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1. Introduction

It is well-known that if (0394, F, IL) is a u-finite measure space and if
1 ~ p  00, then the Banach dual L *p of the Banach space Lp =

Lp(0394, IL) can be identified with Lq = Lq(L1, 03BC), where p-1 + q-1 = 1. For
p =00 the situation is different; the space Li is a linear subspace of
L*, and only in a very trivial situation (the finite-dimensional case) we
have Li = Lfi. Restricting ourselves to the real case, the Banach dual
L *~ is a (real) Riesz space, i.e., a vector lattice, and Li is now a band
in L*. The disjoint complement (i.e., the set of all elements in L*
disjoint to all elements in LI) is also a band in L*, called the band of
singular linear functionals on Loo. It is evident that for any pair Fi, F2
of positive elements in L* we have ~F1 + F2~ = ~F1~ + IIF211. This is due
to the fact that L* is an abstract L-space.
More generally, let 03A6 and 03C8 be a pair of conjugate and continuous

Orlicz functions (also called Young functions). It is well-known that if
03A6 does not increase too fast, then the Banach dual L*03A6 of the Orlicz

space Lm can be identified with the Orlicz space Lw. This holds in

particular if 03A6 satisfies the so-called 03942-condition (i.e., there exists a
constant M &#x3E; 0 such that 03A6(2u) ~ MO(u) for all u - 0). However, if
03A6 increases too fast (e.g. 0(u) = eu - 1), then L03C8 is a proper linear

subspace of L*03A6. More precisely, Lw is a band in the (real) Riesz space
L*03A6. The disjoint complement of L03C8 in L*03A6 is again a band in H, called
the band of the (bounded) singular linear functionals on L03A6. It was

proved by T. Ando ([1], 1960) that this subspace of all singular linear
functionals on Lm is an L-space, i.e., if Si, S2 are positiv e singular
linear functionals on L03A6, then IIS1 + S2~ = ~S1~ + ~S2~. The proof was
extended to the case of discontinuous Orlicz functions by M. M. Rao
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([9], 1968). His definition of singular functionals, however, did not
cover all possible cases. The general situation for Orlicz spaces was
discussed by the present author ([3], 1975).

Orlicz spaces are special examples of normed Kôthe spaces. It may
be asked, therefore, for which normed Kôthe spaces we have the
above-mentioned triangle equality for positive singular bounded linear
functionals. More generally, we may ask for which normed Riesz
spaces (i.e., normed vector lattices) we have the triangle equality for
positive singular bounded linear functionals.

Let Lp be a (real) normed Riesz space with Riesz norm p (i.e., p is a
norm such that p(f) = p(|f|) for all f E Lp and 0 S u S v implies p(u) ~
p(v)). The notation 1 fo means that the sequence f fn: n = 1, 2,...} in
Lp is decreasing and inf f n = fo; the notation f n T f o in Lp is defined

similarly. The Banach dual L*p of Lp is also a Riesz space; the positive
bounded linear functionals on LP form the positive cone of L*p. The
element F ~L*p is called an integral if |F|(fn) ~ 0 holds for any

sequence fn t 0 in Lp. It is well-known that the set of all integrals is a
band in L*p, which we shall denote by L:c. If Lp is the space
Loo = L~(0394, 03BC), then L:c is exactly the space L1(0394, 03BC). If Lp is the

Orlicz space Lm, then L:c is exactly the space L03A8, where 1/1 is the

conjugate Orlicz function of W. We return to the general case. The set
L*p,s of all elements disjoint to L:c is also a band in L*p, and we have
L* == L*p,s ~ L*p,s. The elements in Lp* are called the singular bounded
linear functionals on Lp. The problem is now to find sufficient and (or)
necessary conditions for L*s S to be an abstract L-space. For the
formulation of a satisfactory answer, we present the following
definition.

DEFINITION 1.1. The normed Riesz space L, is called a semi-M-

space if Lp satisfies the following condition : If u, and u2 are positive
elements in Lp such that peUl) = P(U2) = 1 and if sup (UI, u2) &#x3E; vn t 0,
then lim p(vn):5 1.

It is evident that any M-space in the sense of Kakutani is semi-M.
Another special case of a semi-M-space arises whenever p is an

absolutely continuous norm, i.e. whenever Un t 0 in Lp implies
p(un ) ~ 0 (as in Lp spaces for 1  p  00 and in Orlicz spaces Lm if 4Y
satisfies the L12-condition).
Our main result is that the space Lp is a semi-M-space if and only if

LP is an abstract L-space. Since all Orlicz spaces are semi-M-spaces
this takes care of the Orlicz spaces. In section 3 we derive another
characterization of semi-M-spaces if Lp has the principal projection
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property. We recall that a band A in the Riesz space L is called a

projection band if L is the direct sum of A and the disjoint com-
plement Ad of A. The space L is then said to have the principal
projection property (from now on abbreviated as p.p.p.) whenever
every principal band in L is a projection band. Every normed Kôthe
space is Dedekind complete which implies the p.p.p., and so the

results of section 3 can be applied in the theory of normed Kôthe
spaces.
There is still another class of spaces Lp for which a useful charac-

terization of the semi-M property can be given. This is done in

section 4. We recall several facts.

The element fo E Lp is said to be of absolutely continuous norm if it
follows from |f| &#x3E; un~ 0 that p(Un) ~ 0. The set Lap of all elements of
absolutely continuous norm is a norm closed order ideal in Lp. By
way of example, if the measure space is the real line with Lebesgue
measure, then LP = Lp if LP is an Lp space (1 :5 p  ~), but Lp = 101 if
Lp is the space Lao. If LP is the sequence space Lao, then Lp is the subspace
(co) of all null sequences. The ideal Lp in Lp and the band LP in L*P are
related. It is known that LP is the inverse annihilator ~(L*p,s) of L*p,s. We
recall that for any subset B of L*p the inverse annihilator ~B of B is
defined by

Similarly the annihilator A ~ of any A C LP is defined by

It follows from LP = ~{L*p,s} that (Lap)~ ~ L:s, and the last inclusion
may be a strict inclusion. Our result is now that in spaces LP
satisfying (Lap)~ = L*p,s, Lp is a semi-M-space if and only if LpIL: is an
abstract M-space.
Having proved the general theorem (sections 2-6), we study the

semi-M property for an important class of normed Kôthe spaces, the
rearrangement invariant Kôthe spaces (sections 7-9). Using the

results of this paper it can be proved that whenever Lp is a normed
Kôthe space having the semi-M property, then LP is Riesz isomor-
phic and isometric to a band in L:,s (Loo defined on the same measure
space as Lp). This generalizes results of T. Ando ([1], 1960) and M. M.
Rao ([9], 1968). To avoid unduly lengthening of this paper we shall
report on this elsewhere ([4]).
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2. The main theorem

Unless stated otherwise Lp will denote a normed real Riesz space.
If F E L*p is positive (notation F &#x3E; 0, where O is the null functional),
it is well-known that the integral component of F is equal to FL,
where

for all u ~ L+p . From this expression we derive a necessary and
sufficient condition for 0398 F E L *p to be singular.

PROOF: (i) Assume that S E L*p,s, and let u ~ L+p and E &#x3E; 0 be given.
Then SL ( u ) = 0. Hence

This implies the existence of a sequence {Un,e: n = 1, 2,...} as indi-
cated in the lemma.

(ü) Now assume that for each u ~ L+p and for each E &#x3E; 0 a

sequence {Un,~: n = 1, 2,...} as indicated in the lemma exists. It is

obvious then that SL(u)  e. This holds for every E &#x3E; 0, so SL(u) = 0.
This holds for every u ~ L+p, so SE L*

We shall denote by p* the norm in the Banach dual L*p of Lp. Next,
we state and prove our first main result.

THEOREM 2.2. Lp is a semi-M-space if and only if LP is an abstract
L-space.

PROOF: (i) Assume that Lp is a semi-M-space. Let Si, S2 ~ L*p,s, Si,
S2~0398 and E &#x3E; 0 be given. Then there exist elements u1, U2F- L+P such
that p(u1) = p (u2) = 1 and

Setting u = sup (u1, U2) and S = Si + S2 it follows that e :5 S E LP and
that u &#x3E; 0. Hence, in view of Lemma 2.1, there exists a sequence
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{Un,~: n = 1, 2,...} ~L+p such that Un,~~ u and S(un,~ )  ~ for all n.

Defining vn = u - Un.E for all n, the sequence {vn: n = 1, 2, ...} satisfies
u ~ vn ~ 0. Hence lim p(vn) ~ 1 as n ~~, since Lp is semi-M by
hypothesis. Thus there exists a number no such that p(vn)  1 + e for

aIl n 2: no. This implies that

provided h 2: no. Since the above inequality holds for all E &#x3E; 0, we
obtain

The inverse inequality is obvious, so
This shows that L:s is an abstract L-space.

(ii) For the converse direction, assume that Lp is not a semi-M-

space. Then there exist ui, U2 E LP, peUl) = P(U2) = 1 and there exists a
sequence {vn: n = 1, 2,...} C Lp such that sup (ui, u2) ~ Vn t 0 and

Now there is for all n (= 1, 2,...) a functional Fn ~ L*p satisfying

Since the unit ball in L*p is weak star compact, the sequence {Fn:
n = 1, 2, ...} has a weak star cluster point Fo. It is obvious that Fo ~ e
and p*(Fo) ~ 1. Furthermore, it is obvious that

Next, fix n and E &#x3E; 0, and consider the weak star open neighbourhood

of Fo. Then U contains infinitely many Fn’s. Since m ? n implies

it follows that for those m ~ n such that
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Thus lim p(vn ) ~ lim Fo(vn) as n ~ ~. Therefore lim Fo(vn) = 03B1 as n
00. Next, if Fo = S + I, 0398~ S~. L*p,s, 0398 ~ I E L:c, then lim I(vn) = 0, so
lim S(vn) = 03B1 &#x3E; 1. Especially it follows that S(sup(u1,u2))~03B1&#x3E;1.
Let now Si be defined by

So LP is not an abstract L-space.

REMARK : The proof of part (ii) is due to D. H. Fremlin. Originally
we proved this part if Lp has the principal projection property (see
section 3). Prèmlin kindly gave permission to publish his proof here.

For applications it is often useful to have another representation of
semi-M-spaces. This représentation is given in the following lemma.

LEMMA 2.3: The following conditions are equivalent.
(a) Lp is a serni-M-space.
(b) There exists a function Mp: L+p~R+ (where +~ is allowed), such

that

PROOF: (a) ~ (b). Define Mp(u) = {p(u) - 1}+ for all u EL;. It is

easily verified that Mp satisfies the conditions (i) and (ii) of condition
(b).

(b) ~ (a). Obvious.

Using this lemmas it is eàsy to show that all Orlicz spaces are

semi-M-spaces.
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Let (~, T, IL) be a 03C3-finite measure space, and let 0 be any (not
necessarily continuous) Orlicz function on [0, ~]). By W we denote the
complementary (or conjugate) Orlicz function of 0 (for more details
and further references see [3], [11]). For all f E M (the set of all
measurable functions on ~ ), we define

It is well-known that L03A6[N03A6] and L03A6[~·~03A6] are the same, when

regarded as point sets. We denote this set by Lm. Furthermore,
identifying 03BC-almost everywhere equal functions in M, it follows that
L03A6[N03A6] and L03A6[~·~03A6] are normed Riesz spaces, with Riesz norms N03A6
and ~·~03A6 respectively. The set LMm is in general not a linear space but
in [3], lemma 6.2 it is proved that LMm is a lattice. We shall show now
that L03A6[N03A6] and L03A6[~·~03A6] are semi-M-spaces. To this end, note that

for all f E L03A6 (cf. [11 ] p. 79, th. 1). Furthermore, if f i, f2 ~ L+03A6 satisfy
~f1~03A6 = ~f2~03A6 = 1 (or N03A6(f1) = N03A6(f2) = 1), then fI, 12 E LM03A6. Hence f =

sup (f1,f2) satisfies f E LM03A6. Let now {gn: n = 1, 2,...} be a sequence
of functions in H such that f ~ gn 10. Then, according to the theorem
on dominated convergence of integrals, M03A6(gn) ~0. Thus M03A6 satisfies all
conditions of Lemma 2.3 (ii) and therefore L03A6[N03A6] and L03A6[~·~03A6] ] are
semi-M-spaces.

REMARK: In view of th. 2.2 and ex. 2.4 it follows that L*03A6,s[N03A6] and
L*03A6,s[~·~03A6] are abstract L-spaces. Hence th. 2.2 is a generalization of
([3], th. 6.4). The open question, stated in ([3], remark (i), p. 62) is now
also solved, i.e., it is true that L*03A6,s[~·~03A6] is an abstract L-space.

More examples will be presented in section 6. We finally note that it
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can be proved similarly as above, that not only Orlicz spaces, but
more generally even the modulared spaces in the sense of Nakano are
semi-M-spaces.

3. The case that Lp has the principal projection property

Throughout this section Lp will again be a normed Riesz space. Let
II be an exhausting sequence in Lp, i.e. 77 = (Ki, K2,...} where an Kn
are bands in Lp such that K1 ~ K2 ~..., and such that the band

generated by the set of all Kn is Lp itself (note that such a sequence
always exists, for instance Kn = Lp for all n is such a sequence). In
this situation we shall denote by In the norm closure of the order
ideal generated by the set of an Kn. In general In will not be the whole
of Lp.

DEFINITION 3.1: The exhausting sequence II will be called an

exhausting projection sequence (abbreviated as e.p. sequence) if every
band Kn E II is a projection band (so Lp = Kn @ Kn for all n, where
Kn denotes the disjoint complement of Kn).

LEMMA 3.2: Let 77 be an e.p. sequence and let S E L*p satisfy S &#x3E; e

and S(u ) = 0 for all u E In. Then SE LP s (so {I03C0}~ is a band in L*p,s in
view of [6], th. 21.1 (i)).

PROOF: Let g ~ L+p be given. Since 77 = (K1, K2, ...) is an e.p.

sequence it follows that g has a unique decomposition g = gn + g’n,
where gn E Kn and g’n ~ Kdn with gn, g’n ~ 0 for all n. Also, since 77 is
exhausting, we have gn t g. By assumption S(gn) = 0 for all n. Thus,
according to lemma 2.1, it follows that S ~ L*p,s.

If Lp has the p.p.p., then there exist many non-trivial e.p.

sequences. This will become clear from the next lemma.

LEMMA 3.3. Assume that Lp has the p.p.p., and let f fn : n = 1,
2,...} C L+p satisfy fn ~ 0. Then there exists for every e &#x3E; 0 an e. p.

sequence IIE = {K1, K2,...} such that p(fnn) ~ ~ for all n, where fnn
denotes the component of fn in the band Kn.

PROOF: Let e &#x3E; 0 be given. Without loss of generality we may
assume that p(f1) &#x3E; 0. Setting
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it follows that 0 ~ vn Î g. Hence 1[v,], [V2]’ ...}, where [vn] stands for
the principal band generated by vn (n = 1, 2,...), is an exhausting
sequence in the band [g] = [f1]. Thus, since Lp has the p.p.p., it

follows that 1[v,], [v2], ...} is an e.p. sequence in [g]. Now note that
[g]d = [f1]d is a projection band in LP (again since LP has the p.p.p.).
Hence, setting

for n = 1, 2,..., 7L = IK,, K2,...} is an e.p. sequence in LP. Let fnn be
the component fn in Kn. We have 0 ~ fnn S g for all n. To prove this,
first note that fnn E [vn], since fnn ~ fn ~ f1, so the component of fnn in
[f1]d is zero. Thus

for all n. Therefore it sufhces to prove that inf (fn, mvn) ~ g for all m
(n fixed). To this end; note that h E LP, f E LP implies (h - f)- ~ h-,
which implies

Hence

and so

Now note that

By what was proved above. Thus 0 ~ fnn S g for all n. It follows that
p(fnn) ::5 p(g) ~ e, which is the desired result.

Once more assume that II is an exhausting sequence in LP, and let
the order ideal In be as described in the beginning of this section.
Furthermore, let dn be the Riesz norm in the factor space Lp/In (in
the sequel we shall consider dn also as a Riesz semi-norm on Lp). In
this situation it is possible to give a useful characterization for
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semi-M-spaces, provided L, has the principal projection property.
First we prove the following lemma.

LEMMA 3.4: Let f E LP be given, and let il = fK,, K2,...} be any
exhausting projection sequence. Then d03A0(f ) = limn~~ P(f’03A0n), where f’03A0n
denotes the component of f in the band Kn (n = 1, 2, ...).

PROOF; For all n, let fnn be the component of f in Kn. Since

obviously fnn E In for all n, we have d03A0(f)~ p(f - fnn) = p(f’ . Hence

For the converse inequality let E &#x3E; 0 be given. Then there exists an
element g’ E In such that d,,(f) &#x3E; p(f - g’) - -1,E. 2 Setting

it follows that 0 ~ g - f and g E In. Moreover,
Hence

Next, the definition of In implies the existence of a positive integer no
and an element h ~ Kno such that p (h - g)  ½~. Similarly as above it
can be shown that h can be chosen such that 0 ~ h :5 g. Since II is

exhausting it follows that h E Kn for all n - no. Thus 0::; h ~ g ~ f, so
0::; h :5 Inn for all n ± no. It follows that

for all n no. This holds for all e &#x3E; 0, so

which completes the proof.

The next theorem is our second main result.

THEOREM 3.5: Let L, have the principal projection property. Then

L, is a semi-M-space if and only if L,II,, is an abstract M-space for
any exhausting projection sequence H.

PROOF: (i) Assume that L, is a semi-M-space, and let il be an e.p.
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sequence. In view of lemma 3.2, In is a band in L*p,s. Moreover, in
view of theorem 2.2 LP S is an abstract L-space. Hence, In and
therefore (LP/In)* are also abstract L-spaces. It follows that (LP/In)**
is an abstract M-space. Since LP/In can be considered as a Riesz
subspace of (LpII,,)**, the space LPIIn is also an abstract M-space.

(ii) Assume that L,II,, is an abstract M-space for any e.p. sequence
H. To show that Lp is a semi-M-space, let fi, f2 ~ L+P be given such
that p(f1) = p(f2) = 1, and set f = sup (f1, f2). Moreover, let {gn: n = 1,
2, ...} C L; be given such that f ~ gn ! o. To show that lim p(gn ) ~ 1,
let E &#x3E; 0 be given. According to lemma 3.3 there exists an e.p.

sequence JL such that p(gnn ) ~ ~ for all n (where gnn is defined

similarly as fnn in lemma 3.3). Now we have

since Lp/Li. is an abstract M-space. It follows that

in view of lemma 3.4. This holds for all E &#x3E; 0, so Lp is a semi-M-

space.

One might ask whether there exist normed Riesz spaces possessing
the semi-M property but not the principal projection property. As
follows from the next example such spaces do indeed exist.

Example 3.6. The space C(X)
Let X be any compact topological space and C(X) the space of all

real-valued continuous functions on X. We define f:5 g if f(x) ~ g(x)
for all x E X (f, g E C(X)). It is well-known that C(X), partially
ordered in this manner, is a Riesz space. In addition, if we define

~f~ = sup {lf(x)l; x ~ X}, then C(X) becomes a normed Riesz space
with Riesz norm ~·~. Since C(X) is an abstract M-space, it follows
that C(X) is also a semi-M-space, but it is well-known that C(X)
does not have the p.p.p. in general. For example if X = [0, 1] with the
ordinary topology, then C(X) does not have the p.p.p.

4. The case that (L,)’ = LP

Once more, let Lp be a normed (real) Riesz space. Furthermore, let
Lp be the norm closed order ideal of Lp consisting of all elements
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having an absolutely continuous norm. We recall that Lap and LP S
satisfy Lap = ~{L*p,s}.

THEOREM 4.1. If LP satisfies {Lap}~ = L*p,s, then Lp is a semi-M-space
if and only if LP/Lp is an abstract M-space.

PROOF: This is an immediate consequence of theorem 2.2. Indeed,
note that

in the present case, so Lp is a semi-M-space if and only if (Lp/Lp)* is
an abstract L-space. By the same arguments as used in theorem 3.5 it
follows that (LpIL")* is an abstract L-space if and only if Lp/Lap is an
abstract M-space.

REMARK: It can be proved that if LpILp is an abstract M-space,
then Lp is a semi-M-space. We leave the rather technical but

straightforward proof to the reader.

5. Normed Kôthe spaces

In the next section we investigate whether the semi-M property is
satisfied in some well-known Riesz spaces. All these spaces will be
normed Kôthe spaces. For that reason we recall in the present section
some facts from the theory of normed Kôthe spaces. For the general
theory we refer to ([12], Ch. 15).
From now on (à, r, g) will always be a u-finite measure space. By

M we denote the set of all real-valued measurable functions onà (the
values +~ and -00 are allowed for functions in M). The 1£-almost
everywhere equal functions in M are identified in the usual way. By p
we shall denote a function norm on M+, so p satisfies: (i) 0 ~ p (u ) :5 00
for all u E M+, p(u) = 0 if and only if u = 0  03BC-almost everywhere, (ii)
p(au) = ap(u) for all a - 0 and for all u E M+, (iii) p(u + v) ~

p(u) + p(v) for all u, v ~ M+, (iv) 0  u ~ v, u, v ~ M+ implies p(u) ~
p(v ). The function norm p is extended to the whole of M by setting
p(f) = p(|f|) for all f E M. The set Lp is defined by

It is obvious that Lp, defined in this way, is a normed Riesz space with
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Riesz norm p (this is due to the fact that 03BC-a.e. equal functions are
identified and to the fact that p(f)  00 implies If(x)1  00 p.,-a.e. on 0394 ).
Furthermore, it is well-known that the space Lp is Dedekind complete
(cf. [8], ex. 23.3 (iv)). Hence, Lp has the principal projection property.
From the preceding sections we derive immediately the following
theorem.

THEOREM 5.1: Let LP be a normed Köthe space. Then the following
conditions are equivalent :
(a) Lp is a semi-M-space.
(b) If ui, u2 E LP with p(u1) = p(u2) = 1, and if {~n : n = 1, 2, ...} is a

sequence of 03BC-measurable sets such that 0394n ~ cp and u =

sup (u,, u2), then lim p(uX~n) ~ 1 where X~n denotes the charac-
teristic function of L1n.

(c) L:s is an abstract L-space.
If, in addition, Lp satisfies {Lap}~ = L:s, then (a), (b) and (c) are also
equivalent to
(d) Lp/L: is an abstract M-space.

In the sequel the order ideal L: of Lp will be of great use. This
order ideal is the norm closed ideal spanned by all essentially boun-
ded functions f in Lp such that 03BC(supp (f))  ~, where supp(f)=
{x E L1; f(x) ~ 0}. We note that supp (f) is not uniquely determined
since we are working with equivalence classes of functions. However
if fi = f2 p, -a.e. on L1, then supp (fi) and supp (f2) diff er at most a 03BC-null
set. In [3] lemma 2.1 it was shown that L: C L: does always hold, but
the equality L: = L: can also occur.

LEMMA 5.2: If the measure space (0394, 0393,03BC,) is purely atomic, all

atoms having equal measure, then L: = Lbp.

PROOF: We have to show that any essentially bounded function f
having a support A of finite measure is a member of Lap. This is

obvious since A ~ ~n ~ cP, where A, an E T(n = 1, 2,...) and 03BC (A)  00

implies 03BC(0394n) = 0 for n ~ No (No some positive constant) in the

present case.

We finally note that if Lap = Lbp, then {Lap}~ = LPS (cf. [3], th. 2.2).
However, {Lap}~ = LP does not always imply L: = LbP. This will follow
from ex. 6.2 below.
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6. Examples

Throughout this section (~, T, IL) and M will be as defined in

section 5, unless stated otherwise. Note first that the Orlicz spaces L,
are normed Kôthe spaces with the semi-M property (see ex. 2.4).

Example 6.1. The space of Gould and its associate space
Assume that (à, T, IL) is atomless and 03BC(~) = 00. Setting

for all f ~ M+, it follows that p is a function norm (see [7], ex. 1.2).
The space Lp is called the space of Gould. It is well-known that the
first associate norm p’ of p satisfies p’(f ) = sup {~f~1, ~f~~} for all f E M,
where ~·~1 and ~·~~ denote the familiar Li and Loo norms respectively
(cf. [7], th. 3.5 or [12], exercise 71.3). Defining the Orlicz functions 4l, ,
03A62 and 4l by

it follows that Moreover,

for all f E M. Hence, according to ([3], th. 5.4), we have

for all f E M. This implies that L’p=L03A6[N03A6]. Let 1p be the comple-
mentary Orlicz function of 03A6, so

It follows from the general Orlicz space theory that the first associate
space of L03A6[N03A6] (which equals L’p) is L03A8[~·~03A8]. Hence Lp = L03A8[~·~03A8].
Thus, in view of example 2.4, Lp and LP are semi-M-spaces, and
hence LP and Lp’,s are abstract L-spaces.
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Example 6.2. The space of Korenblyum, Krein and Levin
In this example, let L1 be the closed interval (x : 0 ~ x :5 1) and let IL

be Lebesgue measure. Defining

for all f ~ M+, it follows that p is a function norm. The space Lp is
called the space of Korenblyum, Krein and Levin (cf. [7], ex. 1.3). We
note that LP = Lp and that Lap~ Lp. The proof of the first equality is
routine and left to the reader, for Lap~Lp we refer to ([7], th. 5.2).
Also it follows from ([7], th. 5.3) combined with ([12], th. 72.6 and th.
72.7) that {Lap}~ = L*p,s. We shall prove now that Lp is not a semi-M-
space. To this end, divide [½, 1] into 10 equal interval Ei,1,..., Ei,io
(from the left to the right), then divide [¼,½] into 100 equal intervals
E2,1, ..., E2,100, and so on. Generally, divide [2-n,2-n+l] into 10" equal
intervals En,l, ..., En,ion. Let

Note that 03BC(E1) = /L(E2) = ½, and that for any h &#x3E; 0 we have 03BC(Ei n
[0,h]) 2/3 h(i = 1,2).

Defining ui = 3/2XEi ( = 1, 2) it follows that P(ui) ~ 1 for i = 1, 2. Note
that u = sup (Mi, u2) is identically equal to 2. Set vn = uXPn (n =

1, 2, ...), where Fn = [0, n-1] . It is routine to prove that p(u) = p(vn) =
2 for all n. Since u &#x3E; vn t 0, it follows that Lp is not a semi-M-space.
In view of th. 5.1 we can, therefore, conclude that Lp/Lap is not an

abstract M-space and also that LP is not an abstract L-space.

In the sections 8 and 9 we shall investigate two other important
classes of normed Kôthe spaces (the Lorentz space MA and LA).
Before doing so we introduce the rearrangement invariant Kôthe
spaces.

7. Rearrangement invariant Kôthe spaces

Most of the important normed Kôthe spaces are examples of the
so-called rearrangement invariant Kôthe spaces. In this section we
derive some general properties of spaces of this type. We first recall
some definitions.
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DEFINITION 7.1: Let f E M. Then

The function f*, defined on R+, is called the non-increasing rear-
rangement of Ifl.

We note that the value +~ is allowed for f *. Furthermore it is

obvious that f* is a non-increasing function on R+. We present some
examples.

(a) Let (~, 0393, 03BC,) be an arbitrary measure space, and let A E r,

DEFINITION 7.2: A function norm p is said to be rearrangement
invariant (abbreviated as r.i.) whenever it follows from f, g E M and
f* ~ g* on R+ that p(f) ~ p(g).

Let p be a r.i. function norm. We prove first that for f E LP we have
f*(x)  00 for all x &#x3E; 0. For this purpose let An = {x E L1: f(x) &#x3E; n} for
n = 1, 2, .... If 03BC(An) = ~ for all n, then 03BBf(y) = ~ for all y, so

f*(x) = 00 for all x. The function f o = 00 . X~ also satisfies f*o(x ) = 00 for
all x, so f*= f*o . This implies p(f)=p(fo)=~, contradicting f E LP.
Hence we must have 03BC(An) finite from some index on, so

2, ..., so p(f) &#x3E; n p (XA) for all n. But it (A) = a &#x3E; 0 implies p(XA) &#x3E; 0,
so p(f) = 00, which again contradicts f E LP. Hence we have 03BC(An ) t 0,
i.e., 03BBf(n) ~0 as n - 00. This implies Af(y) 10 as y - 00, and so

is finite for every x &#x3E; 0.

Examples of r.i. function norms are the Lp-norms (1 p ~) and
more generally the Orlicz norms Ne and ~·~03A6, defined in example 2.4.
An example of a function norm which fails to be r.i. is the norm of
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Korenblyum, Krein and Levin, defined in example 6.2. For more

details on r.i. norms we refer to [5].
Let now p be a non-trivial r.i. function norm, and let Lp, Lap and L:

be as defined in section 5. Note that p is saturated and so XA E

Lbp ~ Lp, for any A E T satisfying 0  03BC(A)  ~. Also note that f,
g E M, f * = g * on R" implies p(f) = p(g).

In the remaining part of this section we shall assume (à, T, ¡..t) to be
an atomless measure space.

LEMMA 7.3: (i) If X,, Ei L’ p for some A Er, 0  li(A)  00, then

XB E Lap for all B E T satisfying 03BC(B)  ~.

(ii) We have either LP = 101 or LP = LP.

PROOF: (i) Let B E T satisfy 03BC(B)  ~ and let {Bn : n = 1,2,...} C T
be such that B :) Bn 10. Then 03BC(Bn) ~0, so we may assume that
03BC(Bn) ~ 03BC(A) holds for all n. Since (~, T, ji) is atomless, there exists a
sequence {An : n = 1,2,...} in F such that 03BC(An ) = IL(Bn) for all n, and
A ~ An ~ ~. Then x1n = X*Bn for all n, and on account of XA E L: it

follows that

(ii) Obvious from part (i).

PROOF: (i) Let A E T satisfy 0  g (A)  oo. Then XA~ Lap, so there
exists a constant c &#x3E; 0 and a sequence {An: n = 1, 2, ...} in T such
that A ~ An 10 and p(XAn ) ~ c for all n. Note that g (A)  oo implies
03BC(An) 10. Now, let BEr satisfy 03BC(B) &#x3E; 0, so 03BC(B ) ~ 03BC(Ano) for

some no. This implies X*B ~ X*Ano, so p(XB) ~ p(XAno) ~ c, which is the
desired result.

(ii) Let f E M be given. If Ilfllao = 0 there is nothing to prove, so
assume that ~f~~ &#x3E; 0. Take a such that 0  a  Ilfllao. There exists a set
A E F such that 03BC(A) &#x3E; 0 and |f| ~ aXA. Hence

This holds for all
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8. The Lorentz space MA

In the next section we shall investigate the semi-M properxy for r.i.
function norms. Before doing so we present a class of r.i. spaces from
which many counterexamples can be derived.

Let (~, r, 03BC) be an arbitrary u-finite measure space. Furthermore,
let A be a real-valued function on [0, ~) satisfying:

(i) A (0) = 0, A (x) &#x3E; 0 if x &#x3E; 0, A is right-continuous at zero,
(ii) A is non-decreasing and concave on [0, ~).

It follows that A is continuous on the whole of [0, ~). Furthermore,
note that it is not excluded that A is bounded on [0, ~). Setting now

for all f E M, it follows that ~·~M is a function norm on M. For details
we refer to [2] or [10]. The normed Kôthe space generated by Il.IIM will
be denoted by MA. In ([10], th. 3.3) it is proved that

for all f E M, and it is obvious therefore that Il is a r.i. function norm.
Now, let MX be the order ideal in MA consisting of all functions having
an absolutely continuous norm, and let MbA be the norm closed order
ideal spanned by all essentially bounded functions in MA having a
support of finite measure.

LEMMA 8.1: Assume that (L1, r, ¡,L) contains an atomless set of
positive measure. Then MaA = MbA if and only if lim x/A (x) = 0 as x 10
(or equivalently A’(0) = 00, where A’ denotes the right derivative of A).

PROOF: (a) Assume that lim x/A (x) = 0 as x 10 and let A Er,
0  03BC(A)  00 be given. It sufhces to show that XA E MaA. To this end
let {An: n = 1,2,...} in T satisfy A D An t cp. Then
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(b) Assume that lim x/A (x) = c &#x3E; 0 as x 10. Let A Er be an atom-
less set such that 0  03BC(A)  ~. Then there exists a sequence {An:
n = 1,2, ... } ~ 0393 such that A ~ An ~ ~ and 03BC(An) &#x3E; 0 for all n.

Similarly as in part (a) it follows now that ~XAn~M 2:: C &#x3E; 0 for all n.

Hence XA~ Mi, so MaA~ MÂ. This concludes the proof.

We present three examples of normed Kôthe spaces LP having a r.i.
function norm p but failing to have the semi-M property (and thus
LP is not an abstract L-space in these cases).

EXAMPLE 8.2: Let à = (0, 2] be provided with Lebesgue measure,
and let

Furthermore, define

It is easily seen that ~f1~M = ~f2~M = 1. Next, define

for n = 1, 2,..., and set gn = fX~n for all n. It follows that f - gn 10.
Now, in view of

for all n, we have Hence

and so MA is not a semi-M-space in this case. We finally note that due
to lemma 8.1 MaA = MbA holds in the present case.

EXAMPLE 8.3: Let à = R be provided with Lebesgue measure, and
let
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Furthermore, let

Then ~f1~M = ~f2~M = 1. Next, let L1n = (-00, -n) U (n, ~) for n =

1, 2, ..., and set gn = fXon for all n. Again f ± gn t 0 holds. Computing
the norm of gn, we obtain ~gn~M = 2 for all n. Hence, MA is not a

semi-M-space in the present case. We note that ~MaA = 101 in the

present case (according to lemma 8.1 and lemma 7.3 (ii)).

EXAMPLE 8.4: Let a = Z, the set of all integers, and let JL(n) = 1 for
aIl nEZ. Thus (~, 0393, 03BC) is a purely atomic measure space. Further-
more, let A(x) = log (x + 1) as in the preceding example. Similarly as
in the preceding example it can be shown that MA is not a semi-M-

space, now using the functions

It follows that MaA ~ MA, and hence MbA ~ MA, in the present case
(since MaA = MÂ in view of lemma 5.2). Furthermore, we note for use
in the sequel that X, E MA does not hold in the present case.

9. The semi-M property for rearrangement invariant
Kôthe spaces

As observed in the preceding section not every Kôthe space having
a r.i. norm is a semi-M-space. In this section it will be shown that
under certain conditions on the measure space (~, 0393,03BC) and on the
order ideals Lp and L: the space Lp is a semi-M-space.

First we consider the case L; = 101. Using lemma 5.2 it follows

easily that (0394, T, g) does not contain any atoms in this case (in fact,
the characteristic function of an atom is always a member of Lap).

THEOREM 9.1: Let p be a r.i. function norm.
(i) If L; ={0} and 03BC(0394)  ~, then Lp is a semi-M-space.

(ii) If (~, T, g) is atomless and L: = L,, then Lp is a semi-M-space.
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PROOF: (i) Let fi, f2 ~ L’ be given such that p(f1) = p(f2) = 1 and let
f = sup (f1,f2). Since LP = {0} we have Lp C Lao (cf. lemma 7.4 (ii)), so
f*1(0), fit(0) and f*(0) exist as finite positive numbers. In fact, note that
any g ~ Lp satisfies g*(0) = llgll~. Hence, since ~f~~ = ~f1~~ or 11f1lao = ~ f2~~
must hold it follows that f*(0) = f*l (0) or f*(0) = f*2(0). Assume that
f*(0) = f*1(0) holds, and let E satisfy 0  E  1. Since ft is right-
continuous at zero there exists 8 &#x3E; 0 such that

for all x E [0, 03B4], so for these values of x we have

Hence

on [0, 03B4] (f*1 ~ f* is obvious since f1 ~ f on ~). Now, let {~n : n = 1, 2, ...1
in T satisfy ~n ~ ~ . Then 03BC(0394)  00 implies 03BC(0394n) ~ 0, so we may assume
that 03BC(0394n) ~ 03B4 for all n ~ ns. Observe now that

holds for all n ~ ns, so lim p (fX~n ) ~ ( 1- E )-1 as n --&#x3E; ~. This holds for

all 0  ~  1, so limp(fXi1n):51 as n ~ ~. This shows that L, is a

semi-M-space (cf. theorem 5.1).
(ii) Since (L1, T, 03BC) is atomless we have either L: L’ p or L§ = 101

by lemma 7.3. If L’ = LP, then L’ = Lp implies Lp = LP, so Lp is a

semi-M-space. Assume, therefore, that L: = 101. Again, let fi, f2 ~ L+p
satisfy p(f1) = p(f2) = 1 and let f = sup (fi, f 2). Also, let e &#x3E; 0 be given.
Then there exists a function fE E Lp such that
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since LP = Lpo Setting A = supp (fE) and considering the normed Kô-
the space LP(A, FA, 03BCA), it follows from part (i) that Lp(A, TA, 03BCA) is a
semi-M-space. Hence, if {0394n: n = 1,2,...} ~0393 satisfies L1n t ~, then

This implies that

This inequality holds for all E &#x3E; 0, so Lp is a semi-M-space.

REMARK: If it the condition Lp=L? in part (ii) of the
preceding theorem cannot be changed into Lp = 101. This follows from
example 8.3, where a r.i. space MA was considered satisfying MaA =
{0}, but MA is not a semi-M-space. We note that it follows from the
last theorem that MbA ~ MA must hold in example 8.3.

EXAMPLE 9.2: Let (à, T, 03BC) be an atomless measure space such that
03BC(0394)  00. Furthermore, let A be as defined in section 8 and assume in
addition that A’(0)  00. Then it follows from lemma 7.3 and lemma 8.1

that the Lorentz space MA, defined in section 8, satisfies Mi = {0},
and so MA is a semi-M-space by theorem 9.1(i).

We finally note that there exist semi-M-spaces Lp satisfying Lp = {0}
and Lbp~ Lp (so 03BC(0394) = For example L~(R) is a space of this kind.

Next, we consider the case Lp = LP. It follows from the examples
8.2 and 8.4 that in this case Lp is not a semi-M-space in general.
According to theorem 4.2 and in view of the remark made at the end
of section 5 we now have that Lp is a semi-M-space if and only if
Lp/Lap is an abstract M-space. Let, therefore, d be the norm in the
factor space LpILp, i.e.,

for all f E Lp. Note that d is a Riesz norm in the Riesz space Lp/Lap
(cf. [7], th. 62.3).

LEMMA 9.3: Let p be a r.i. function norm, and assume that Lp = Lbp.
Furthermore, assume that (a) fXA E Lap for any f E Lp and any A E T
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PROOF: First note that if 03BC(0394)  ~, the statement is obvious.

Indeed, according to condition (a) we have Lp = Lp in this case, so
d(f)=0 for all f ~ Lp. Also, since f*(x) = 0 for all f E M and all

x &#x3E; 03BC(0394) we have 1 = 0 for all f ~ Lp. Hence, we may assume that
 03BC(0394) = ~. Now note that XL1 E Lp implies L’7é L,, because X~~ LP.
Indeed, let {~n: n = 1,2, ...} C T satisfy ~n ~ ~, 03BC(~n) = ~ for all n.

Then Xf, = X*~ for all n, so

This implies X~~ LP.
Let now f ~ L+P and e &#x3E; 0 be given. Furthermore, let 1 = lim f*(x) as

x - 00. Then there exists a number xo ? 0 such that

Now note that we have

on R+. Thus d(f):5 P(g2) =5 (1 + ~)p(X~). This holds for all E &#x3E; 0, so

d(f)~ lp(X~).
For the inverse inequality we may assume that 1 &#x3E; 0. In this case,

let E satisfy 0  E  1. Then there exists a set L1l Er satisfying
 03BC(~1) = ~ and fX03941~ (1 - ~)X~1, (we note that f ~ 1 on the whole of L1
does not necessarily hold, as follows from example (c) after definition
7.1). Since d is a Riesz norm, it follows that d(f)~d(fX~1)~
(1 - E)d (Xo,). Now note that 03BC(~1 ) = 00 implies d (Xol) = d (Xa). Since it
is also obvious that d (Xà) = p(X0394), it follows that d(f) ~ (1 - ~)p(X~).
This holds for all E such that 0  ~  l. Hence d(f) ~ lp(X~). This
completes the proof.
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REMARK: If Lp C Loc (regarded as point sets) and if L: = Lbp, then
condition (a) of the preceding lemma is satisfied. It follows that

d(f) = lp(X~) holds in any r.i. space satisfying Lap =Lp and Lp = L~
(as point sets). However, there do exist spaces Lp such that L: = Lbp,
the space satisfies the conditions (a) and (b) of lemma 9.3, p is r.i. and
Loo is properly included in Lp. This will become clear from example
9.6.

THEOREM 9.4: Let p be a r.i. function norm and assume that
L: = Lbp. Furthermore, assume that Lao C Lp and fXA E L: for any
f E Lp and any A E T of finite measure. Then Lp/Lap is an abstract
M-space and Lp is a semi-M-space.

PROOF : If 03BC(0394)  ~, then L: =Lp, so there is nothing to prove.
Assume, therefore, that 03BC(0394) = ~ and let fI, f2 E L+p be given. We have
to show that d(sup (f1, f2)) = max (d(f1), d(f2)), so without loss of

generality we may assume that supp (f1) ~ supp (f2) = cp. Let f =

sup(f1, f2)=f1+f2, and let 1 = lim f*(x), li = lim f*i(x) as x ~ ~ (i =
1,2). Now assume that li &#x3E; l2. Since f ~ f on L1, it follows that f* ~ /t
on R+, so 1 &#x3E; li. Supposing that l &#x3E; m &#x3E; li holds for some m, it follows
that

Since fi and f2 are disjoint this
shows that

This implies that Il &#x3E; m or 12 &#x3E; m, which contradicts m &#x3E; Il &#x3E; l2. Thus
we obtain that 1 = li = max (li, l2). It follows then from the preceding
lemma that d(f) = max (d(f1), d(f2)). It is obvious now that Lp is a

semi-M-space.
We note that if the condition Loc C Lp (or Xa E Lp) is removed,

theorem 9.4 does not hold any more. This follows from example 8.4.

COROLLARY 9.5: If p is a r.i. function norm, if (0394, 0393, 03BC) is purely
atomic with all atoms of equal measure and if Xa E Lp, then Lp is a
semi-M-space.

PROOF : From lemma 5.2 it follows that Lap = Lbp. Next, note that the
characteristic function of an atom always is a member of Lbp = Lap.
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Hence, for any f E Lp and any A E T of finite measure we have

fXA EE L’, because 03BC, (A)  oo implies that A consists of a finite number
of atoms. In view of th. 9.4 it follows therefore that Lp is a semi-M-
space.

REMARK: If Lp(L1) satisfies all conditions of corollary 9.5, then
Lp = Lao (as point sets). Indeed, Lcn C Lp follows from Xi E Lp. Con-
versely, any f E Lp is essentially bounded. This follows from the fact
that the characteristic functions of the atoms all have equal positive
norm a, so If 1:5 a -’ p( f ) on A

Example 9.6. The Lorentz space LA
Let A be as defined in section 8, and let

for all f E M (Af is defined in def. 7.1(i)). Then Il.IIA is a r.i. function
norm (cf. [2], [3] or [10]). The normed Kôthe space generated by [[.[[A
is denoted by LA. In ([3] th. 8.2) it was shown that L*,, is an abstract
L-space, and hence LA is a semi-M-space. These results can also be
derived from th. 9.4. Indeed, in [3], th. 7.1 it was proved that LaA = LbA,
and in [2], lemma 3.1 it was proved that fXA ~ LaA ; for all A E T of
finite measure. Finally, it was shown in [2], th. 3.2 that LaA ~ LA if and
only if A is bounded and 03BC(0394 ) = 00. Hence, in case that A is unboun-
ded, it follows from Li = LA that LA is a semi-M-space. If A is

bounded, then Xà E LA (cf. [3], lemma 7.4), so LA is now a semi-M-
space in view of theorem 9.4.

REMARK: In [2], th. 2.2, it was proved that the spaces LA and MA
(denoted by Nm and Mm in [2]) are mutually associate in the sense of
normed Kôthe spaces. It follows from the preceding example and
from the examples in section 8 that, although LA is a semi-M-space,
this does not necessarily hold for MA. Hence, we may draw the
conclusion that Lp being a semi-M-space does not necessarily imply
that LP (the first associate space of Lp) is also a semi-M-space.

EXAMPLE 9.7: Let A be as in section 8 and in addition assume that
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Hence Xo E MA. It follows that if (à, T, 03BC) is purely atomic, all atoms
having equal measure then MA is a semi-M-space in view of corollary
9.5.
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