}=Q(\eta) \cap\left\{(y, z): \frac{|z|}{|y|^{2}}<\frac{1}{\eta}\right\}
\end{aligned}
$$

Hence we have the following diagram of the projection of $Q(\eta)$ into the $|y|,|z|$ plane.

We now introduce a change of coordinate on R_{1} and R_{3}. Let $t=\tau^{3}$.

$$
\begin{aligned}
& \text { On } R_{1} \text { let } y^{\prime}=\frac{y}{\tau^{2}} z^{\prime}=\frac{z}{\tau} \\
& \text { On } R_{3} \text { let } y^{\prime}=\frac{y}{\tau} z^{\prime}=\frac{z}{\tau^{2}}
\end{aligned}
$$

R_{1} and R_{3} are each invariant under these coordinate changes which just expand the regions along the parabolas $y=\gamma z^{2}$ and $z=\gamma y^{2}$ respectively, $|\gamma|<1 / \eta$.

Lemma: With respect to the $\left(y^{\prime}, z^{\prime}\right)$ coordinate system in R_{1} as $t \rightarrow 0$
(i) $\left(C_{t} \cap R_{1}\right)$ the curve $0=1+z^{\prime} y^{\prime}+d\left(z^{\prime}\right)^{3}$
(ii) $K \rightarrow 2-4\left|y^{\prime} / z^{\prime 2}\right|^{2}$ on $C_{t} \cap R_{1}$
(iii) If $d \neq 0$ the three flexes on $C_{t} \cap R_{1}$ approach

$$
\left(y^{\prime}, z^{\prime}\right)=(0, \sqrt[3]{-1 / d})
$$

(iv) The outer boundary of $C_{t} \cap R_{1}$ given by

$$
C_{t} \cap(|y|=\eta) \rightarrow \infty
$$

The convergence in (i) and (ii) is uniform on compact subsets in the (y^{\prime}, z^{\prime}) space. The analogous results hold for $C_{t} \cap R_{3}$.

Proof: Straightforward computation.

By the previous lemma, then, we can obtain a picture of the curves of constant curvature

$$
k=2-4 \gamma^{2} \quad 0<\gamma<\frac{1}{\eta}
$$

on $C_{t} \cap R_{1}$ for t very small by considering the curve

$$
C: 0=1+y z+d z^{3}
$$

and the subsets $P_{\gamma} \subset C$ where

$$
P_{\gamma}=\left\{(y, z) \in C:\left|\frac{y}{z^{2}}\right|=\gamma \quad 0<\gamma<\frac{1}{\eta}\right.
$$

Note that if t is small enough the image of C_{t} in the $|y|,|z|$ plane lies in an arbitrarily small neighborhood of the image of C_{0}, which if η is small enough lies in an arbitrarily small neighborhood of $(|y|=$ $\left.|d||z|^{2} \cup|z|=|a| \quad|y|^{2}\right)$.

Lemma: On $R_{2} \cap C_{t}$, for t sufficiently small

$$
K<\left(2-\frac{2}{\eta^{2}}\right)+\delta(t)
$$

where $0<\delta(t)<1 / \eta^{2}$ and $\delta(t) \rightarrow 0$ as $t \rightarrow 0$.

Proof: Straightforward computation.
Lemma: On $C_{t} \cap R_{1}$
(i) For $\gamma>|d|, P_{\gamma}$ is a simple closed curve.

If $d \neq 0$
(ii) When $\gamma=|d|, P_{\gamma}$ is a simple closed curve minus one point at ∞.
(iii) For $\gamma<|d|, P_{\gamma}$ consists of three disjoint simple closed curves
(iv) $\lim _{\gamma \rightarrow 0} P_{\gamma}=(0, \sqrt[3]{-1 / d})$ which are the flexes.

Proof: Obvious.

An analogous lemma holds on $C_{t} \cap R_{3}$.

REFERENCES

[1] R. L. Bishop and R. J. Cirttendon: Geometry of Manifolds, Academic Press, 1964.
[2] M. Demazure: Classification des Germes à Point Critique Isolé et à Nombres de Modules 0 ои 1. Seminaire Bourbaki, 1973-74, No. 443, pp. 1-19.
[3] L. Ness: Curvature on Algebraic Plane Curves I. Comp. Math. 35 (1977) 57-63.
[4] J. J. Stoker: Differential Geometry, Wiley-Interscience, 1969.
[5] D. J. Struik: Lectures on Classical Differential Geometry, Addison-Wesley, 1950.
(Oblatum 1-XII-1975 \& 6-IX-1976)
Department of Mathematics University of Washington Seattle, Wash. 98195.
U.S.A.

