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GENERALIZATION OF p-ADIC COHOMOLOGY;
BOUNDED WITT VECTORS

A CANONICAL LIFTING OF A VARIETY IN CHARACTERISTIC

p ~ 0 BACK TO CHARACTERISTIC ZERO

Saul Lubkin

COMPOSITIO MATHEMATICA, Vol. 34, Fasc. 3, 1977, pag. 225-277
Noordhoff International Publishing
Printed in the Netherlands

Note: The reader who is only interested in learning about the
canonical lifting back to characteristic zero should skip the Introduc-
tion. The Introduction is a brief summary of two earlier papers. The

body of the paper starts with Section I.

Introduction

1. In "A p-Adic proof of Weil’s Conjectures" ([1], last chapter), 1
introduce a cohomology with the following domain. Let C be a
complete discrete valuation ring with quotient field K of charac-

teristic zero and with residue class field k. Then let "C be the category
of all complete, absolutely non-singular algebraic varieties over the
field k. Then on the category 6, 1 construct a contravariant functor,
X-H h(X, K), 0 S h S 2n, n = dimension X, which 1 call K-adic co-
homology, from the category (C into the category of skew-com-

mutative, associative graded K-algebras. This is a "good" co-

homology theory. I.e.,
a) The coefficient group is a field of characteristic zero.

b) The cohomology has cup products and obeys Poincaré duality
and

c) The cohomology obeys the Kunneth relations.
d) There is a good theory of canonical classes.

(d) is possibly the most important property.) In the paper [1], 1 use
this cohomology theory to prove the first two Weil conjectures
(Lefschetz theorem and functional equation). And 1 also prove the
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finite generation of the group of numerical equivalence classes of
cycles, another old problem.

2. In a seminar at Harvard University entitled "Zeta Matrices of an
Algebraic Family" that 1 gave in 1969-70, this cohomology theory is
generalized. (I also spoke in various colloquia in 1968, in which 1

presented summaries of that material.) The generalization is as fol-
lows :

Let O, K, k be as in 1. above. Let A be any k-algebra and let A be
an (9-algebra such that (.,40,k)/(nilpotent elements) = A. Then let
CA, A be the category having for objects the schemes X simple and
proper over A and that are liftable over A (i.e., such that there exists
X over A simple and proper such that X X X A A.). The

maps in cgA, A are all maps of schemes over A (whether or not they
can be lifted.). Then 1 construct a contravariant factor, the

(At @a K)-adic cohomology, from the category CA, A into the cate-
gory of skew-commutative, graded, locally free (At @O’ K)-modules:
X -,- Hh(X, A f @o K), 0:5 h :5 2n, where n is the largest dimension
of X X A K(p) (= the fiber of X at the point p), all prime ideals p C A.
These groups obey Poincaré duality and the Kunneth relations and
have a good theory of canonical classes. Also, they are functorial
with respect to "semi-linear maps". That is, if B is another k-algebra
and B is an (9-algebras such that (B ~o K)/(nilpotent elements) ~ B,
then if X E (CA,A and Y E cgB.lh if f : B ---&#x3E; A and F: B ---&#x3E; A are a

k-homomorphism and an (9-homomorphism of rings, such that the
diagram:

is commutative, and if ~: X ---&#x3E; Y is a map of schemes such that the

diagram

is commutative, then there is induced a homomorphism from the
.{Jt Oc K-module into the A fi @o K-module:
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that is semi-linear with respect to the ring homomorphism:

In my Harvard seminar, "Zeta Matrices of an Algebraic Family," 1
then applied this cohomology theory to define what 1 call the zeta

matrices of an algebraic family. The definition of these matrices is

purely cohomological, and uses this general p-adic cohomology
theory for its definition. (They are purely p-adic invariants. In prac-
tice they are not difficult to compute, as 1 show by an example.) These
zeta matrices

(1) Generalize the zeta function by replacing it by a somewhat
stronger invariant. In fact, these zeta matrices were defined in the
seminar for any complete, non-singular liftable algebraic variety over
any field of characteristic p 4 0. (The zeta function is only defined
over finite fields. In this case, the zeta matrices determine the zeta

function by a simple explicit formula whenever the latter is defined.)
(2) The zeta matrices, as indicated above, are defined even for

algebraic families. (The zeta matrices of an algebraic family typically
has p-adic convergent power series for its entries.) The zeta matrices
of an algebraic family can be used to determine by a simple formula
the zeta matrices, and therefore functions, of all algebraic varieties in
the family (by letting the p-adic convergent power series take special
values, depending on each variety of the family). As an example, 1
compute explicitly the zeta function of every elliptic curve y2 =

4X3 - g2X - g3, p ~ 0, 2, 3, as a function of g2 and g3 only. (Of course,
results apply to any algebraic family of complete non-singular
varieties such that the family is liftable, this being only a typical
example of an explicit computation).

3. The problem which we answer in this paper is, how do we

generalize these p-adic cohomology theories to, say, the non-liftable
case? (Note : In a later paper, l’Il give a different generalization which
also gives information about the zeta functions (and matrices) of
singular varieties. This alternative generalization applies to any alge-
braic variety over, say, a finite field, whether or not it is liftable,
singular, affine, complete or whatnot. The Lefschetz theorem is

generalized and proved for such arbitrary varieties. A "homology
with compact supports"-both q-adic and p-adic-are used and
defined for this very general Lefschetz theorem. (The functional
equation fails in this generality. Counterexamples will be given. But a
generalization of the "Riemann hypothesis" conjecture holds at this
level of generality as a consequence of Weil’s "Riemann hypothesis",
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proved by P. Deligne. 1 will state this generalization of the last Weil
conjecture and prove it equivalent to the latter under suitable conditions
in that Followup paper.)

In this paper 1 give a generalization that removes the assumption of
liftability - (But see the parenthetical paragraph above. The methods
of that Followup paper also apply to our bounded Witt theory defined
in this paper.) - and also that has the right p -torsion.

Notes: 1. 1 presented this paper in a few talks at the Nordic
Summer School on Algebraic Geometry held at the University
of Oslo at Blindernveinen in Oslo, Norway, in the summer of
1970. A manuscript (virtually identical to this one) was prepared
to be published along with the other papers presented at that
Conference. It was not published with the other papers of that
Conference due to a series of misunderstandings.
2. The research for this paper was completed at the University of
California at Berkeley during the academic year September,
1967 - September, 1968, and was first written down as notes at
that time. 1 am indebted to Mr. Barry Moyer for translating the
paper [3] of Witt, which of course was necessary for this

material.

3. Since completing the research for this paper, in early 1971, 1
discovered another generalization (a more direct generalization,
but one which does not yield "a canonical lifting back to charac-
teristic zero", and which is less "canonical") of the cohomology
theory described in [1]. This will appear soon in print ([2]).

So we start over.

1 start by defining a canonical lifting of every ring, algebraic
variety, prescheme and proscheme over Z/ pZ, p a rational prime,
back to characteristic zero, by making a modification of the Witt
vector construction. Let us start with ordinary Witt vectors.

Since presenting this manuscript in 1970, I discovered that André Weil
discovered, in essence, "bounded Witt vectors", at least in the case of
curves, ca. 25 years ago in unpublished notes.

1. Ordinary Witt vectors

1 recall the original definition by Witt of Witt vectors [3].

DEFINITION a): Let A be a ring containing Z/pZ where p is a
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rational prime. Then define

(1) W(A) = Aw = j(ai)i,,.: ai E A, all non-negative integers il.

The elements of W(A) are the Witt vectors of the Z/pZ algebra A.
The sum and product of two elements of W(A) are defined as

follows. For each integer h 2: 0 there are explicit polynomials Sh, Qh
with integer coefficients, each of total degree p h, in 2h + 2 variables
Ao, A 1, ..., Ah, Bo, Bi, ..., Bh. These polynomials depend on the prime
p and, if Ai and Bi are regarded as being weighted of degree p ‘, 0  i  h,
then Sh and Qh are both homogeneous of degree p h, all integers h &#x3E; 0.
The polynomials Sh and Qh are determined by certain simple explicit
recursions in the paper of Witt [3]. (I won’t recall these here. Instead l’ll
write down enough information to determine them, as the explicit
recursions are lengthy and less informative than our alternative

description.) The sum and product in W(A) are then defined as follows:

all (ai)i2:0, (bJi2:0 E W(A). (Witt [3]). As we shall see, there are also
more elegant ways to define the sum and product of Witt vectors.

b): Topology on W(A). Regard W(A) = Aw as being a topological
space with the direct product topology, where each copy of A is given
the discrete topology. We call this topology on W(A) the V-topology.
(The terminology will be motivated shortly.) Then, since Sh and Qh,
h - 0, are polynomials, it follows that W(A) is a topological ring for
the V-topology. W(A) is a complete topological ring for the V-

topology.
c): Standard operations in W(A). For every Witt vector a =

(ai)i2:0 E W(A), define

and

Then V and F are both continuous functions from W(A) into itself.
V is additive, that is
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all a, b E W(A). (To prove this one uses the explicit form of Sh and
Qh. Alternatively, property (5) can be used as part of a determination
of Sh, h 2: 0.) Also, F is a ring endomorphism of W(A). That is,

(Property (6) follows from the facts that ,Sh and Qh are polynomials,
h ± 0, from equation (4) and the fact that the ring A is a Z/pZ algebra.)

(Note that, if the ring A has no nilpotent elements, then F is injective.
Equation (8) thrown through F becomes an identity if we use

equations (6) and (7). Thus, in the case that A has no nilpotent
elements, equation (8) is a consequence of equations (6) and (7).)

d): Functorality. If f : A---&#x3E; B is a homomorphism of Z/pZ-algebras
then define W(f): W(A) ---&#x3E; W(B) by requiring that, for every a =

(ai)i&#x3E;0 E W(A), we have

(9) ( W(f)(a;);=0 = (f(a))i2:0.

Then W is a functor from the category of commutative (Z/pZ)-
algebras with identity into the category of commutative rings with
identity.

Note: The operator F (defined in equation (4)) on W(A) can be
characterized as being F = W(p’th power map), the image under the
functor W of the plth power endomorphism: x ---&#x3E; xP of the ring A, all
commutative Z/pZ-algebras with identity A, all rational primes p.

e): Multiplicative representatives. For every a E A, define

Then the assignment: a---&#x3E; a’ is multiplicative. That is,

Also,

(12) The function: W(A)- A that maps (ai)i, e W(A) into ao, all
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(a)i&#x3E;0 E W(A), is a ring homomorphism. (We call this ring homomor-
phism the canonical epimorphism from W(A) into A.)

1 note that, if W(A) is defined by equation (1), all commutative

(Zlp Z)-algebras with identity A, and if W(f) is defined by equation
(9), all commutative Zlp Z-algebras with identity A, B and all

homomorphisms of rings with identity f : A -&#x3E; B, and if V, F and the

operation a ---&#x3E; a’ are defined by equations (3), (4) and (10), and the

topology on W(A) is the V-topology as defined in property b) above,
then the requirements that W be a functor into the category of rings,
that properties (5), (6), (7) and (12) above hold, that (x’)p = (xp )’, all
x E A, and that property f(2) below holds, determine completely the ring
structure (i.e., the sum and product operations) on W(A), all com-
mutative (Z/pZ)algebras with identity A.

(This is not too difficult to prove, if we use property g) below, and
the proof of this property as in g) and [3].)

1 give here an alternative, in some ways simpler, characterization of
the sum and product in W(A).

f): Another characterization. Another characterization of the sum
and product in W(A) is as follows:

(1) Both sum and product are continuous for the V-topology on
W(A) (as defined in b) above), and W(A) is a ring with this sum and
product.

(2) For every Witt vector a = (ai)i2:0 E W(A) we have

where the infinite sum is taken with respect to the V-topology as
defined in b) above, and where the operators V and b - b’ are defined

by equations (3) and (10) above.
(3) If F is defined by equation (4) above, then properties (5), (6), (7),

(8), (11) and (12) above hold.

(4) For every a, b E A, we have

where Pi E Z[X, Y] is a polynomial with integer coefficients in two
variables X and Y, homogeneous of degree pi, determined by the
explicit recursions:

all integers i &#x3E; 1.
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(This characterization is especially convenient. It is both explicit and
easy to use. Of course, the polynomials ,Sh and Qh, h&#x3E; 0, described in

(a) above can very easily be determined from the polynomials Ph,
h ? 0, in (4) above and by properties (2), (3) and (4). As noted above,
functorality can be used as an axiom in place of (4) and equation (8),
allowing also a weakening of (11).)

g) REMARK: In a certain special case, the Witt vectors on A can be
characterized especially easily.

PROPOSITION: Let p be a rational prime and let A be a commutative

(Z/pZ)-algebra with identity. Suppose that the p’th power endomor-
phism x ---&#x3E; xp of the (Z/p Z)-algebra A is an automorphism of A (i.e., is
one-to-one and onto). Then the ring W(A) and the natural

homomorphism ~: W(A) ---&#x3E; A that sends (ai)i2:0 into ao, all (a;);-o E
W(A) are determined uniquely up to canonical isomorphism by the
following properties.

(1) W(A) is a commutative ring with identity, complete for the
p-adic topology.

(2) The ring homomorphism ~ : W(A) ---&#x3E;A induces an isomorphism :

by passing to the quotient.
(3) x E W(A), px = 0 implies x = 0.
Under the assumptions of the proposition, the V-topology on W(A)

coincides with the p -adic topology. Also, in this case, for every x E A, the
element x’ E W(A) is determined by the following properties :

(1) The image of x’ E W(A) in A under the natural homomorphism :
W(A) ---&#x3E;A is x.

(2) For every integer i ? 1, there exists an element y E W(A) such
that YP’ = x’.

The proof of the above Proposition is entirely similar to the proof in
the case in which A is a perfect field k. This latter is proved in Witt’s
paper [3]. In short, Witt’s proof for perfect fields generalizes to yield
the above Proposition without significant change.

h) The V-topology is given by ideals. Let A be an arbitrary
commutative (Z/pZ)-algebra with identity, where p is a rational

prime. Then the V-topology on W(A) can be characterized as the one

given by the ideals: 1 V’(W(A»: i &#x3E;0}. This explains the terminology
" V-topology" that 1 have chosen previously.

i) Other properties of Witt vectors. (Some of the properties below
were established by Witt in [3].)
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Let p be a rational prime and let A be a commutative (Z/pZ)-
algebra with identity. Then

i(l) A is an integral domain if and only if W(A) is an integral
domain.

i(2) A has no non-zero nilpotent elements iif W(A) has no non-zero
p-torsion elements iff W(A) has no non-zero nilpotent elements.

i(3) (This is property g) above.) If the p’th power map: x --&#x3E; xp of A is
an automorphism, then W(A) is a complete 2p-algebra without non-
zero p-torsion elements and we have that

These properties characterize W(A) up to canonical isomorphisms in
the case that the p’t’ power endomorphism: x ---&#x3E; xp of the ring A is an
automorphism.

i(4) The endomorphism: x ----&#x3E; xp of the Z/pZ-algebra A is an au-
tomorphism iff the endomorphism F: W(A)-&#x3E; W(A) is an automor-
phism iff W(A)/p W(A) has no non-zero nilpotent elements.

i(5) The natural homomorphism: W(A) --&#x3E;A (that carries (ai)i2:0 into
ao, all (ai)i2:0 E W(A)) always induces a natural epimorphism of

(Zlp Z)-algebras

The kernel of this epimorphism is an ideal I such that I2 = {0}.
i(6) There is a natural isomorphism:

(W(A)/p W (A))/(nilpotent elements) = A/(nilpotent elements).

i(7) Later, in chapter VI, 1 will describe explicitly

This is a useful concrete example.

i(8) (Witt). If k is a perfect field of characteristic p with W(k) is
(the unique) complete discrete valuation ring C of mixed charac-
teristic such that we have an isomorphism: O/pO ~ k.

i(9) (Witt). W(Zlp Z) = Zp, the p -adic integers.

Perfect rings
Perfection. (1 don’t believe this extremely elementary concept has

been studied before, as it yields non-Noëtherian objects. However, it
is natural in studying Witt vectors and related constructions, and also
in p-adic (and even q-adic) cohomology.)
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Let A be a commutative ring with identity and p be a rational
prime. Suppose that p - 1 = 0 in A - it is equivalent to say that A is a
(Zlp Z)-algebra. Then the function: x --&#x3E; xp from A into itself is a ring
endomorphism, which we call the p "h power map.

DEFINITION: The commutative Z/pZ-algebra with identity A, p a
rational prime, is perfect if and only if the p’th power map: x ---&#x3E; xP is

an automorphism of A. Equivalently, A is perfect if and only if A has
no non-zero nilpotent elements, and a E A implies there exists b E A
such that b p = a.

DEFINITION: Let A be a commutative ring with identity and let p be
a rational prime such that p - 1 = 0 in A (i.e., such that A is a

(Z/pZ)-algebra). Then by the perfection Ap-°° of the ring A in charac-
teristic p we mean

(1) A commutative ring with identity AP-- that is a perfect (Z/pZ)-
algebra.

(2) A homomorphism of rings with identity i: A---&#x3E; AP-- such that

(3) Given any other such pair B, j, there exists a unique homomor-

phism of rings k: AP-- --&#x3E; B such that k - i = j.

PROPOSITION: Let A be an arbitrary commutative (ZIpZ)-algebra
with identity. Then there exists a perfection Ap-- of A. The perfection
of A is unique up to canonical isomorphisms.

PROOF: Uniqueness is obvious. Proof of existence: In fact, define
Ap-°° to be the direct limit of the sequence of rings and homomor-

phisms :

Then A’-- has the indicated properties.

EXAMPLE: If A is a field k, of characteristic p ~ 0, then the above
definition of "perfect" becomes the usual definition of "perfect field".
If A is a field k of characteristic p 4 0, then the perfection Ap-°° of the
ring A as defined above is simply and purely inseparable algebraic
closure kP-oo of the field k.

Perfect proschemes
Let X be a prescheme or proscheme over Z/pZ where p is a

rational prime. Then by the p’th power map : X - X we mean the
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morphism of preschemes or proschemes that is the set-theoretic

identity function, and is such that, for every x E X, the induced ring
endomorphism of the (Z/pZ)-algebra (Jx.x (the stalk at x) is the p’th
power endomorphism of this (Z/pZ)-algebra.

DEFINITION: A prescheme or proscheme X over Z/pZ, p a rational
prime, is perfect if and only if for every x E X the local ring OX,x is

perfect. An equivalent definition: X is perfect if and only if the p ’th
power map: X ---&#x3E; X is an automorphism.

DEFINITION: Let X be a prescheme or a proscheme over (Z/pZ).
Then by a perfection of X we mean

(1) A prescheme or proscheme XI-- that is perfect together with
(2) A morphism of preschemes or of proschemes i : XI-----&#x3E; X such

that

(3) Given any other such pair Y, j there exists a unique morphism
of preschemes or of proschemes k: Y ---&#x3E; XI-- such that i - k = j.

PROPOSITION: Let p be an arbitrary rational prime and let X be an
arbitrary prescheme or proscheme over Z/pZ. Then there exists a
perfection xp-oo of X. Any two perfections of X are canonically
isomorphic.

PROOF: Uniqueness is obvious. To prove existence. Define (JxP-oo to be
the direct limit in the category of sheaves of rings on the topological
space X of the sequence:

where "x ---&#x3E; xp " denotes the p’t’’ power map of the sheaf (Jx into itself
(i.e., the endomorphism of the sheaf (Jx of rings on the topological
space X that induces the p ’th power map of each stalk (Jx.x, all x E X ).
Then the pair consisting of the underlying topological space of X
together with the sheaf (J xp-oo just defined is a prescheme or pros-
cheme Xp-°° and obeys the hypotheses of the Proposition.

(Note that X and XP-- always have the same, or more precisely
canonically homeomorphic, underlying topological spaces. And that if
X is a prescheme (respectively: separated prescheme, affine scheme)
then so is XP--.)

Note also that the above definitions generalize the ones that we
gave earlier for rings. That is, if A is any commutative (Z/pZ)-algebra
with identity and if X = Spec(A), then A is perfect if and only if X is
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perfect; and if AP-- denotes the perfection of the ring A then
XP-- = Spec(Ap-°°) is the perfection of the proscheme X.

EXAMPLE: The perfection of a commutative (Z/pZ)-algebra with
identity (that is neither a field nor the zero ring) is generally
not Ndetherian. E.g., the perfection of the polynomial ring
(Z/pZ)[T,..., Tn] is the ring: (Z/pZ)[T,..., Tn, TI/p,..., 1 T., ,
TI/pB ..., Tnl/p2 ..., TI/pl, ..., Tn’IP’, ...], i.e., the ring formed by ad-

joining arbitrary p ilth roots of each of the indeterminates Tl, ..., Tn,
all integers i ~ 0. This ring is of course not Noëtherian (consider the
ideal generated by Tl, ..., Tn, TI/p,..., Tnl’P, ..., TI/pl, ......, Tn1/pi, ...) if

n &#x3E; 1.

Note: We have already considered certain special properties of
perfect rings, e.g., property g) above.

II. Définition of the Bounded Witt Vectors

(The bounded Witt vectors, which 1 describe below, were an inven-
tion of mine. In generalizing p-adic cohomology, 1 initially started
working with a more complicated subring of W(A), about three or
four years before. 1 figured out the canonical lifting, described in Section
III, W-(X) of a variety, prescheme or proscheme X in Spring, 1968. The
rest was done shortly afterward. (Although 1 defined F-differentials
earlier for the more complicated subring of W(A) alluded to above.))

If A is any (Z/pZ)-algebra, p a rational prime, then in this section 1
define a certain subring of the ring W(A). We denote this subring as
W-(A) and call it the bounded Witt vectors on A. In Section III

below, this definition is generalized from (Z/pZ)-algebras with iden-
tity to algebraic varieties, preschemes and proschemes over Z/pZ.
The ordinary Witt vectors do not generalize similarly, which is one of
the reasons why we make the construction. (The construction gives a
canonical lifting of varieties, preschemes and proschemes back to
characteristic zero.) We give the definition in steps.

Case A. A = (Z/p Z)[ Ti, ..., Tn], a polynomial ring in finitely many
variables over the prime field of characteristic p, Z/pZ. Then for
every element a E W(A) we define the degree of a with respect to the
indeterminates Tl, ..., Tn, which we denote degTl,...,T,,(a), or more

briefly deg(a), as follows.
If a = (ai)i2:0 E W(A) then
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where deg(ai) denotes the total degree of the polynomial ai E (Z/pZ)
[ T,, ..., Tn]. Thus, if a 0 0, deg(a) is either a non-negative real number
or else +00. (If n ~ 1 then every real number &#x26; 0, and +oo, are degrees
of certain Witt vectors a E W(A).) If we wish, we define deg(0) = - 1.
Define

Then W-(A) is a subset of A. Also, it is easy to see that W-(A) is a

subring of W(A).
Note: The function degTl,.. _, Tn of course depends on the choice of a

set of parameters TB,..., Tn in A. Thus, it is not obvious at this point
that the subset W -(A) of W(A) depends only on the ring structure of
A (i.e., that an element a E W(A) is of degree  +00 with respect to
one set of n ring generators Tl, ..., Tn iff it is of finite degree with

respect to another.) This, however, is easy to verify directly. A more
elegant derivation is the one we are following.

LEMMA: Let r, n be integers ~ 0 and let cp: (Zlp Z)[ T,, ..., Tr] ~

(Z/pZ)[T1,..., Tn] be a homomorphism of (Z/pZ)-algebras. Then

W(cp) maps W-((Z/pZ)[T1,..., T,]) into W-((Z/p)[T1,... , Tn]).

The proof is very elementary (and similar to the direct proof that
the subset W-((Z/pZ)[T1,..., Tn]) of W((Zlp Z)[T1, ..., Tn]) is in-

dependent of the choice of a set of parameters TI,..., Tn in the

polynomial ring). (Note : The proof of the Lemma makes use of the
fact that the polynomials Ph(X, Y) described in property f), sub-

property (4), of section I, are of degree ~ p h, all integers h ± 0.)

Case B. A is an arbitrary finitely generated (Z/pZ)-algebra with
identity. Then pick an integer n &#x3E; 0 and an epimorphism of rings with
identity

Define W-(A) = image of W-((Z/pZ)[T1,..., Tn]) under the map:

W((Z/pZ)[T1,..., Tn])~ W(A).
1 must show that this definition of W-(A) is independent of the
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integer n and the epimorphism of rings with identity

chosen.

PROPOSITION: The above definition of W-(A), a certain subset of
W(A), A a finitely generated (Z/pZ)-algebra, is independent of the
non-negative integer n and the epimorphism of rings with identity: 03C8:
(Z/p Z)[T1 ..., Tn] ~ A chosen.

PROOF : Let m ~ 0 and p : (Zlp Z)[ T,, ..., Tm] ---&#x3E; A be another epi-
morphism of rings with identity. We must show that the subsets

and

coincide.

In fact, since Q is an epimorphism, there exist elements

a,, ..., am E (ZlpZ)[ T,, ..., Tn ] such that f/1(ai) = p(Ti), 1 :5 i - m. Let

a : (Z/pZ)[T,..., Tm](Z/pZ)[T,..., Tn] be the unique homomor-
phism of rings with identity such that a(T¡) = ai, 1i - m. Then the

diagram

is commutative. By the Lemma in Case A, we have that

Taking the image of this inclusion under W(Q), and using the fact that
from the above commutative diagram that W(ip) - W (a ) =
W(03C8o 03B1) = W(p), we obtain that

By symmetry, we also have the reverse inclusion. Therefore

This completes the proof.
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Thus if A is any finitely generated, commutative (Z/pZ)-algebra
with identity, then we have defined W-(A), a subring of W(A)
independent of any choices.

Case C. General case. A an arbitrary commutative (Zlp Z)-algebra
with identity. Then define

where Ai runs through the set of all subalgebras of A with identity
that are finitely generated as (ZlpZ)-algebras.
Then W- is a functor from the category of commutative Z/pZ-

algebras with identity into the category of 2,-algebras. ( W- maps into
the category of 2,-algebras, since W-(Z/pZ) = W(Z/pZ) = Zp). W- is
a subfunctor of W.

REMARK: W- can be characterized as being the smallest subfunctor
of the functor W such that, for every integer n ± 0, we have that the
subset W-«Z/pZ)[TI,..., Tn]) of W«Z/pZ)[T¡,..., Tn]) is as des-

cribed in Case A. above.

Some basic properties of W-(A), A an arbitrary commutative
(ZlpZ)-algebra with identity:
The operators V and F map the subring W-(A) of W(A) into itself.

If f E A is any element of A, then the element f’ = (f, 0, ..., 0, ...) e
W(A) is an element of the subring W-(A) of W(A). Hence, equations
(2), (3), (4), (5), (6), (7), (8), equation (9) with W-(f) replacing W(f),
(10), (11), (12) and f(4) of Section I hold equally well in W-(A). Note
also that, as in W(A), l’ = 1, 0’ = 0 and the assignment: f ---&#x3E;f’, though
multiplicative, is not additive unless A is the zero ring.

Note : The following alternative explicit description of W -(A) may
be useful for comprehension. Let A be any commutative ring with
identity such that p - 1 = 0 in A, where p is a rational prime. Then
W-(A) = {(ai)i2:0 E A-: there exist integers m ± 1, d ± 1, a sequence of
m elements b 1, ..., bm E A and an infinite sequence of polynomials
fo, fi, f2,..., fi, ....... EE(ZIpZ)[T,,..., Tm ] in m indeterminates with
coefficients in (Zlp Z) (or in Z), such that the total degree of fi is

:5pi . d, and such that ai = fi (b,, ..., b-), all integers i ~ 0}. (The
reader who understands the definition using Cases A, B and C above
but finds it difficult to understand this note can skip the note.)
We study some of the properties of W-(A), A a commutative

Z/pZ-algebra with identity, in Section III below. Let us note only one
fact here: Namely, that W -(A) is dense in W(A) for the V-topology.
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(Proof: In fact, if n is any integers 1, and if ao,..., an E A are any
n + 1 elements of A, then the Witt vector (ao, ..., an, 0, 0, ..., 0, ...) E

W(A) is bounded (since it is the image of the bounded Witt vector

(To, ..., Tn, 0, 0,...,0,...) E W-«Z/pZ)[To,..., Tn]) under W(03C8),
where Q: (Zlp Z)[ Ti, ... , Tn] --&#x3E; A is the homomorphism of rings with

identity that sends Ti into ai, 0  i _ n ). And the set of elements of the
form (ao, ..., an, 0, ..., 0, ...) E W(A) such that n &#x3E; 0, ao,..., an E A
is obviously dense in W(A) (= A W) for the V-topology (= the product
topology)). Let us define the V-topology on W-(A) to be the topology
induced on the subset W-(A) of the topological ring W(A). An
equivalent description is: The V-topology on W-(A) is the one given by
the set of ideals 1 V’W-(A): i 01. Then

where "n V" denotes the completion of the topological ring W-(A) with

respect to the V-topology.
Equivalently,

Thus, W -(A) together with its V-topology is a finer invariant than
W(A) in the sense that W-(A) determines W(A). Moreover, the

V-topology on the ring W-(A) is determined by the operator V.

(Namely, a base for the neighborhood system at zero for this to-

pology is 1 V’W-(A): i &#x3E; 01.)
(Note that statements f(l) and f(2) of section 1 remain valid if we

replace W(A) by W-(A).)
Note: We will define another topology on W-(A) later, in the case

that A is finitely generated, which is finer than the V-topology, and
with respect to which W-(A) is complete. This second topology we
will call the bounded topology on W-(A). It does not have a

denumerable neighborhood base unless A is finite (as a set).
Note that W-(A), like W(A), is rarely Noëtherian.
We will see later that an analogy can be drawn as follows between

bounded Witt vectors and polynomials. Let B be any ring. Then we
have the polynomial ring B [T] and the formai power series ring B(T).
B[T] is a subring of B(T). We can define the (usual, naïve) degree of
any element of B(T), which may be +00. B[T] can be characterized
as being the set of all elements in B(T) of degree  +00. There is a

topology on B[T], namely, the T-adic topology, such that B(T) is the



241

completion of B[T] relative to this topology. The analogy is: W-(A),
for A a commutative (Z/p )-algebra with identity, p a rational prime,
corresponds to B[T], B any commutative ring with identity. Under
this analogy, W(A) corresponds to B(T), the formal power series
ring. The operator V on W-(A) corresponds to the operation
"multiplication by T " in B[T]. We will see later that this analogy
holds good for several other important properties. Thus, the bounded
Witt vectors are like polynomials, (of finite degree), while the full
Witt vectors are like formal power series. (Several other properties of
bounded Witt vectors analogous to polynomials: They "paste together
well" to lift algebraic varieties, preschemes or proschemes, unlike
formal power series or full Witt vectors. We will also see that

bounded Witt vectors have better cohomological properties than full
Witt vectors - an analogy with polynomials and power series that

holds good if B is not of constant characteristic zero.) Other

analogous operations: f ---&#x3E; f’ from A into W-(A) or W(A) corresponds
to the inclusion, B C B [T] or B(T) (although f ---&#x3E; f’ is merely mul-
tiplicative, while the inclusion from B is a ring homomorphism). The
natural epimorphism W-(A) ---&#x3E; A or W(A) ---&#x3E; A that carries

(ao, al, a2, ..., ai, ...,...) into ao corresponds to the natural epimor-
phism of B-algebras B [ T] ---&#x3E; B, or B (T) ---&#x3E; B, that sends T into zero,
and every power series or polynomial into its constant term. Another

analogy of W-(A) to polynomials will appear when we describe

W-( (Z/ p Z)[ TI, ..., Tn]) explicitly later. In fact, we will be tempted to
use the phrase "bounded Witt polynomial in n variables" for an

element of this ring. (However, in this case, the analogy is possibly
closer between W-«Z/pZ)[T¡,..., Tn]) and the polynomial ring
C[T,,..., Tn] where C is a complete discrete discrete valuation ring.
Then the full Witt vectors W«Z/p Z)[T, ..., Tn]) corresponds to the
O-adic completion of O[T,,..., Tn]). The most important analogy
between W-(A) and polynomials is the one given by the first two

theorems of Section III below, and the cohomological properties.

III. Properties of bounded Witt vectors. The bounded Witt lifting

THEOREM 1: Let p be a rational prime and let A be a commutative

(Z/pZ)-algebra with identity. Then
A. For every element f E A, the canonical homomorphism is an

isomorphism
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B. Let n be a non-negative integer and let f1, ..., fn be elements of A.
Then fi, ..., fn generate the unit ideal in A if and only if f(, ..., fk
generate the unit ideal in W-(A).

Notes : The analogue of Theorem 1 for W(A) is not entirely true.
Part B holds for W(A) as well as W-(A), but the analogue of Part A
fails in general for W(A). Instead, under the hypotheses of Theorem
1, Part A, it is not difficult to show that the natural homomorphism
induces an isomorphism:

where "A V" denotes the completion with respect to the V-topology on

W(Af,), i.e. the topology having for open neighborhood base at the

origin the set of ideals {Vi(W(A)f’): i &#x3E; 01. (The operators F and V on
the ring W(A) extend uniquely to W(A)f’ in such a way as to preserve
the formulae: F(xy) = F(x) - F(y), V(x. F(y)) = V(x) . y. Also

Vi( W(A)f’) = (Vi( W(A)))f’, the localization of the W(A)-module
V’(W(A)) at the element f’ E W(A), all integers i &#x3E; 0).
The proof of property A of W-(A) is extremely simple; it follows

almost immediately from the definitions. (The corresponding property
for W(A) alluded to above is a consequence of property A for W-(A)
and the fact that W-(Af)^‘’ ~ W(Af).) The proof of the analogue of
property B for W(A) is almost as easy. However, the proof of
property B for W-(A) is a bit more interesting. In the proof, it is

necessary to use the facts that the polynomials Ph, h &#x3E; 0, of two

variables, defined recursively in property f(4) of section I, are each

homogeneous of degree exactly ph, each integer h ± 0. (Homogeneity
of these polynomials is definitely used in the proof.)

THEOREM 2: Let X be either an algebraic variety over a field of
characteristic p# 0, a prescheme over Z/pZ, or a proscheme over
Z/pZ. Then there is induced, respectively, a prescheme, prescheme or
proscheme over zp, call it W-(X), and a map of preschemes, pres-
chemes or proschemes over Zlp Z:

that is a homeomorphism o f topological spaces and a closed immersion
of preschemes, preschemes or proschemes. The sheaf of ideals I on the
structure sheaf of W-(X) X2p (ZIPZ) that defines the closed sub-object
X is therefore contained in the subsheaf of nilpotent elements of
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In fact

i.e., I is a sheaf of ideals of square zero.

The assignment: X ~ W-(X) is a covariant functor from the

category of all algebraic varieties over a field of characteristic p, or
the category of all preschemes over Z/pZ or the category of all

proschemes over Z/pZ into, respectively, the category of all pres-

chemes, preschemes or proschemes over Zp.
The maps (2) define a homomorphism of functors.
If A is any commutative (Z/pZ)-algebra with identity, then there is

induced a canonical isomorphism

The isomorphism (4) is an isomorphism of functors.
If U is an open subset of an algebraic variety, prescheme or

proscheme X, then W-(U) is an open subprescheme, subprescheme
or subproscheme, respectively, of W-(X). Also, the functor W-

preserves arbitrary unions and all finite intersections of open subsets
of X, all algebraic varieties, preschemes or proschemes X.
Note 1. The functor W-, considered as a functor on the category of

all algebraic varieties over a given field of characteristic p # 0, or else
considered as a functor on the category of all preschemes over Z/pZ,
is characterized uniquely up to canonical isomorphism of functors by
the properties given in the above Theorem. A few additional axioms
are needed to characterize the functor W- on the category of all

proschemes over Z/pZ: namely that W- preserves arbitrary unions of
subsets closed under generalization of X, all proschemes X over

Z/pZ, and that the topology on W-(X ) is the coarsest possible
topology such that all of the above axioms hold. (More explicitly, a
base for the open subsets of W-(X ) is {W-(U): U is an open subset
of X, f E W-(r(U, Ox»I, where W-(U)f = lx E W-(U): the image of f
in the residue class field at the prime ideal in W (f(ï7, Ou)) determined
by x is not zerol.

Sketch of proof: The algebraic variety case is a special case of the
prescheme case. If X is any prescheme over ZIPZ, then parts A and
B of Theorem 1 above are exactly the conditions needed for the

topological spaces {W-(U): U is an affine open subset of XI to
"paste together", including with their structure sheaves, to form a
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prescheme W-(X ). Equations (2) and (3) reduce to the case in which
X = Spec (A), A a commutative (Zlp Z)-algebra with identity. Then
the proof of equations (2) and (3) is similar to the proof of the
corresponding equations in i(5) of section 1 for W(A), A a com-
mutative (Z/pZ)-algebra with identity. The rest of the theorem then
follows easily.

PROOF OF THEOREM 2 in the case in which X is a proscheme over
ZIPZ: Define the underlying set of W-(X ) to be a quotient set of the
disjoint union of {Spec (W-( Ox,x)): xGX} following a certain

equivalence relation. Namely, if x, y E X and p E Spec (W(Ox.x)) and
q E Spec (W-(OX,y)), then p is equivalent to q if and only if there

exists a point z E X and an element _r E Spec (W-(01,z)) such that x
and y are both specializations of z in X and such that the image of g
in Spec (W(Cx,x)) and in Spec ( W- (0 X,y)) is p and q respectively.
Then W-(X) is a set, and the assignment: X ~ W-(X) is a covariant
functor from the category of proschemes over (Zlp Z) into the cate-
gory of sets. Define a topology in W-(X) by taking for open base
1 W-(U)f: U is an open subset of X, f E W-(r(U, Ou))}, where

W-(U)f is defined as in the Note above, all open subsets U of X and
all elements f E W-(F(U, Ou)). Then there is induced a natural struc-
ture of sheaf on the topological space W-(X ) together with which
W-(X) becomes a proscheme.
Note 2. Roughly speaking, Theorem 1, plus the most elementary

topological argument, implies Theorem 2.
1 call W- the bounded Witt functor. For every algebraic variety

over a field of characteristic p ~ 0, prescheme over Z/pZ or pros-
cheme over Z/pZ where p is a rational prime I call W-(X) the
bounded Witt lifting of X. Thus, every algebraic variety X over a field
of characteristic p ~ 0, or prescheme X or proscheme X over Z/pZ
where p is a rational prime, admits a canonical "lifting" back to
characteristic 0, namely W-(X). (Of course, W-(X) is not a "perfect
lifting" except under unusual conditions, vide infra. However, always
W-(X) is a "perfect lifting" of X together with a few additional
nilpotent (in fact, two-potent) elements. Equations (2) and (3) above
say this more precisely.)
Some properties of the bounded Witt lifting that follow im-

mediately from properties described in Theorem 2 and Note 1 are the

following:
W- carries a prescheme or proscheme such that the intersection of

any two affine open subsets is affine into a prescheme or proscheme
such that the intersection of any two affine open subsets is affine. A
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little bit more subtle is the following. Call a scheme infinitely pro-
jective if it is isomorphic to the Proj of a commutative non-negatively
graded ring with identity. Then W- carries infinitely projective
schemes into infinitely projective schemes. Moreover, if X is an

infinitely projective scheme coming from a non-negatively graded
commutative ring with identity such that the ideal of elements of
positive degree is generated by n elements, then W-(X) is also

infinitely projective and comes from a graded ring with similar

properties (and the same integer n). Hence, a projective algebraic
variety X over a field k of characteristic p (or even a projective
scheme over a commutative (Z/pZ)-algebra with identity A) is such
that W-(X) is infinitely projective, but comes from a non-negatively
graded, commutative ring with identity such that the ideal of positive
elements is generated by finitely many elements of degree + 1 (in fact,
by N elements of degree + 1 if X C N (k) or in pN (A) as a closed
subvariety or closed subscheme). However, if X is, e.g. a projective
algebraic variety over a field k of characteristic p, say even the prime
field of characteristic p, Z/pZ, then unless X is of dimension 0,
W-(X) is by no means an algebraic variety over Zp ; although W-(X)
is an infinitely projective scheme over W-(k), or 2(k), or over Zp, in
this case the rings of W-(X) are not even Noëtherian. (Of course, in
this case, W-(X) is covered by N affines if X C P’ (k) or in

P’(ZIpZ». An interesting example is W-(pN (Z/ pZ)), which admits a
morphism into P’(2p), but is "very much bigger" then pN (Zp). (A
peculiar fact is that the morphism from W-(pN (Z/p Z)) into pN (Zp) is
an affine map.)

Thus, even if we start with algebraic varieties, the functor W-

maps us into very infinite, non-Noëtherian schemes.
Note 3. The reader who does not like preschemes and proschemes

can nevertheless "escape". Let X be an arbitrary algebraic variety
over a field of characteristic p ~ 0 (or, if one wishes, a prescheme or

proscheme over Z/pZ, p a rational prime). Then, from Theorem 1

above, it follows that the assignment: U ~ W-(F(U, Ox)) is a sheaf
on the open base for the topological space X consisting of the affine
open subsets. (If X is a proscheme, then one must say: "The

assignment U ~ W-(T( U, Ox», U an open subset of X, is a presheaf
on the topological space X. Consider the associated sheaf.") There-
fore, this assignment extends uniquely, up to canonical isomorphisms,
to a sheaf, call it W-(X), on the topological space X. The pair
(X, W-(X)) is a ringed space (i.e., a topological space together with a
sheaf of commutative rings with identity) - although not a local ringed
space unless X is either empty or a disjoint union of zero dimensional
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algebraic varieties over Z/pZ. Moreover, this pair is a finer invariant
than the prescheme or proscheme W-(X) constructed in Theorem 2
above, in the sense that the prescheme or proscheme W-(X) can
easily be constructed from the ringed space (X, W-(X)), but not
conversely (except in the degenerate case that X is either empty or a
disjoint union of zero dimensional algebraic varieties over Z/pZ). Thus
the sheaf of Zp-algebras W-(X) on X is, in fact, a stronger invariant
than the "infinite prescheme" or "infinite proscheme" W-(X). W-(X )
can be regarded as being in some sense a "logic prescheme or
proscheme," since it is normally very infinite and non-Noëtherian -
and since it can, if we wish, be replaced by the sheaf W-(X) on X. In
all applications of W-(X) (except for the heuristic application that
W-(X) is, after all, a kind of canonical lifting of X back to charac-
teristic zero), including all homological, cohomological, and a few
other applications, one can work equally well with the sheaf V-(X)
on the topological space X as with the infinite prescheme or pros-
cheme W-(X). In fact, in certain ways W-(X) might be considered
better by some people (it is a somewhat stronger invariant). That is
basically a matter of taste.
Note 4. Theorem 1 above is the really important properties of the

bounded Witt vectors not shared by the Witt vectors which makes
them very useful in certain applications, including p-adic co-

homology. First, the bounded Witt vectors fit together well to lift

algebraic varieties, preschemes or proschemes. (This is analogous to
the functor, B ~ B[T], which also obeys the analogous properties of
Theorem 1, and therefore generalizes to X ~ X[T], X an algebraic
variety, prescheme or proscheme.) The properties of Theorem 1 are

also important for the p-adic cohomology. Because A ~ W-(A)
"behaves like polynomials," it turns out that the corresponding p-adic
cohomology "behaves like the p-adic cohomology of polynomials."
(In fact, we will see later, after defining the concept, that the p-adic
cohomology of (ZlpZ)[Ti, ..., Tn], using bounded Witt vectors, is

canonically isomorphic to the p-adic hypercohomology of the

polynomial ring Zp[T., ..., Tn]. The corresponding p-adic cohomology
defined using full Witt vectors is canonically isomorphic to the p-adic
hypercohomology of the formal power series ring Zp(T., ..., Tn). The
latter is undesirable if n &#x3E; 1, as that cohomology group has topologi-
cal p-torsion elements that are not p-torsion elements, (see [1] for a
detailed computation). (Of course, p-adic cohomology using the

bounded Witt vectors can be defined using the sheaf W-(X) instead
of the "lifting" W-(X) if desired. Thus, for the p-adic cohomology,
Theorem 1 is more significant than Theorem 2.)
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Note 5. At the other pole from the reader who likes algebraic
varieties but prefers to avoid preschemes, there are those who will
want to know more about proschemes. These are an abstraction

useful in proving both q-adic and p-adic cohomology theorems that 1
introduced and described in [1] and earlier in the paper, "On a

Conjecture of André Weil", American J. of Mathematics. They are
more general even than preschemes, and 1 think they are a really
"better" and "more natural" category. (They are no harder to work
with than preschemes, and often are easier because of their greater
generality. E.g., a subset closed under generalizations of an algebraic
variety is not always a prescheme, but is always a proscheme. Also
the category of proschemes, unlike preschemes and algebraic varie-
ties, is closed under arbitrary inverse limits indexed by arbitrary
set-theoretically legitimate categories.) This is a matter of heuristics;
everyone to his own taste.

Some other properties of the bounded Witt lifting W-(X) of an
algebraic variety, prescheme or proscheme in characteristic p 0 0:

Let X be an arbitrary prescheme or proscheme over ZIPZ. Then
1. W-(X ) is integral (i.e., the local rings, or stalks, OW-(X),X of the

structure sheaf, all x E W-(X), are all integral domains) if and only if
X is integral.

2. W-(X) is reduced (i.e., each of the local rings OW-(X),X has no
non-zero nilpotent elements, all x E W-(X)) if and only if W-(X) is
flat over Zp (i.e., each of the local rings (J W-(X),x has no non-zero

p -torsion elements, all x E W-(X)) if and only if X is reduced.
2a. Always, the natural morphism is an isomorphism:

3. W-(X) is irreducible if and only if X is irreducible.
4. The natural morphism:

(see equation (2) of Theorem 2 above) is an isomorphism if and only if
W -(X ) xZp (Z/pZ) is reduced if and only if X is perfect (see the last
part of section 1).

4a. For every prescheme or proscheme X over Z/ pZ, if XP--

denotes the perfection of X, then there is a natural isomorphism of



248

preschemes or proschemes:

(Here the inverse limit is the category of preschemes or proschemes
respectively. E.g., if X is a prescheme, then the inverse limit is a

prescheme. If X = Spec (A), then this inverse limit corresponds to the
direct limit of rings:

The operator F is, of course, defined as F = W-(p’th power map).)
Of course W-(X), like W-(A) and W(A), is rarely Noëtherian.

Also W-(perfect field), unlike W(perfect field) is not usually a

valuation ring, unless k is a finite field. However, for any com-

mutative, finitely generated (Z/pZ) algebra with identity A that is

set-theoretically finite (e.g., a finite field), we have W-(A) = W(A). In

particular, W-(a finite field) = W(the finite field) is a discrete

valuation ring, and W-(Z/pZ) = W(Zlp Z) ~ 2p.

REMARK: A statement analogous to 2a. for the full Witt vectors on
a ring would be false. The corresponding true statement for full Witt
vectors of a commutative (Z/pZ)-algebra with identity A is that we
have a canonical isomorphism:

W(A)/(closure for the V-topology of the set of nilpotent elements)

W(A/(nilpotent elements)).

Also, the analogue of condition 4a. to the full Witt vectors on a
commutative Z/pZ algebra with identity A is also false. The cor-

responding true statement for full Witt vectors is:

Here the " A V" denotes completion with respect to the topology on the
direct limit ring R having for neighborhood base at 0, 1 V’R: i &#x3E; 01.

Thus, equations 2a. and 4a., like the very important property A of
Theorem 1, and Theorem 2, are properties enjoyed by bounded Witt
vectors that are not enjoyed by full Witt vectors. The analogy with
polynomials - B [ T or X[T] - and f ormal power series - B(T) - holds
good in these examples. (Bounded Witt vectors and the bounded Witt
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lifting resemble polynomials, while the full Witt vectors resemble

formal power series.) Note also, that the fact that W-(k) is not always
a discrete valuation ring, even if k is a perfect field, is also true for
polynomials: k [T] ] is in fact never a field or discrete valuation ring.
While if k is a perfect field, then W(k) is a discrete valuation ring.
(And if k is any field, then k(T) is a discrete valuation ring.)

The bounded topology on W-(A): Let A be an arbitrary com-
mutative (Z/pZ)-algebra with identity. Then, as we have observed
earlier, we have a topology on W-(A), namely the V-topology, such
that W-(A) together with this topology is a topological ring. We
defined the V-topology to be the topology induced from the V-

topology on W(A) - or, equivalently, the one for which a neigh-
borhood base at 0 is the set of ideals 1 V’W-(A): i &#x3E; 01. Then W-(A),
together with its V-topology, is a topological ring such that the
completion of this topological ring is the full Witt vectors W(A) with
its V-topology.

In the case that A is a finitely generated commutative (Z/pZ)-
algebra with identity, p a rational prime, then 1 define a second, finer
topology on W-(A), which 1 call the bounded topology.

In fact, given a finitely generated, commutative (Z/pZ)-algebra with
identity A, pick an integer m &#x3E; 1 and an epimorphism 03C8: (Z/pZ)
[T,,...,T-]---&#x3E;A of rings with identity. Then define Wn (A) _
{f E W(A) : there exists g E W«Z/pZ)[T,..., Tm]) such that g is of

degree (see section II, equation ( 1))  n and such that f = W (03C8)(g)]}.
Then Wn(A) is a subset of W(A), compact for the V-topology, and
contained in W-(A), all integers n 0. And in fact

Define a topology, which we call the bounded topology, on W-(A) as
follows. A subset U of W-(A) is open for the bounded topology if
and only if U n Wn(A) is open in Wn(A) (for the compact topology
induced from the V-topology on W(A)), all integers n &#x3E; 0. It is easy
to see that the bounded topology on W-(A), so defined, is inde-

pendent of the choice of an integer m 2: 0 and of an epimorphism of
rings with identity 03C8: (Z/pZ)[Ti, ..., T-] --- &#x3E; A. Then the sum and

product: W-(A) x W-(A) ~ W-(A) are continuous for the bounded
topology, so that W-(A) together with the bounded topology is a

topological ring. Similarly the operators V and F are continuous for
the bounded topology.
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If A is any finitely generated, commutative, (Z/pZ)-algebra with
identity, then the topological ring W-(A) is complete for the bounded
topology. (The reason for this is that, if we choose m and Q as above,
then Wn(A) is a compact abelian subgroup of W-(A), and W-(A) is
the direct limit of compact topological abelian groups and

monomorphisms:

in the category of topological abelian groups. A general topology
theorem, which 1 will publish later, therefore implies that W-(A) is
complete for the bounded topology).
Note that if A is a finitely generated commutative (Z/pZ)-algebra

with identity that is not a finite set, then the topological abelian group
W-(A) does not have a denumerable neighbourhood base at zero.
However, note that the topology on W-(A) is always given by open
subgroups. (I.e., there exists a fundamental system of open neigh-
borhoods of zero such that each neighborhood is an additive sub-

group.)

REMARK: Intuitively speaking, the bounded topology on W-(A) is
"just enough additional structure" to know when a subset of W-(A)
is bounded in the sense that it does not contain elements of arbitrarily
high degree. In fact, one can define a subset S of W-(A) to be of
bounded degree (or, more briefly, bounded) if and only if its closure
for the bounded topology is compact. (A corresponding definition
using the V-topology would not produce the intuitive idea of "boun-
ded degree," e.g. in the case A is a polynomial ring.) In fact, it is

possible to reconstruct the bounded topology on W-(A) from the
operator V and knowledge of which sets are bounded in the above
sense. (Namely, first note that the operator V determines the V-

topology on W-(A). Then note that a subset U of W-(A) is open for
the bounded topology on W-(A) if and only if, for every bounded
subset S of W-(A), the intersection of U and S is open in S for the

" V-topology on S" (i.e., for the topology on S induced by the

V-topology on W-(A))). (Note that, if S is any subset of W-(A), then
S is of bounded degree as just defined iif there exists a subset So of
W-«Z/pZ)[T1,..., Tn]) and an integer N such that every element of
So is of degree :5 N, and such that W-(03C8)(So) = S. Note that this
property of a subset S of W-(A) is independent of the choice of an

integer n or of an epimorphism 03C8: (Z/p Z)[T, ..., Tn 1 ---&#x3E; A. (Since by
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definition a subset S of W-(A) is bounded if and only if the closure of
S for the bounded topology on W-(A) is compact.))

Note. Let A be an arbitrary commutative (Z/pZ)-algebra with
identity. Then we can define the bounded topology on W-(A) by
requiring that the underlying abelian group of W-(A), together with
this "bounded topology," be the direct limit in the category of

topological abelian groups:

where Ai runs through the set of all finitely generated (zlpz)-
subalgebras with identity of A, and where each W-(Ai) is regarded as
a topological abelian group with its bounded topology. If we pose this
definition, then the assignment: A ~ W-(A) from the category of
rings with identity into the category of topological abelian groups
(where each W-(A) is given its bounded topology) preserves direct
limits indexed by arbitrary directed sets. (Note that the assignment
A ~ W(A), the full Witt vectors with the V-topology, preserves
arbitrary inverse limits indexed by arbitrary directed sets or even
indexed by arbitrary set-theoretically legitimate categories.)

If A is any commutative (Z/pZ)-algebra with identity that is of

denumerable cardinality as a set, then 1 can show that W-(A) is

complete for the bounded topology as just defined, and is a topologi-
cal ring. (E.g., A = BP--, where B is any finitely (or denumerably)
generated (Z/pZ)-algebra, is denumerable as a set).

IV. F-difierentials on W-(A). F-null elements

In this section 1 define F-differentials over the bounded Witt

vectors. It turns out that the familiar Kahler differentials do not have

the desired properties, but a certain quotient, which 1 define and call
the F-differentials, and denote F*W-(A)(W-(B», have the desired

properties.
a) Recall the familiar definition of the ordinary, or Kahler diff-

erentials of a commutative algebra with identity over a commutative
ring with identity. Let A be an arbitrary commutative ring with

identity and let B be an arbitrary commutative A-algebra with iden-

tity. Then we define a sequence
Kah1(B), all integers q&#x3E;O. The definition is: Kah*A(B) is a

differential, graded, associative, skew-commutative) A-algebra (i.e.,
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Kah*A(B) is a non-negatively indexed cochain complex of A-modules,
and is also a non-negatively indexed graded, associative skew-com-
mutative A-algebra), such that if u E Kah’A(B) and v E Kah’(B) then

together with a homomorphism of A-algebras

differential graded A-algebra KahÂ(B ) and the homomorphism of
A-algebras B ~ Kah°(B) are universal with these properties. One
proves that such an object KahÂ(B) exists and is unique up to

canonical isomorphisms. And one shows that

the q-th exterior power over B of KahÂ(B). (Each Kah’(B) is a

B-module, since it is a Kah °(B )-module, and KahA0(B) = B.) Thus, the
Kahler differential q-forms Kah1(B) of B over A, for q 2: 1, are

determined by the Kahler 1-differentials, KahÂ(B).
b) Let A be a commutative ring with identity and let B be an

arbitrary commutative A-algebra with identity. Suppose that we have
a topology on the underlying set of B such that B, together with its
additive abelian group structure and together with this topology, is a

topological abelian group. Suppose further that this topology on B is
such that a fundamental system of neighborhoods of 0 consists of
open subgroups. Then there is induced a corresponding topology on
KahÀ(B), such that Kahx(B) becomes a topological abelian group
such that the topology is given by open subgroups, all integers q 2: 0.
The definition of a topology on Kahx(B) is as follows. For each

sequence Uo,..., U, of open subgroups of B, let N Uo,..., Uq be the

image of Uo (z Ui @z ... @z U, under the abelian group homomor-
phism that sends xo @z ’ ’ . @z xp into xo - (dxi) n ’ ’ ’ n (dxp) E

Kahx(B). Then we define the topology on Kah1(B) to be one given
by the open subgroups {N uo,..., Uq: Uo,..., Uq are open additive sub-

groups of BI, each integer q - 0.

EXAMPLE 1: Let A be an arbitrary finitely generated commutative

(Z/pZ)-algebra with identity and let B be an arbitrary finitely
generated commutative A-algebra with identity. Then W-(B) is a
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commutative W-(A)-algebra with identity, so we have the W-(B)-
modules

each integer q 2: 0. We also have defined the bounded topology on
W-(B). We have observed that with the bounded topology and its
additive abelian group structure, W-(B) is a topological abelian group
such that the topology is given by open subgroups (even though there
is usually no denumerable neighborhood base at 0). Then by the
above construction, there is induced a topology on Kahw-(A) W-(B)
such that the topology is given by open subgroups, all integers q &#x3E; 0.
We call this topology the bounded topology on Kahw-(A) W-(B), each
integer q &#x3E; 0. (As on W-(B) = Kah-(A) W-(B), this topology almost
never possesses a denumerable neighborhood base at zero.)

EXAMPLE 2: Let A be an arbitrary commutative (Z/pZ)-algebra
with identity and let B be an arbitrary A-algebra. Then the full Witt
vectors W(B) is a commutative W(A)-algebra with identity. We have
the V-topology on W(B), which is given by the open subgroups
V’W(B), i ~ 0. Then by the above procedure there is induced a

topology on Kahw(A) W(B) that is given by open subgroups, all

integers q ~ 0, which we call the V-topology. Since the V-topology on
W(B) admits a denumerable neighborhood base at 0, it follows that
the V-topology on Kahw(AiW(B)) admits a denumerable neighbor-
hood base at 0.

Under the assumptions of this example, we can also define similar-

ly the V-topology on Kahw-(A)W-(B), all integers q ~ 0. This is a

topology given by open subgroups and admitting a denumerable

neighborhood base at 0. (If A and B are finitely generated (Z/pZ)-
algebras then we have both the bounded topology and the V-topology
on Kahw-(A)W-(B), all integers q ~ 0. The former is finer than the

latter, and is the more important topology on this group, q ~ 0.)
c) F-null elements. F-differentials. Let A be an arbitrary com-

mutative (Z/pZ)-algebra with identity and let B be an arbitrary
A-algebra. Then 1 define a subgroup of Kahler’w-(A)(W-(B», q ~ 0,
which 1 call the F-null elements. 1 then define the F-differential
q-forms to be the quotient group, PW-(A)(W-(B)) =
Kahler q W-(A)(W-(B»/(F-null elements).
Case I. A and B are both finitely generated (ZlpZ)-algebras.
Subcase IA. A = (ZIpZ)[T,,..., T,], B = (Z/pZ)[T, ..., T,], there

exist integers r, s 0 such that s &#x3E; r, where the ring homomorphism



254

A --&#x3E; B corresponds to the inclusion: (Zlp Z)[ T,, ..., T,,] C--&#x3E; (Zlp Z)
[Tl, ..., Ts].

Then we have a commutative diagram of ring homomorphisms:

This induces an endomorphism, call it Fq, of Kahlerw-(A)(W-(B)), all
integers q - 0.

DEFINITION: An element u E Kahlerw-(A) W-(B) is an F-torsion

element if and only if there exists an integer i 2: 0 such that (Fq)i(U) =
0. (Here (Fq)‘ denotes the composite of Fq with itself i times.) The
F-null elements in Kahlerw-(Al W-(B)) are the closure, for the boun-
ded topology, of the F-torsion elements. Then, as we have indicated
above, we define the F-differential q-forms of W-(B) over W-(A) to
be

1 define a topology on PW-(AlW-(B)), namely the quotient topology
from the bounded topology on Kahlerw-(Al W-(B)). 1 call this to-

pology the bounded topology on F’W-(A)(W-(B», all integers q &#x3E; 0.

Then we obtain the following theorem.

THEOREM: If A and B are as in Subcase IA, then PW-(A) W-(B) is

complete for the bounded topology, all integers q ~ 0.

Subcase IB. A an arbitrary finitely generated commutative (ZlpZ)-
algebra with identity, B an arbitrary commutative finitely generated
A-algebra with identity.
Then picking integers r and s such that s &#x3E; r &#x3E; 0 and pick epimor-

phisms of rings with identity cp: (Z/ p Z)[ TI, ..., Tr] ~ A and

03C8: (ZlpZ)[ Ti, ..., T, - B such that the diagram

is commutative, where the vertical homomorphisms are the inclusion
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and the given homomorphism A ~ B respectively. Then define the
F-null elements in Kahler1v-(A)( W-(B)) to be the closure for the

bounded topology in Kahler1v-(A)(W-(B)) of the image under the
induced homomorphism of abelian groups:

of the F-torsion elements (as defined in Subcase IA above) in

Kahler’ W-«Z/pZ)[T i, - - ., Tr]) W-«Zlp Z)[ T, ..., TS ]). It is easy to see that this
definition of the F-null elements in Kahler’w-(,,)W-(B) is in-

dependent of the choice of integers r, s 2: 0 and of epimorphisms cp, Q
having the above properties.

Then define 

We regard T w-A,W-(B) as being a topological abelian group with the
quotient topology from the bounded topology on Kahw-(Ai W-(B)).
We call this topology on riv-(A) W-(B) the bounded topology. Then,
once again,

THEOREM: Under the hypotheses of Subcase IB, we have that
Tw-A,W-(B) is complete for the bounded topology, all integers q ~ 0.

Case II. General Case: A is an arbitrary commutative (Z /pZ )-
algebra with identity, p a rational prime, and B is an arbitrary
commutative A-algebra with identity.
Then define the F -diiferential q-forms of W-(B) over W-(A) to be

where the direct limit is taken in the category of abelian groups, each

integer q ± 0, and where the indexing directed set is the set of all

pairs (A’, B’) where A’ is a finitely generated subring of A and B’ is a
finitely generated sub-A’-algebra of B (pairs being ordered in the

obvious way).

REMARK 1: In the situation of Case II, we can define the bounded

topology onI-’qW-(A)W-(B) to be the topology such that Tqw-A,(W-(B))
becomes the direct limit of the indicated direct system in the category
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of all topological spaces. Then if the ring B is of denumerable

cardinality as a set, 1 can show that the abelian group T w-(A)(W-(B ))
together with the bounded topology so defined, is a topological
abelian group, and is also complete for the bounded topology, all

integers q &#x3E; 0. (This applies, e.g., to Tw-(A)(W-(Bp-~)) and to

PW-(A)(W-(B)) whenever B is an A-algebra, A is any ring in charac-
teristic p, and B is denumerably generated as a ring.)

Thus, in all cases, if B is an arbitrary commutative A-algebra with
identity where A is an arbitrary commutative (Z /pZ )-algebra with
identity, p a rational prime, we have constructed a certain quotient
abelian group of the Kahler differential q-forms Kah q-(A) W-(B),
which we denote as Tw-A(W-(B)), and call the F-diiferential q-forms
of W-(B) over W-(A), all integers q 2: 0. If B is denumerable as a set,
then we have defined a topology on Tw-A,( W-(B)), which we call the
bounded topology, such that the additive abelian group of

r-(A)(W-(B)) is a complete topological abelian group with

the bounded topology, all integers q &#x3E; 0. It is easy to see

that F*W-(A)(W-(B» is always a differential graded W-(A)-algebra
- i.e., that the structure of differential graded W-(A)-algebra (that
is, the coboundary operators and the cup product) defines, by
passing to the quotient, the structure of non-negatively graded diff-
erential graded W-(A)-algebra on the non-negatively graded W-(A)-
module Ftv-(A)( W-(B)), all pairs A, B where A is an arbitrary com-
mutative (Z lp Z )-algebra with identity and where B is an arbitrary
commutative A-algebra with identity. (Thus, for every such A and B,
if riv-(A)( W-(B)) is the F-differential q-forms, then we have

dq: Tqw-A&#x3E;(W-(B))~Tqw AyW-(B)), a homomorphism of W-(A)-
modules, all integers q &#x3E; 0, and that for every pair of integers h,
q ~ 0, if f E Tw-A,( W-(B)) and 9 E FqW-(A)(W-(B» then we have the
cup product f U g E Tw A,( W -(B )). And the operators dq, q 2: 0, and
cup products, obey the usual familiar identities.) Also, the natural
homomorphism W-(B) --&#x3E;I’W-(A)(W-(B» is a isomorphism, all com-

mutative (Z /pZ )-algebras with identity A, all commutative A-alge-
bras with identity B, and all rational primes p.

REMARK 2: Let A, B be as above. Then we can also define the

V-topology on PW-(A) W-(B), all integers q ~ 0. r’W-(A) W-(B) is not in
general complete for the V-topology. We use the symbol  PW(A) W(B)
for the completion of r-(A) W-(B) with respect to the V-topology, all
commutative (Z /pZ )-algebras with identity A, all commutative A-

algebras with identity B, all rational primes p. Then F*W(A)(W(B» is a
differential non-negatively graded W(A)-algebra, and the natural ring
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homomorphism W(B)-FwA&#x3E;(W(B)) is an isomorphism, all pairs
(A, B) obeying the above hypotheses. We call l’*wA,( W(B)) the F-
differentials of W(B) over W(A). These F-differentials of W(B) over
W(A) play an analogous role with respect to full Witt vectors that the
F-differentials I’11-(A)(W-(B» of W-(B) over W-(A) play with res-
pect to bounded Witt vectors.

Sheaves of F-diflerentials over a proscheme

THEOREM 1: Let A be an arbitrary commutative (Z/pZ)-algebra
with identity where p is a rational prime. Let X be an arbitrary
prescheme over the ring A. Then W-(X) is a prescheme over the ring
W-(A). Then for each integer q ~ 0 there exists, up to canonical

isomorphisms, a unique sheaf of OW-(x)-modules over W-(X ), call it

F’W-(A)(X), such that
(1) For every affine open subset Uo of X, if B = BUo = r(Uo, 6x),

and U = W-(Uo), then we have a fixed isomorphism between

F’W-(A)(X)JU and the quasicoherent sheaf of Ou-modules over U =
Spec (W-(B)) corresponding to the W-(Buo)-module, r’lv-(A)( W-(Buo))’
and

(2) If Uo C Vo are affine open subsets of X, then the restriction
homomorphism (rW-(A)(X))( V) ~ (rW-(A)(X))( U) corresponds, under
the fixed isomorphisms (1), to the restriction homomorphism

induced by the ring homomorphism: Bvo ~ Buo, where BUo =
r(Uo, Ox), Bvo = r(Vo, 6x), and U = W-( Uo) and V = W-( Vo).

The proof of Theorem 1 is obvious.

THEOREM 2: Let A be an arbitrary commutative (Z lp z )-algebra
with identity where p is an arbitrary rational prime. Let X be an

arbitrary proscheme over A. Then W-(X ) is a proscheme over W-(A).
Then for each integer q - 0, there is induced a sheaf F’W-(A)(X) of
OW-(x)-modules over W-(X), such that,

(1) For every subset U closed under generalization of X, if U is
affine, then there is induced a fixed isomorphism between

rq - W(A)(X)1W-(U) and the sheaf of OW-(u)-modules over W-( U) ~
Spec (W-(BU)) (where Bu = T(U, Ou)) that corresponds to the

W-(Bu )-module Fq W-(A)(W-(BU»-
(2) Let U, V be open subsets of X such that u C V. Then the
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diagram :

is commutative, where the vertical homomorphisms are the natural
maps, and where the horizontal homomorphisms are the restriction and
the homomorphism induced by the A-algebra homomorphism:

Theorems 1 and 2 are quite easy to prove. Notice that in the
situation of Theorem 1, each of the sheaves raW-(A)(X) is quasi-
coherent, while we do not know this in the situation of Theorem 2.

(However, in the situation of Theorem 2, for every subset closed
under generalization U of X that is a prescheme, we can show that

PW-(AlX)1 W-( U) is canonically isomorphic to IQw-A&#x3E;( U) as defined in
Theorem 1, and therefore is a quasi-coherent sheaf of (9w(L/)-modules
over W-( U). At any rate, under the hypotheses of either Theorem 1

or 2, the sheaves PW-(A)(X), q ~: 0, form in a natural way a (non-
negatively graded) sheaf of associative, anti-commutative differential

graded W-(A)-algebras, call if F*-(A)(X), over W-(X) (i.e., we have
the expected coboundaries and cup products, and these obey the
expected identities).

REMARK 3: The sheaves PW-(A)(X), q ~ 0, and the cochain complex
of sheaves F*W-(A)(X), over W-(X)q &#x3E; 0, can be interpreted as coming
from sheaves r-(A)(X) of W-(X)-modules over X, and cochain
complexes of sheaves F*W-(A)(X) of W-(A)-modules over X, respec-
tively, where W-(X) is the sheaf on X described in section III, Note
3. This enables one to escape working with W-(X) in the p-adic
cohomological applications if desired. Another slight advantage to
this point of view: The operators V and F on W-(A), A a com-
mutative (Z /pZ )-algebra with identity, both generalize to operators,
call them V and F, on the sheaf W-(X), where X is any prescheme or

proscheme over (Z /pZ ). (More precisely, the generalized V and F
are additive endomorphisms of the sheaf W-(X) over the topological
space X. F is also multiplicative, and is an endomorphism of the
sheaf of rings W-(X).) This is an advantage to taking the W-(X)
point of view. For, although the operator F makes sense on W-(X)
(we define it to be W-(p’th power map)), there is no reasonable way to
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make sense of V on W-(X) for a general X (even in the case X is
Euclidean space, X = Spec ((Z /pZ )[Tl, ..., Tn]), if n &#x3E; 1). The difh-
culty is that there is no natural continuous such operator V on the
underlying topological space of W-(X) such that, together with some
homomorphism of sheaves of abelian groups on W-(X ): Ùw-x&#x3E;-
V*(OW-(X)), the resulting operator V is compatible with our previously
defined V on the global sections of W-( U), all open subsets U of X.
If X is perfect, then such a V can be defined. In the general case
(even in the case X = Euclidean space over (Z /pZ ) of dimension
~1), it is impossible to define such an operator V such that the
induced function W-(X)---&#x3E; W-(X) is continuous. (It is, however,
possible to define a discontinuous V). However, if we take the sheaf
point of view W-(X) instead of the canonical lifting point of view
W-(X), then such a V is easy to define, as indicated above.

REMARK 4: The definition of sheaves of F-difFerentials given in
Theorems 1 and 2 above can be generalized. Let p be any rational
prime and let Y be a prescheme (or proscheme) over Z /pZ. Let X
be a prescheme (or proscheme) over Y. Then we can define the

F-differentials FQ-y&#x3E;(X), a sheaf of differential graded (J W-(y)-algebras
over W-(X) such that rw-(y) = ûw-(x). If X and Y are preschemes,
then each is a quasi-coherent sheaf of (Jw-(x)-modules over
W(X), q&#x3E;0. (In general, T w-(Y)(X) and T w-(y)(X) can be

regarded as coming from 1"’ -(y)(X) and T w-(y)(X), sheaves and diff-
erential graded sheaves of W-(A)-algebras, respectively, over X, all
integers q &#x3E; 0, as in Remark 3 of section III and as in Remark 3

above.)

V. Définition of p-Adic Cohomology using the Bounded Witt Vectors

DEFINITION: Let p be an arbitrary rational prime and let A be an
arbitrary commutative ring with identity. Let X be an arbitrary
prescheme, or proscheme, over A. Let U be any open subset of X.
Then we define the p-adic cohomology groups of X modulo U with
coefficients in W-(A):

a sequence of W-(A)-modules that form an associative, anti-com-
mutative graded W-(A)-algebra with respect to an operation called
the cup product.
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First recall that we have W(A), the (ordinary) Witt vectors on A
(section I). We have defined the bounded Witt vectors W-(A) on A, a
subring of W(A) (section II). We have defined W-(X), a prescheme
or proscheme over W-(A) (that is a "canonical lifting" of X back to
characteristic zero) (section III). We have defined the F-differentials
on W-(X) over W-(A), /1,,-(AiX), a quotient sheaf of differential
graded algebras of the usual Kahler differentials Kah*w-(A)( W-(X)) by
a subsheaf of ideals which we called the F-null elements (section IV).
Finally, we define

all integers h &#x3E; 0. The cohomology groups on the right side of

equation (1) are the hypercohomology groups of the topological space
W-(X ) modulo the open subset W-( U) with coefficients in the

cochain complex of sheaves of W-(A)-algebras n-(A)(X), as defined
in [1] and [2].

REMARK 1: The definition of the cohomology of X modulo U with
coefficients in W-(A) can be given without using the canonical lifting
W-(X ). Namely, consider the sheaf W-(X) of 2 p-algebras on the
topological space X defined in Remark 3 of section III. And consider
the cochain complex of sheaves of W-(A)-modules (in fact, sheaf of
differential non-negatively graded W-(A)-algebras) over the topolo-
gical space X, F*W-(A)(X), defined in Remark 3 of section IV. Then
define alternatively

all integers h ± 0, the hypercohomology of the topological space X
modulo the open subset U with coefficients in the cochain complex of
sheaves of W-(A)-modules rt-(A)(X) described in Remark 3 of sec-
tion IV. Then 1 can show that definitions (1) and (1’) are equivalent in
the sense that they yield canonically isomorphic W-(A)-modules
H h(X, U, W-(A)), h::n-- 0. (The natural map is from the right side of
equation (1’) into the right side of equation (1). A few spectral
sequences show that this map is always an isomorphism. The proof is
especially simple in the case that X is a prescheme.) Notice also that
the definition of the sheaf W-(X) makes sense if X is merely a
commutative ringed space (with identity) over Z /p Z , p a rational
prime, and the sheaves T*w (A)(X) can be defined in this case if merely
X is a topological space together with a sheaf (Jx of commutative
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A-algebras with identity over the topological space X, where A is any
commutative (Z /pZ )-algebra with identity and p is any rational

prime. Therefore, even at this level of generality, if we use the

definition (1’) instead of (1), ((1) and (1’) are equivalent whenever (1)
makes sense), then we obtain a definition of the non-negatively
graded, associative, anti-commutative W-(A)-algebra Hh(X, U,
W-(A)), h &#x3E; 0, all open subsets U of X.

REMARK 2: Let p be a rational prime, let Y be a prescheme or
proscheme over (Z / pZ) and let X be a prescheme or proscheme
over Y. Let U be any open subset of X. Then we can define a graded
W -(T ( Y, 0,»-algebra

all integers 0. An alternative equivalent definition, (2’), analogous
to definition (1’) in Remark 1 above, in which sheaves on X replace
the sheaves on W-(X) to give hypercohomology groups on X modulo
U instead of on W-(X) modulo W-( U), can also be given. Again, this
latter definition can be generalized even beyond the proscheme case;
which can be interpreted as an advantage.
Note that the p-adic cohomology we have defined above does not

require tensoring over i p with Ôpo This is an advantage over the
theory that 1 defined in [ 1] and [2].1
Does the p-adic hypercohomology, which is a functor of X and U,

depend only on the perfections XP-oo and UP-oo of X and U ? The

following theorem, and the Remark following, answer this.

THEOREM: Let p be a rational prime, let A be a commutative

(Z /pZ )-algebra with identity and let X be a proscheme over A that is
cover finite. (E.g., if X is a prescheme, then X is cover finite iff X is
quasicompact, and the intersection of any two affine open subsets of X
is quasicompact.) Let U be a quasicompact open subset of X. Then
the natural homomorphism is an isomorphism :

all integers h - 0.

1 

However, the alternative generalization of our p-adic cohomology, in our forth-

coming paper [2], which generalizes directly the theory in our paper [1], (See Note 3 in
the footnote following the Introduction), shares this advantage.
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Note. We also always have that W-(A’--) @zp Qp = W-(A) @zp. Op.
Since X is cover-finite and U is quasicompact, the operation of

Op" commutes with taking cohomology of sheaves over X

modulo U. Therefore in equation (2), we can replace the coefficient
group W-(A) on the right side of the equation with W-(Ap-°°), if we
wish, and this still leaves a correct formula.

Sketch of proof: Recall that X and XP-- have the same underlying
topological space. Using property 4a. following Note 5 of section III,
it is easy to see that the natural homomorphism of cochain complexes
of sheaves of W-(A)-modules over W-(X) :

is an isomorphism. Since the topological space X is cover finite and
since U is a quasicompact open subset of X, we have that

all cochain complexes of sheaves F* of W-(A)-modules over the

topological space X. Applying this last isomorphism to the two

cochain complexes F*W-(A)(X) and F*W-(A)(X’--), and using the isomor-
phism

yields the theorem. The proof of the observation in the Note is

similar.

REMARK: The preceding theorem implies that, for "reasonable"

(more precisely, cover finite) X and U, the p-adic hypercohomology
groups (1), after tensoring over 2p with dp, depend only on the
perfections XP-oo and UP-oo of X and U. In particular,
Hh(X, U, W-(A)) @zp Ôp does not depend on the nilpotent elements on
X:

COROLLARY: Let p be a rational prime, let A be a commutative

(Zlp Z)-algebra with identity, let X be a proscheme over A that is cover
finite, and let U be an open subset of X that is quasicompact. Then the
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natural homomorphisms are isomorphisms :

all integers h - 0.

P ROOF : X and Xred have the same perfection. Therefore the Corollary
follows from the Theorem and the Note.

REMARK 1: One might wonder whether either the above theorem
or corollary remain true if we do not tensor over Zp with Ô,. The
answer is "no," counterexamples to both statements are easy to

construct. Thus, the hypercohomology groups [1] tensored

over Ép with Ôp are independent of nilpotent elements and, in fact,
depend only on the perfections if X and U obey a very mild
condition ("cover finite." All algebraic varieties are cover finite).
However, if we do not tensor over Zp with Ôp, then this is no longer
the case. Roughly speaking, the p-torsion in the group [1] is sensitive
to nilpotent elements on X. (But once we tensor over Zp with Ôp, then
if X and U are cover finite, the resulting groups are independent of
nilpotent elements on X and, in fact, depend only on the perfections
X p-°° and Up-- of X and U.)

REMARK 2: Considering the definition (1), we have the two spectral
sequences of relative hypercohomology (see [1]), both of which abut at
the groups (1). The first of these is as follows:

This spectral sequence induces a filtration on the abutment, i.e.

on the groups (1), which in [1] 1 have called the Hodge filtration.
One is tempted to define the associated graded (i.e., ’E’(W-(X),
W-(U), F*-(.)(X», the E~q-term for the first spectral sequence of
relative hypercohomology) to be the "Hodge decomposition." Of
course, such "Hodge pieces"

are functors of the pair (X, U) (and even of the triple (X, U, W-(A)).
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A few examples show, however, that such a definition does not

always have all the properties that we would normally expect of a
"Hodge decomposition."

EXAMPLE: Let A = k be a finite field of characteristic p, where p is

any rational prime. Let C = W(k) = W-(k), the unique complete
discrete valuation ring with maximal ideal generated by p such that k
is the residue class field of C. Let X be an elliptic curve over A.
Assume for simplicity of statement that X is absolutely connected
over k = A. Then, if one takes the above definition of

"HO,l(X, W-(A))" and "H1,O(X, W-(A))," then it turns out that

Case 1. If X is not supersingular, then HO,l(X, C) and H1,O(X, 0) are
both free O-modules of rank 1. But

Case 2. If X is supersingular, then H°,1(X, 0) is a free C-module of
rank 2 while H l,O(X, 0) = 101.

Thus, in the case of an elliptic curve over a finite field, the

definition in the above Remark of a "Hodge decomposition" (which,
of course, by the above definition, is always functorial in X), has the
desired properties if and only if the elliptic curve X is not super-
singular. Thus, the would-be "Hodge decomposition" described in the
above Remark does not in general have all familiar properties that
one would want of a Hodge decomposition. (Even the formula

{3p,q = (3q,p fails if p = 1, q = 0 and X is a supersingular elliptic curve
over a finite field.)

VI. A concrète example : Euclidean space

We compute the bounded Witt vectors W ((Z/pZ)[T’i,..., Tn]) (and
the full Witt vectors) of a polynomial ring. This is illustrative. Then
we compute the differentials, I",-(zl,z)(W-«ZIpZ)[T,..., Tn]) over
Euclidean space. The latter motivates and explains why we divide out
the elements which 1 have called F-null. 1 also note what the p-adic
cohomology of Euclidean space is, which explains in what co-

homological sense the bounded Witt vectors resemble ordinary
polynomials over Zp.

a) Full Witt vectors on a polynomial ring
A direct computation (using f) of Section I) shows that
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(1) W«Z/pZ)[T,..., Tn]) =

ai,, in ---&#x3E; 0 in Zp, and such that denominator (il, ..., in) divides ai,,..., in

in all il, ..., in E p -lZ, il, ..., in :5 01, n 2: 0, p a prime.
In equation (1) above, the symbol "p-’Z" denotes all rational

numbers such that the denominator is a power of the fixed prime p.
Thus the range of the summation indices il, ..., in is the set of all

non-negative rational numbers such that the denominator is a power
of p. Also, in equation (1), the symbol "denominator (il, ..., in)"
denotes the least common denominator of the rational numbers

i 1, ..., in. Thus denominator (il,..., in) is a power of the fixed prime p,
all il,---,inEP-’Z, ii, ... , in ~ 0. (The condition ail,...,in~O in 2p
means, of course, that for each integer j 2: 0, there are only finitely
many sequences of indices (il, ..., in) s.t. il, ..., in E p -lZ, il, ..., in &#x3E;

0, and such that p’ does not divide ail,..., in in Zp.)

EXAMPLES: is an

element of W«Z/pZ)[T]), all rational primes p. So is ~n~o (pn/r)Tp", r
any integer prime to p.

is an element of W((ZlpZ)[X, Y]).

b) The degree of an element of W«Z/pZ)[T¡,..., Tn])
In Section II, equation (1), we have defined the degree of an

element a E W((ZlpZ)[Ti, ..., Tn]). This was a real number ~ - 1 or
+00, and we denoted it as degTt...., Tn(a), or as deg(a). An explicit
computation using equation (1) of Section II and equation (1) above
show that

PROPOSITION: Let

Then the degree deg(a) of a as defined in equation (1) of Section II is
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Thus, the degree, as defined earlier in equation (1) of Section II, of
the expression on the right side of equation (2) above is exactly what
we would naively call the "total degree" or "degree" of the ex-
pression. (This explains the terminology "degree" defined in Section
II, equation (1).) And indeed, if n &#x3E; 1 then this number "deg(a)" can
be an arbitrary non-negative real number or +00 if a ~ 0, as we have
noted previously in Section II.

c) Explicit expression for the bounded Witt vectors of a polynomial
ring

Considering the definition of bounded Witt vectors (see Section II,
equation (2)), which started by defining the object in the case of a
polynomial ring, and equations (1), (2) and (3) above, we see that

in Zp, denominator (il,..., in)laiB,..., in, all

ii, ..., in E p -’Z, i,, ..., in &#x26; 0, and there exists a real number N such
that il,..., in E p-IZ, il,..., in &#x26; 0, and i, +... + in &#x3E; N implies that

Of course, the degree of the typical non-zero element written out on
the right side of equation (4) can be described as being the smallest real
number N (always a non-negative real number since the Witt vector in
question is bounded, and by definition of bounded Witt vectors) such
that the indicated property in the bracelets holds.

EXAMPLES: T + pT1/P + p 2T 1/p2 + ... + ... is a bounded Witt vector
on (ZlpZ)[T], i.e., is an element of W-«Z/pZ)[T]). The degree is 1.

But T+pTp+pT p2 + ... +... E W((7/p7)[T]) is a Witt vector on

(Z/pZ)[T], but is not bounded, i.e., is not an element of W-«Z/pZ)
[T]), since its degree is +00. (Notice that of the two Witt vectors
written out in the Example (1) above, the first is bounded of degree
p2+ 1/p2 while the second such vector is not bounded as the degree is
+00.)
The Witt vector in (2) of the last Example is bounded and is of

degree 1 + l/p2.)

d) F-differentials on the bounded Witt vectors on polynomial rings
over W-(ZlpZ)

First, consider the polynomial ring in one variable, (Zlp Z)[ T]. Then
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the F-differentials of dimension zero of W2014((Z/pZ)[T]) over

W(Z/pZ) are just W-«ZIpZ)[T]) itself, explicated in equation (4).
The F-differential q-f orms are zero for q 2: 2, and

i E p -’Z, i &#x3E; -1, den(i) · 03B1i - 0 in Zp, and there exists N a real number

such that ai = 0 whenever i &#x3E; Ni-
The last condition (the one involving N) is, of course, a boundedness
condition: it says that what we would intuitively call the degree is

 +00. Notice that the convergence condition on the 03B1i is different

from the one in the bounded Witt vectors: on the F-difFerentials of

degree 1, the condition is "(den i) - ai - 0", a weaker condition, and
also that the condition "den(i)l03B1i" has vanished. Also notice that
negative exponents of T are allowed; the condition now on the index
i is "i &#x3E; -1, i E P-’Z". Possibly two examples will show why ne-
gative powers &#x3E; - 1 occur in the F-differentials of dimension 1, and

why the convergence condition becomes less restrictive.

(Notice that T has a negative exponent, namely -1 + 1/p. Notice also
that den(i) = p does not divide ai = 1).

(Notice that the coefficients ai, which are all + 1, all integers i, do not

converge to 0 p-adically. But denominator (i) - 03B1i = p’ . 1 does con-
verge to zero p-adically. Notice also that the exponents of T in this
F-differential 1-form, which are all elements of p-’Z, approach ar-
bitrarily close to -1, but always remain, as they must, strictly greater
than -1.)

Notice that in equation (5) we do not have an equality but merely
an inclusion. In fact this inclusion is strict. For example, one can
show that the element Tp-’dT of the right side of equation (5) is not
the image of an element of the left side of equation (5). (It is difficult,
but not impossible, to write down very explicitly which elements of
the right side of equation (5) are or are not in the image of the left
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side of equation (5). An easy, but not "explicit", answer to this

question is: An element of the right side of equation (5) is in the

image of an element of the left side of equation (5) if and only if it can
be written in the form fidgi + ... + fmdgm, there exist an integer m 2: 1
and elements fI, gI, ..., fm, gm E W-«Z/pZ)[TI, ..., Tn]). Here the

operator "d", from the right side of equation (4) into the right side of
equation (5), is the naïve differential operator (using the obvious
interpretation of the expressions on the right side of (4) as "power
series with rational exponents").)

Note : In equations (1), (2), (4) and (5), if one is thoroughly rigorous,
symbols like "T", "Tl", ..., "Tn" actually should be replaced by the
Witt vectors T’ = (T, 0, 0, 0, ...), T’ = (T;, 0, 0, ...), etc. In all cases

two elements as on the right side of the equation coincide if and

only if the formal expressions coincide. Similarly for some of the
equations below. Thus, V(T) = pTI/P (or, more rigorously, V(T’) =
p(T’)l/p, which can be deduced from equations in Section II, since

T’ = (T, 0, 0, ...), F( T, 0, 0, ... ) = ( T p, 0, 0, ... )=(T’)P, and V 0 F =

multiplication by p.) In equations (1) and (3), the operator F is the
2p-endomorphism that sends T into TP, and Ti,..., Tn into

TP,..., TPn. V sends Til ... Tn into P T’-’P ... Tri p. V or F send any one
of the "infinite sums" (which are convergent for both the V-topology
and also the bounded topology in the case of equation (3)) into the
corresponding infinite sum of the image of each monomial under V or
F.

As for the F-differential q-forms on the bounded Witt vectors of a
polynomial ring in n variables we have

EXAMPLES:



269

Therefore

Therefore

(3) Although Tr-IdTI is an element of the right side of equation (6)
in the case q = n = 3, nevertheless it is not an element of

rh,,-(z/PZ)( W-«Z/ p Z)[ Tt, T2, T3])).
Note: If 1 did not divide the Kâhler differentials by the F-null

elements, then equations (5) and (6) would become false. Intuitively
speaking, the F-null elements are the smallest group that one can
divide out by so that the obvious f ormal rules of taking differentials
should work, "allowing p!th roots". The following examples of F-
torsion and F-null elements may make this clear.

EXAMPLES: (1) The element V(T’). dT’ - pT’ . dV(T’) is an F-

torsion element in Kahlw-(zlpz)(W-(ZIpZ)[TI). (In fact, F’(V(T’)dT’-
pT’d(V(T’))) = (FV)(T’)dF(T’) - pF(T’). ° d(F(V(T’))) = pT’. °

d(T’)P - p(T’)P . ° d(pT’) = pur - (p(T’)P-’) - ° dT’ - p(T’)p - pdT’ =
p(T’)pdT’ - p(T’)PdT’ = 0). (The image of this element on the right
side of equation (5) is (pTI/P) . dT - pT . d(pTI/P) = pT"P - dT - pT
. T(1/p)-1 . dT = pT"PdT - pT"PdT = 0. This last computation might
show why we want to divide out by this element.)

(2) 3i;=o(V’(T’). dT’ - piT’ . dYÍ(T’)) is an F-null element in

Kahw(z/pz)(’((Z/Z)[T]). In fact, the element f = Vi(T’) . dT’ -
piT’ . dVi(T’) is an F-torsion element, since an explicit computation
similar to the Example (1) above shows that (FIY (the composite of
the endomorphism F’ of Kahw (z/pz)(W((Z/pZ)[T]) with itself i

times) maps the element fi into zero. But the infinite sum ~i-ofi
is a Cauchy sum for the bounded topology (and also for the

V-topology) on Kah1 W- (zlpz)(W -«ZIpZ)[T]». Therefore ~i~o fl =
:¿i2:0 (Vi(T’) . dT’ - pT’ . d(Vi(T’))) is an F-null element in

Kah’ w -(zlpz)(W-«ZIPZ)[Tl». It can be shown that this F-null element
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is not an F-torsion element. (Of course, if we write Vi( T’) = p iT,l/PB
and require that the usual rules of differentiation, including with
fractional exponents, hold, then we would have to have that this
element is zero. That is an intuitive reason why we divide out by
F-null elements.)
The F-null elements in Kahl w -(,Ip,)(W-(Zlp Z)[ T,, ..., Tn]), q, n &#x3E; 0,

q, n E Z, p a rational prime, can be characterized as follows. Using
the universal definition of Kahler differentials that 1 quoted in section
IV, part a), we easily obtain a natural homomorphism of differential
graded 2p-algebras from Kahqw-(zlpz)(W-(ZIpZ)[T,...,T,,]), q-0,
into the right side of equation (6). The F-null elements in

Kah q w -(;,Ip z -)(W-(ZIpZ)[T,..., T.1) are simply the kernel of this na-
tural homomorphism. Thus, to get decent differentials (i.e., diff-

erentials that in the case of the polynomial ring are subgroups of
equation (6), i.e., that have a reasonable rigid expression, it is exactly
necessary to pass to the quotient by the F-null elements. This

quotient is the F-differentials that we have defined in Section IV,
Case IA, when r = 0. A formula similar to (6) (and a similar heuristic

explanation) applies to

all integers q a 0, all integers r, s with s 2: r 2: 0.
In addition to the argument that we want the "differentials" to have

a nice rigid formula, 1 once worked out an example to show that
Kahler differentials do not have some (probably, not any except VII
a)) of the cohomological properties noted in the next section, while
F-differentials do have these nice properties (as well as being nicely
computable, in a rigid form, e.g., see equations (5) and (6) above.)

e) p-Adic Cohomology of Euclidean Space
The following theorem gives an illustration of how nicely the

p-adic cohomology that we defined in Section V above behaves, if we
use bounded Witt vectors, F-differentials, and relative hyperco-
homology.

THEOREM: Let n be any integer &#x3E;0 and let p be a rational prime.
Then there is a canonical isomorphism

all integers h 2: 0.
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In the above equation, the p -adic cohomology group on the left side
of the equation is that defined in equation (1) of Section V. Note that
the Theorem tells us that the p-adic cohomology of Euclidean space
is exactly isomorphic to the p -adic hypercohomology of the poly-
nomial ring :lp[T1, ..., Tn] over 2,. This is, of course, a best possible
result.

REMARK 1: Notice that we do not have to "@(J K" in the above
theorem, unlike the situation in our p -Adic Proof [1], where this was
necessary for functorality. Notice also that the torsion is exactly
right.1

REMARK 2: The proof of the above theorem, as well as that of the
final theorem of the next section, is similar to the proof of the
corresponding assertion in [1]. (But note that there is no tensoring
over 0" with K in this case, so the theorem is stronger.)

VII. Some properties of the p-adic hypercohomology that we
have defined in Section V using bounded Witt vectors

and F-differentials

Roughly speaking, all of the cohomology theorems which we
proved in [1] go over to the bounded Witt hypercohomology theory
which we have just defined in Section V above. The methods of proof
are also very similar. 1 simply state a list of theorems and note how
they are used; proof s will appear later.

a) Excision, the cohomology sequence of a triple of open sets and
the Meyer-Vietoris sequence follow immediately from Chapter 1 of

[1], since the definition of cohomology in V is as relative hyperco-
homology.

b) There is a "universal coefficients" theorem relating the co-

homology of equation (1) of V to the ordinary mod p hyperco-
homology of X modulo U:

THEOREM: A, X and U as in equation (1) of Section V, suppose
that X is a quasicompact prescheme such that the intersection of any
two affine open subsets is quasicompact, and that U is a quasicom-

’ It is not difficult to establish the analogous statement for our other generalization of
our p-adic cohomology, see the Note at the end of the Introduction, and reference [2].
(This would fail completely, of course, if one worked with the full Witt vectors

W(A), or the full completion, even if one ~ ZP Ô,, see [1]).
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pact open subset of X. Suppose that the set of simple points of X over
A contains the complement of U. Then there is induced a second

quadrant spectral sequence

where Ti = T*(X ) is the ordinary sheaves of Kahler differentials of X
over A.

EXAMPLES: If A = ZlpZ, then another way of phrasing the above
theorem is to assert that we have a long exact sequence

where we define Hn(x, U, Zlp Z) = Hn(x, U,I1/pz(X)), where

Fz*lpz(X) = Kahler* p,(X).
c) X and U as in equation (1) of section V, then

THEOREM: Let C*(X, U, W-(A)) = C*( W-(X ), W-( U), T*w-A,(X )),
where C* is, say, the Godement cochain functor ([1]). Then there is
induced a canonical ismorphism :

all integers h ~ 0, where 1-*(Z[T]) = Kahler*(Z[ T]).

d) Canonical classes

THEOREM: X and A as in equation (1) of Section V, suppose
that X is simple over A. Let Y be a closed subproscheme of X that is

"generically simple" over A - i.e., that is such that y E Igeneric points
of fibers of Y over Spec(A)j implies that the local ring C,,y is simple
over A. (This latter condition is automatic if A is a field, if Y is simple
over A, or if X is the product of two separated proschemes simple over

Spec(A) and if Y is the graph of a map.) (More general conditions can
be stated). Then
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whenever h  2d, d = codimension of Y in X ; and there is induced a
canonical element

Note : For this theorem, it is necessary to tensor over Zp with ô,,
as can be shown by counterexamples (similar to those in [1]). Under
the assumptions of this last theorem, if Y is also simple over A, then
the stronger "Lefschetz duality" theorem holds: Assume that every
irreducible component of Y is of the same codimension d on X. Then

there is induced a canonical isomorphism

all integers h ~ 0.

e) THEOREM: (Poincaré duality) X and A as in equation (1) of
Section V, suppose that X is simple and proper over A. Suppose that
all the fibers of X over A are of the same dimension n. Then

H*(X, W-(A)) obeys "Poincaré duality". That is

If A0= HO(X, W-(A)), then AO is an étale covering of W-(A); (A° =
W-(A) as étale covering, if and only if the fibers of X over A are all
absolutely connected), and

and the cup product induces a (canonical) isomorphism of A’-
modules

all integers i 2: 0.

f) THEOREM: (Kunneth relations) X and Y over A as in e) implies

all integers
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g) Using the above properties, 1 obtain, as in [1], a p-adic proof of
the Weil conjectures using this bounded Witt hypercohomology. The
method applies to all complete non-singular algebraic varieties over
finite fields, liftable or not. (Also, the method shows that on any
complete, absolutely non-singular algebraic variety over any field,
that the group of numerical equivalence classes of cycles is finitely
generated.) For these theorems, 1 have already given two different
proofs, one q-adic ("On a Conjecture of Andre Weil", American
Journal of Mathematics), and one p-adic ("A p-adic proof of Weil’s
Conjectures" [1]). The q-adic proof did not require liftability, while the
proof in [1] did require liftability
An advantage of this p-adic hypercohomology theory using boun-

ded Witt vectors is not only that no liftability is needed, but also that
the cohomology groups have coefficients in a complete discrete

valuation ring 6 of mixed characteristic, rather than in the quotient
field K of such a valuation ring.

h) Also, let X be simple and proper over a ring A where A is a
commutative (Z/pZ)-algebra with identity. Then 1 obtain zeta ma-

trices of X with coefficients in W-(A). (The formalism is similar to
that of my Harvard seminar on "Zeta Matrices" where the matrices

had coefficients in At @c K). As in the zeta matrices in that seminar,
these matrices have coefficients that are typically "a kind of power
series". Instead of p-adic convergent power series in several

variables as in the seminar, in this case they can be interpreted as
being a kind of "bounded Witt polynomial in several variables" -

more precisely, elements of the right side of equation (4) of Section
VI for some integer n. To find the zeta matrices of any algebraic
variety in the family we let the parameters take special values as in
the Harvard seminar. (In this case, the "special values" are the

multiplicative representatives (a 1, ..., a n) of the coordinates

(ai,..., an) in the parameter variety). (Note that a "bounded Witt
polynomial" is like a p-adic convergent power series of bounded
degree in several variables and all their pi’th roots, all integers i ~ 0,
with certain constraints.) Of course, the algebraic family does not
have to be liftable to get these zeta matrices. (In particular every
complete absolutely non-singular variety over a field k of charac-
teristic p ~ 0 has zeta matrices with coefficients in W-(k) ; however, as
1 noted in the footnote following the Introduction, in [2] the assump-
tion of liftability is removed by another method. An advantage of the

’ 
(See Note 3 in the footnote following the Introduction, and reference [2]). Since

giving this talk, 1 have produced a direct generalization of all the results of [1] that,
among other things, completely removes liftability assumptions and "@c K".
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bounded Witt method (and of the method in [2]) over that used in my
Harvard seminar is that the matrices then have coefficients in a

discrete valuation ring C rather than in the quotient field K of such a
valuation ring C.)’ But in cases where both kinds of zeta matrices are
defined (E.g., the case of the zeta matrix that determines the zeta
functions of all elliptic curves

in characteristic 0, 2, 3, where 27g’- 8g3 ~ 0), the matrices seem to
sometimes look more elegant when done with bounded Witt vectors
than by the method of paper [2].

EXAMPLE: Suppose that X is simple and proper over A =

(ZlpZ)[X, Y] (or a quotient ring of this polynomial ring). Then the
zeta matrices of X have coefficients in W-(A). Therefore each entry
in each of the zeta matrices of X over A is an expression of the form

where N is some positive real, and where denominator (i, j)laij, all

i, j E p -’Z, 0  i, j  N. E.g., an expression like:

is such a "bounded Witt polynomial" of degree 3 in X and Y.
Therefore, zeta matrices using bounded Witt vectors are sometimes

somewhat different and yield different sets of formulas for zeta

functions for a given algebraic family as in h). In practice, 1 think that
the bounded Witt zeta matrices are somewhat easier to compute. The
reason is that the kind of recursions that occur appear to be more

elegant. They turn out to be related to the recursions for the Witt Sh,
Qh, h 2: 0, (see Section 1), at least in the case of elliptic curves.

i) The coefficient group
Let A be a Z/pZ-algebra, let A be a Zp-algebra such that

(A @oK)/(nilpotent elements) = A, where 6 = 2 p and K = Ôp, and let
1 It should note that the theorems of paper [1], and their generalizations to algebraic
families presented in the Harvard seminar on "Zeta Matrices", are made use of in the
proofs of [2].
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X be an object in the category CA,A described in [2] (of proschemes
simple over A obeying a mild condition, and all maps of such

proschemes over A, liftable or not). Then we have the p-adic co-

homology groups as defined in [2], with coefficients in a certain

A-algebra. But we also have the groups defined in this paper, Section
V, equation (1),

Both are "good" cohomology theories. How are they related?

(They cannot be isomorphic, since they have different coefficient

groups. In general neither coefficient group contains the other.) It is
probably possible to prove that if we choose a certain commutative
ring A’ with identity containing both coefficient groups then after
tensoring with the larger coefficients ring, that the theories then

become isomorphic. That is, there is undoubtedly some functorial
common larger coefficient group. (E.g., if there exists an endomor-

phism F: A---&#x3E; A lifting the p’th power map, then both coefficient
groups are contained in W(Ap-°°), the full Witt vectors on the per-
fections of A, see Chapter I.1
However, it is in general almost certainly not possible to get a

common functorial coefficient group that is contained in the co-

efhcient groups of both theories.

(This is no surprise. In fact we cannot find a common functorial
coefficient group, not even a larger one, between p-adic cohomology
and q-adic cohomology for all but finitely many primes q (not even if
we leave out p), as can be shown by a counterexample).

j) Another, much simpler aesthetic application of W-(X), is as

follows. Let X be an arbitrary algebraic variety, or even proscheme,
entirely in characteristic p 0 0. Then we have the canonical lifting
W-(X), defined in Section III, functorial in X, of any such X back to
characteristic zero. W-(X ) is flat over Zp iif X is reduced. In all

cases,

1 In fact, if A is a commutative ring with identity having no non-zero p-torsion such
that (A/pA)/(nilpotents) ~ A/(nilpotents), and if F: A --+ A is an endomorphism of the
ring A such that F@z CZ/pZ) is the p’th power endomorphism: x --&#x3E; xp of A/pA, then
there exists a unique homomorphism of rings with identity i : 8 - W(AP-oo), such that
1 o F = F o i (where F: W(AP-oo) -+ W(AP-OO) is the usual Witt F for Witt vectors) and
such that i induces the natural map: A/pA(nilpotents) ~ AP ~. (Proo f : Consider Ao =
lim~ (A ~F A ~FA ~F ... ). Then by the first Proposition in Chapter 1 applied to the
perfect (Z/pZ)-algebra A’--, there is a canonical isomorphism: Aôp ~ W(AP-oo). (Basically,
this argument is similar to those in [3]).
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is such that there is a canonical subsheaf 1 of the sheaf of ideals of

nilpotent elements, such that I is of square zero, and such that, after
reducing the structure sheaf modulo I, R becomes isomorphic to X.
Possibly this aesthetic application may be of interest in itself.
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