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Introduction

We will consider holomorphic curves C in C2; these are the zero
sets of holomorphic functions defined on an open connected subset of
C2. For such a curve

C* = C - {singular points}

is a Riemann surface. We endow it with the metric induced by the

Fubini-Study metric on  C2; with respect to the usual coordinates of C2
this is the metric given by

Hence we may view C* as a real Riemannian surface. In this paper
we study the Gaussian curvature of C*.
Both Part 1 and Part II are portions of the author’s thesis. The

author would like to thank her advisor David Mumford for his many

helpful insights and his encouragement.
The main result in section 1 is a formula for the Gaussian curvature

K in terms of the defining equation of the curve and the affine hessian
of the defining equation. A corollary gives a curvature formula for
algebraic curves in terms of the homogeneous polynomial defining the
curve, its Hessian, and the homogeneous coordinates of the point.
The formulas show that K  2 and that K attains the maximum value

2 precisely at the flexes (if C contains no line components and is not a
conic).
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In section 2 we consider an analytic family of curves

where Co is a singular curve. Let P E Co be a singular point of order
m and let B be a ball centered at P which is so small that B n Co =

Uri =1 Ci where Ci is a holomorphic curve, B fl Ci n Cj = {P} for i ~ j,
and where r is the number of branches of Co at P. In section 2 we

study the curvature on B net.
Before stating the main result of this section we define the affins

hessian of a holomorphic function f : C2~ C by

Then Q E Ct is a flex ~=~ C, is nonsingular at 0 and Q E (H ( f ) = 0) fl Ct.
In the case that P is an ordinary singularity of Co we will assume B is
so small that in B H ( f ) may be factored as

where hi and g are holomorphic, hi = 0 is tangent to Ci, g = 0 has a
singularity order of 2m - 4 at P, and where the tangents to g = 0 at P
are distinct from the tangents to Co. [3]. If g = 0, and hence H(f) = 0,
in fact has an ordinary singularity at P we will assume that B is so
small that in B g may be factored as

where gj: C ---&#x3E; C is holomorphic.
We now state the main result of section 2:

THEOREM 2: Suppose Co has an ordinary singularity at P of order
m. For E sufficiently small, positive, depending on Co and B, the

following statements are true for Ct, Itl  E.
(i) Let 1 be any line through P not tangent to H(f) = 0. Let Pt E

ct fl B ~ 1. Then there are m such points Pt counted with multiplicity and
K(Pt)~-oo as t ---&#x3E; 0.

(ii) B fl ct contains at least 3m(m - 1) flexes counted with mul-
tiplicity. More precisely for each i = 1, ..., m
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contains at least m + 1 flexes counted with multiplicity and it contains
more (=) P is a flex of hi = 0. If g = 0 has an ordinary singularity at P
then for j = 1,..., 2m - 4

contains exactly m flexes counted with multiplicity.

0

We first recall a few facts about the Fubini-Study metric.

Geometrically the Fubini-Study metric is the metric induced on C2 by
stereographic projection of the unit sphere S4 C R5, with the usual
metric, from (0,0,0,1) onto R4 viewed as C’.
The Fubini-Study metric on CP2 is defined on each of the three

usual affine coordinate patches of CP2 by formula (1). It is the unique
Kahler metric with constant sectional curvature equal to 2 which is
invariant under the automorphisms of CP2 induced by elements of
U(3, C) [2]. This invariance under unitary changes of homogeneous
coordinates can be seen from the following observation. If II: C3-
{0}~ CP2 is the natural projection which takes a line through the
origin in C3 to the corresponding point in CP2 and if q, denotes the 1-1
form associated to the Fubini-Study metric, then

where x, y, and z denote the usual coordinates on e3.

1

Hence forth we will assume that all curves (holomorphic or

algebraic are endowed with the metric induced by the Fubini-Study
metric (on C2 or CP2).

THEOREM 1: Let CCC2 be a holomorphic curve defined by f(y, z) =
0. The Gaussian curvature at a nonsingular point of C is given by the
formula
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COROLLARY: Let C C CP2 be an algebraic curve defined by
F(x, y, z) = 0, where F(x, y, z) is a homogeneous polynomial of degree
d. The Gaussian curvature at a nonsingular point P of C is given by
the formula

where the Hessian and the gradient are evaluated at the homogeneous
coordinates of P and where Il Il indicates the usual norm in C3.

PROOF OF THE THEOREM: It suffices to consider the case fy(P) ~ 0.

Locally, then, C may be viewed as the graph of a holomorphic
function y(z). The Gaussian curvature for a metric 2hdzdz is given by
(-1Ih)(a2log h/azaz). In our case we may write h = BIA 2 where
A = 1 + ly/2+ IZ/2 and B = A -laAlazI2.
Note that for any positive real-valued function P : C ---&#x3E; C .

Applying * to A and B and simplifying using the formula

gives (3).

PROOF OF THE COROLLARY : We may assume without loss of

generality that P is in the affine subset of CP2 where x~ 0. Then

locally C is defined by f(y, z) = F(1, y, z) = 0. The corollary follows
by applying Euler’s formula to the denominator and the following
formula, which is an exercise in [1] to the numerator

From the theorem we can conclude that the points of maximum
curvature are projective invariants. Clearly K S 2 and K = 2 on lines.
If P is a point on an analytic curve C: f = 0 which contains no line
components
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The flexes are precisely the nonsingular points where the tangents
have higher order contact. Hence they are preserved by maps of C
induced by projective transformations of C2 (or C3 in the algebraic
case). In general Gaussian curvature is invariant just under isome-
tries, which in the case of the Fubini-Study metric are maps of C
induced by unitary transformations of C2(or C3). Intuitively the curve
is "flatter" at the flexes so K(flex) = 2 is not surprising.

If C is an irreducible algebraic curve of degree d &#x3E; 1 Bezout’s

theorem implies that there are ~ 3d(d - 2) flexes counted with mul-
tiplicity, with equality if and only if C is nonsingular. Nonsingular
conics, then, are the only irreducible algebraic curves where the
maximum curvature is 2.

We now apply the theorem to cubics. Up to unitary transformation
every irreducible cubic C may be defined by an affine equation of the
form

where g is a cubic polynomial. The line "at 00" for a cubic C defined
by (5) contains exactly one point of C, a flex, so the curvature "at 00"
is 2. The affine branch points occur on the line y = az + (3 at the

points where g(z) = 0. C is singular if and only if g has multiple roots,
i.e. if and only if the discriminant of g is 0. If C is singular, the singular
points occur among the branch points.

PROPOSITION: Suppose C is an irreducible nonsingular cubic

defined by an equation of the form (5), where g(z)=
c(z - b1)(z - b2)(z - b3), c ~ 0. Let Bi be the branch point (abi + {3, bi).
Then

where M depends on bi and M ~ 64, with equality (=) the branch

points all lie on the z-axis.

PROOF: Apply formula (3)

We follow the notation of the Introduction and give the proof of
Theorem 2.
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PROOF OF (i): Recall the following classical [3]

LEMMA 1: If f(y, z) = 0 is an analytic curve with a singularity of
order m at P, H(f) = 0 has a singularity of order ~3m - 4 at P ; the
inequality is strict if and only if all the tangent lines to f = 0 at P
coincide.

Since curvature is invariant under unitary transformations we may
assume that P = (o, 0) and that y = 0 is tangent to H(f) = 0 at P.

Theorem 1 and Lemma 1 imply that it is sufficient to notice:

where Ca is continuous in a and vanishes at a only if z = ay is

tangent to H(f) = 0.

PROOF oF (ii): In B f may be factored as f = IImi =1 fi where fi is

analytic and Ci : f = 0. It is sufncient to prove

and in the case that g = 0 has an ordinary singularity at P

***holds since g = 0 and f = 0 have no common tangents when the
singularity of f at P is ordinary.

LEMMA 3: If p and q are analytic functions C2~C, then

where r: C2 ~ C is analytic.

PROOF OF LEMMA 3: Straightforward using the defining formula of
the affine hessian (2).
To prove 

* we apply the lemma letting p = fI, q = IImi=2 fi. Next
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Since the tangents are distinct I(P, f, ~ g - Hmj=2 hj) = 3 m - 5. Finally
we apply * and obtain **.

COROLLARY 1: Part (i) is true in the more general case that Co has
a singularity of order m at P with at least two distinct tangents.

PROOF: Clear from the proof of (i).

COROLLARY 2: Let 11... ln denote the distinct tangent lines of
H(f) = 0 at P. Let Di denote a small solid cone with vertex at P and
axis li. Let ét = ct rl B - Di - ... - Dr. Given M &#x3E; 0, there exists E &#x3E; 0

such that if itl  E, the flexes of Ct n B are in the interiors of the cones
Di, i = 1,..., n and

PROOF: It is sufhcient to note that Ca in formula (6) is bounded on
B - Dl - ... - Dr.
From Corollary 2 we obtain a picture of Ct n B when Co has an

ordinary singularity at P. The flexes collapse toward the tangent lines
to the hessian curve which include the tangent lines to Co at P, and
leave regions of large negative curvature in the regions between the
tangents to the hessian. We can visualize nipples of positive curvature
crowding toward the tangent lines to the hessian leaving more and
more extreme saddles between the tangent lines.
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