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1

Let G be a finitely generated group, let F(G) be the compact space
of its ends. The group G acts on F(G). If the cardinality of F(G) is
infinite Freudenthal [5] showed that there is at most one fixed point in
F(G). He left open the following

QUESTION: Are there finitely generated groups G with a fixed point
in F(G) and F(G) infinite? The answer is no.

This follows from Stallings’s (cf. [7]) structure theorem on finitely
generated groups with infinitely many ends. Together with Freuden-
thal’s result we have a more precise statement. A G-space X is called
minimal if any closed G-stable subset of X is empty or equal to X,
equivalently: if the orbit of any point x E X is dense in X.

THEOREM 1: Let G be a finitely generated group. The space F(G) of
ends of G is a minimal G-space, except when F(G) consists of two
points which are fixed.

One can ask the corresponding question for locally compact
groups. Here the answer is yes. The structure of the occurring groups
is completely described in terms of generators and relations (s.
Theorem 2 below). This is done in §2.

In §3 consequences for almost proper transformation groups are

given. An action of a locally compact topological group G on a locally
compact topological space is called almost proper if - roughly - it is
proper except for a 0-dimensional subset. Let Ro be the set of limit

points of such an action: Ro is - roughly - the set of non proper points.
As a result of §3 together with known results [1, 2] we get a complete
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classification of the sets Ro of limit points. Also the set Ro determines
the structure of the group G, except if Card Ro = 1 (Theorem 4).

2

Stallings’s structure theorem on finitely generated groups with
infinitely many ends [7] and its generalization to locally compact
topological groups [2] yield two types of groups: amalgamated free
products and HNN-extensions. In this paragraph we shall discuss
these two types of groups separately with respect to Freudenthal’s
question.

2.1. First some notation. Let A and B be subsets of a topological
space X. We say A is almost contained in B and write A c B if

there is a compact subset K of X such that A C B U K. The two sets
A and B are called almost equal: A = B if A C B and B C A.
A subset E of a locally compact topological group G is called

almost invariant if for any non empty compact subset W of G we
have E. W a= E. The complement of a subset E of G is denoted E*.
The Boolean algebra 21 of all almost invariant subsets of G contains

the ideal U of all subsets with compact closure. The maximal

(= prime) ideal space Spec U/A of the Boolean algebra 2f/ü is the

space Ftop gr(G) of ends of the topological group G, as defined by
Specker [6]. For a finitely generated discrete group G this is

equivalent with Freudenthal’s definition of the space of ends of the
group G. In general the space of ends F space( G) of the topological
space G is of course different from Ftop gr(G). We consider Ftop gr(G)
as a G-space under the action induced by left translations.

2.2. The first type of groups occurring in the structure theorem is an
amalgamated free product: Let G1 and G2 be two locally compact
(always: Hausdorff) topological groups both containing the same open
compact subgroup K. Then the amalgamated free product G =

G1 * K G2 has a unique topology such that G is a topological group and K
is an open compact subgroup.

2.3. LEMMA: Suppose K 0 G1 and K 4 G2. Then there is an almost
invariant subset E of G = G1 * K G2 and elements gi, g2 E G such that
glB C E*, 92E* C E. So 0152top gr( G) has no fixed point.

PROOF: Let Ë be the set of words in G1 * K G2 starting with an
element of Gi, i.e.
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and

We have Et = E2 U K. For gl E G1 B K we have g,E* C El and for
g2 E G2 B K we have g2E1 C E2 C Et. So it remains to prove that

Et - or equivalently E1- is almost invariant. The following relations
are obvious: El - gi = El U K for gl E GI B K, El . g2 = El for g2 E G2.
Since G1 U G2 generates G the sequence (Gi - G2)’, l E N of open subsets
of G covers G. So any non empty compact subset W of G is contained
in some (GI. G2)‘, which implies El C E, - W C El. So El is almost
invariant.

2.4. The second type of groups occurring in the structure theorem is
an HNN extension as follows: Let K be a compact open subgroup of
a (locally compact) topological group G1, let a: K --&#x3E; G, be a con-
tinuous open injective homomorphism. Then the HNN extension
G = G1 *a defined by the presentation (Gi, x; x-l . k . x = a (k) for

k E K) has a unique topology such that G is a topological group and
K is a compact open subgroup thereof.

2.5. LEMMA: Suppose K ~ G1 and a (K) ~ Gi. Then there are three
disjoint almost invariant subsets El, E2, E3 of G = G1 * a and elements
91, g2, g3 of G such that El U E2 U E3 = G and glEI C E2, g2E2 C E3,
g3E3 C El. So Ftop gr(G) has no fixed point.

Note that the two cases not covered by 2.5.: (1) K = Gi, (2)
a (K) = G1 coincide if G is discrete, whereas this is not the case in

general. This is exactly the reason why the answer to Freudenthal’s
question is no for discrete groups and yes in general.

PROOF: Let T C G1 be a set of representatives for G1/K and
T’ C G1 a set of representatives for Gi/a(K), both containing 1. Then
every element of G1 * a can be uniquely written as glx’, ... gnxEngn+1
where n &#x3E; 0, Ei = ± 1, gi ~ 1 if Ei + Ei-1 = 0, and, for i ~ n, gi E T if

Ei = + 1, while gi E T’ if Ei = -1 [4 p. 41]. Let

E3 the rest: E3 = G B (El U E2) = lu; u e G, or E 1= 1 and gi ~ 1 or
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and gl = 1}. Then we have

and x-1tE1 C E2 for t E T, t 0 1.
So it remains to prove that the three sets Ei are almost invariant.

For El we have El. g = El for g E G1 and El · x-1= El U K. This

implies as above that El is almost invariant, similarly for E2. Then
also E3 is almost invariant, since the set of almost invariant subsets of
G form a Boolean algebra with unit.

2.6. PROOF OF THEOREM 1: The cardinality of OE(G) is 0, 1, 2 or
infinite [5]. The theorem is trivial for card F( G) ~ 2. If G has infinitely
many ends Stallings’ structure theorem [7, cf. 4] says that G is of

either of the following two types: G = G 1 * K G2 where K is a finite
subgroup of both G1 and G2, K ~ Gt, K ~ G2 and card(G1/K) &#x3E; 2 or

card(G2/K) &#x3E; 2. Or G = G1 * « where K is a finite subgroup of G and
a : K - G1 is a monomorphism and K ~ G1, which implies a (K) ~ G1.
So the two lemmas 2.3. and 2.5. imply that F(G) has no fixed point. A
theorem of Freudenthal’s then implies the theorem: F(G) is minimal
or contains a fixed point [5].
Almost the same proof yields

THEOREM 2: Let G be a compactly generated locally compact
topological group. The space Ftop gr(G) of ends of the topological
group G is a minimal G-space except in the following two cases: (1)
F( G) consists of two fixed points. (2) G = K * a where a : K - K is an
injective continuous open homomorphism which is not surjective.

PROOF: Set R : = Ftop gr(G). We have card(JR)2 or infinite [2]. If
card R is infinite G is either an amalgamated free product G =

G1 * K G2, K compact open in G1 and G2,  K ~ G1, K ~ G2 and

card(G1/K) &#x3E; 2 or card(G2/K) &#x3E; 2, or G is an HNN-extension G = G1 * «
where K is a compact open subgroup of G1, a : K --&#x3E; G1 is an injective
open continuous homomorphism but not an isomorphism [2]. So the
lemmas 2.3. and 2.5. imply that there is no fixed point in R, except if
G1= K or a(K) = G1. Since G1 * « and G1 * a-l are isomorphic we
obtain G = K * a in the exceptional case. Again we have that R is

either a minimal G-space or contains a fixed point [2].
One can conclude theorems 1 and 2 from Oxley’s proof of Stallings’

structure theorem: If Ftop gr( G) is infinite and contains a fixed point
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then in the notation of [4 p. 51] : G1 = G2 = K = H, P ~ 0. The proof is
applicable for compactly generated locally compact topological
groups [2, §5].

3

3.1. Let G be a locally compact topological group acting con-
tinuously on a locally compact topological space X. The action is

called proper if for any compact subset K of X the subset {g E G;
gK ~ K 0 0} of G has compact closure.

3.2. DEFINITION: A locally compact G-space Y is called almost
proper if Y contains an open dense G-stable subspace X with the
following properties
(AP 1) R : = YB X is 0-dimensional, i.e. the topology of R has a

base of open closed sets.

(AP 2) The induced action of G on X is proper.
(AP 3’) X is connected, locally connected and (r-compact.

This definition is slightly stronger than that of [3]. The two definitions
coincide if Y is locally connected and separable. A standard example
of an almost proper G-space is the end point compactification X of a
proper G-space X satisfying (AP 3’).
A point y of a G-space Y is called a limit point if there is a point

z E Y, a filter B on G that does not converge in G such that

J(z) = {F(z) ; F E J) converges to y.

3.3. THEOREM 3: Let Y be a compact almost proper G-space. If the
set Ro of limit points is infinite and contains a fixed point, then

G = K * a where K is a compact group and a : K --&#x3E; K is a continuous

open injective non-surjective homomorphism.

The conserve is part of remark 3.5.

PROOF: It was shown in [3] that the concept of limit point adopted
here is the same as that of [1, 2]. If Ro is infinite we have the same
structure theorem as in the proof of theorem 2. Conversely: For any
such group the space Ftop gr(G) is infinite. Suppose G has not the

exceptional structure described in theorem 3. Then any compactly
generated subgroup of G is contained in a subgroup of the inductive
system S of all subgroups H of G with Ftop gr(H) an infinite minimal
H-space.
To any almost proper action of a locally compact group G belongs



44

a Specker compactification G of G ; G = G U Ro is topologized such
that for any x E X the mapping W-, of G to the orbit Gx extends to a
continuous mapping ôx : à - GxY = Gx U Ro with cPx/Ro = id, (s. [1]).

It is known [2, Lemma 7.1.] that UHEs(H B H) is dense in Ro where
the bar denotes closure in G. Since H is a Specker compactification of H
we have card(H B H):5 2 or infinite. Since Ro is infinite, H B H is
infinite for some H E S. There is a unique H-mapping from the universal
Specker compactification H U Ftop gr(H) ~ fi extending the identity on
H. Since H is dense in H the induced H-mapping Ftop gr(H) ~ H B H is
surjective and H B H is a minimal H-space.
On the other hand we may consider Y as an almost proper

H-space. The corresponding Specker compactification of H is H So
the set Ro(H) of H-limit points in Y is an infinite minimal H-space as
it is H-homeomorphic to H B H.
Now suppose Y contains a G-fixed point yo, this point is of course

H-fixed. But for any locally compact non compact group H and any
compact almost proper G-space, any point y E Y is H-fixed or the
closure of its orbit contains Ro(H) [1, 4.11.6.]. So yo E Ro(H) which
contradicts the fact that Ro(H) is an infinite minimal H-space.
The theorem just cited actually shows that Ro(G) is a minimal

G-space.
Together with results from [l, 2] we obtain the following complete

classification of sets of limit points:

3.4. THEOREM 4: Let Y be an almost proper G-space. Let Ro be its

set of limit points. G acts properly on the open G-subspace Y B Ro

(C) Suppose Y is compact. Then Ro is one of the following spaces
(C.0) Ro is empty. This is equivalent to G being compact.
(C.1) Ro consists of one point.
(C.2) Ro consists of two points. Then the orbit space GB(Y BB Ro) is

compact. There are two subcases :

(C.2.a) G acts trivially on Ro. Then G has a - unique maximal -
compact normal subgroup K such that G/K is topologically
isomorphic to R or Z.

(C.2.b) G acts non trivially on Ro. Then the kernel of this action
H = Ig E G ; g(y) = y for y E Ro} has index 2 in G and H has
the structure of (C.2.a). If K is the maximal compact normal
subgroup of H, GIK is the split extension of HIK with GIH,
G/H acting non trivially on H/K.

(C.3) Ro is a Cantor discontinuum.

(C.3.a) Ro is a minimal G-space. Then
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(a) G is an amalgamated free product G = G1 * K G2, where K is
an open subgroup of both G1 and G2, K 0 G1, K 0 G2 and not
card(G1IK) = card(G2/K) = 2 or

(03B2) G is an HNN extension G = G1 * a where K is an open

compact subgroup of G1 and a : K ~ G, is a continuous open
injective homomorphism and K 0 G1 and a (K) 5,-’ G1

(C.3.b) Ro contains exactly one fixed point. The closure of the orbit
of all other points of Ro is Ro. Then G = K * a where K is a
compact group and a : K ---&#x3E; K is an injective open continuous
non surjective homomorphism.

(N) If Y is non compact the one point compactification Y. of Y is a
compact almost proper G-space and the added point 00 =
Y’ B Y is a fixed point. So we have the following cases

(NO) Ro is empty. The action on Y is proper.
(N1) Ro consists of one point. This corresponds to (C.2.a) for Y*.
(N2) Ro is a Cantor discontinuum minus one point. This cor-

responds to (C.3.b) for Y*.

3.5. REMARK: All these cases occur. More precisely: For any

compactly generated group as mentioned in the theorem under

(C.n.x), n~ 1, there is an almost proper G-space such that the space
Ro of limit points has the properties mentioned under (C.n.x), actually
there is one with Ro = Ftop gr(G).

PROOF OF 3.5: For n = 0: G compact, take Y = one point. For n = 2
take X = R. In case (C.2.a) let GIK = Z or R act on R by translations.
In case (C.2.b) let H/K act on R by translations and for an element
g E G/KBH/K of order two define g(x) = -x for x E R. This extends
to a proper action of G on R. The extended action of G on the end

point compactification Y of R is almost proper and the following
G-spaces are G-homeomorphic: Fspace(R) = Ro ~ Ftop gr(G) and have
the properties (C.2.a) and (C.2.b) resp. For n = 3 let X be the

geometrical realization of the analogue of the Cayley diagram of G
(cf. [2, Beispiel 2.7]) with the natural G-action. Let Y be the end
point compactification of X. The following G-spaces are G-

homeomorphic : Fspace(X) = Ro ~ Ftop gr(G). The orbit of any point y E
Ro is y or dense in Ro [1, 4.11.6]. So by theorems 2 and 4 it remains to
show that Ftop gr(G) contains a fixed point in the exceptional case
(C.3.b): G = K * a = (K, x; x -’ - k - x = a(k) for k E K). The infinite
cyclic subgroup H of G generated by x has two ends. One of them is

y+ = limn~~ xn E H U Ftop gr(H) = H. The inclusion mapping H - G
extends to a continuous mapping of the universal Specker com-
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pactifications À - Ô = G U Ftop gr(G). Let y be the image of y+. Then
y = limn~~ Xn. For k E K we have k . xn E xn . K and limn-= je" K = y
(Axiom (R) for a Specker compactification [2]). Since x . limn-= xn =

limn-= xn, y is G-fixed. 3.5. implies

3.6. The types of groups (C.n.x), n ~ 1, are mutually disjoint.

Because a non compactly generated group belongs to (C.3.a)
Theorem 4 implies

3.7. For a group of type (C.n.x), n &#x3E; 1, the set Ro of limit points is as
described in (C.n.x) or consists of one point.

3.8. If G is locally connected, e.g. Lie, G is not of type (C.3.b).

PROOF: Suppose G = K * a as in (C.3.b) is locally connected. The
connected component G1 of G is an open normal subgroup of K,
hence of finite index in K. The image a(GI) is an open connected

subgroup of K, so a(G1) = GI. The induced homomorphism of the
finite group KIG, ---&#x3E;KIG1 is injective, thus surjective, which implies
that a is surjective, a contradiction.

3.9. Groups as in (C.3.b) occur in nature, e.g. the group G(Op) of
affine mappings of the line over the p-adic field 0,. G(Qp) = {(ao b1);
a E QpB{1}, b E Opl. For K = G(Zp) {(ao b1); a, a-l E Zp, b E Zpl,
a(ao b1) =(a 0 Pl. b), the mapping K *a ~G(Qp) defined by x ---&#x3E;(Po-1 Ï),
a : K ---&#x3E; G (Op), is an isomorphism.

This example leads to conjectures on the structure of groups
G = K * a as in (C.3.b), which are then easily proved: Let Go be the
kernel of the homomorphism K *a --&#x3E; Z, K-0, x- 1. Then Go =
U nEN xnKx-n. Any compact subset of Go is contained in a compact
subgroup. Any compact subgroup of G is contained in a conjugate
of K.
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