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By an algebraic number field F we shall mean a finite extension of
Q, the field of rational numbers. The class number hF of F is the
order of C,, the group of ideal classes of F. In previous work ([5], [6],
[7]) we have determined all F of the form F== Cm = 0(exp 21ri/m)
such that hm = hCm :5 2. In this paper we extend our results and give a

complete list of cyclotomic fields whose class number is less than 11.
Since for m an odd integer we have Cm = C2m, we assume throughout
this paper that m ~ 2 mod 4 and our result is

MAIN THEOREM: Let m be an integer greater than 2, m ~ 2 mod 4.
Then all the values of m for which the cyclotomic field Cm has class
number hm with 2:5 hm ~ 10 are listed in the table:

Furthermore, all the other values of m with ~(m) = |Cm : Q| ~ 24 give
the twenty-nine values of m for which hm = 1.

In § 1 we use group actions on the ideal class group to prove a

general lemma which is of interest in itself. Essentially it says that for
non-cyclic abelian extensions L/K all the possible prime divisors of
hL can be found by looking at L : K| and the class numbers of proper
subfields of L. In §2 we show how the problem of finding all m with
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hm Ç 10 is reduced to a finite amount of calculation. In §3 we indicate
an easy way to carry out that computation. Here the lemma of § 1
proves useful.

1. The (p, p )-lemma

In the sequel we shall refer to the following lemma as the (p, p)-
lemma.

LEMMA 1: Let p and q be distinct primes and let L/K be a Galois
extension of type (p, p). Then q divides hL if and only if q divides the
class number of at least one of the proper intermediate fields between
K and L.

PROOF: Let Go be the Galois group of L/K and let G¡,..., Gp+1 be
the distinct subgroups of Go which have order p. Denote the fixed
field of Gi by Ki (so K = Ko), put Ci = CK,, and let Si be the q-Sylow
Subgroup of Ci, 0 ~ i ~ p + 1. Let S be the q-Sylow subgroup of CL.
Now if L D E ~ Ki with |E : Kil = p, then qlhE whenever q/hKI. One

sees this as follows. A non-trivial ideal class c of order q in Si may be
viewed as an element of CE by extending any ideal representative a
of c to an ideal 2t of E in the natural manner. Suppose c is trivial in
CE, i.e. 9t is a principal ideal of E. Applying the norm map shows that
aP is principal and hence cP = 1 in Si, a q-group. This contradicts the
non-triviality of c. Thus, q|hk, implies a non-trivial class c exists in Si
and this class extends to a non-trivial class of CE whence q|hE. This
proves the "if" part of the lemma. Moreover, it shows that q 1 hK¡,
1 ~ i:5 p + 1 whenever qlhK so we may assume for the "only if" part
of the lemma that q § hK.

The group Go operates on S and since every element of S has a

unique p-th root we may extend the action of Go on S to an action of
R = (Z[Go])[p-1] on S where Z denotes the ring of rational integers.
We denote this action exponentially so that for r E R, s E S, s is the
result of the action of r on s.

We now decompose 1 (E R into a sum of orthogonal idempotents
and use the resulting decomposition of S to achieve our result. For a
subgroup H of Go let H+ E R be the sum of the elements of H and

put di = P-1G+i, di = 1- di for 1 ~ i ~ p + 1. Let eo = p-2G+o and ei =
dl ... di-1dtdi+1 ... dp+1 = d+ i - eo, 1 ~ i ~ p + 1. Then 1 = eo + . . . +

ep + 1 and ejej = Sijei for 0 ~ i, j ~ p + 1 where 5ij is the Kronecker delta.
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Define se, = {sei|s E SI for 0:$ i ~ p + 1. Then S’, = fs E Slsei, = s }
and since Se° = 1 (we assumed q§ hK), S = Sel X · · · X Sep+1, an in-

ternal direct product. We claim the norm map Ni from S to Si induces
an embedding of Sei into Si for 1~ i s p + 1. To see this, note that

Ni (s ) = 1 E Si for s E Sei implies s P = Se‘p = Spd,+-peo = SGi+ = 1 ~ Sei, a
q-group. Consequently, qlhL implies that S and hence at least one Sej
is non-trivial so that via the embedding of Sej into S; we see that q 1 hj.

2. The relative class number

Let C2 be the maximal real subfield of Cm and put h m = hC+m. Then

h+m| hm so hm = h*mh+m where the positive integer h m is called the relative
class number of Cm. In this section we will determine all m with

h*m~ 10. We shall call such a value of m admissible. We obtain a finite
list of admissible m so that to determine when hm :$ 10 we need only
to find h+m for each admissible value of m. In the next section we will
see that h+m = 1 whenever h*m ~ 10.
We require a formula for h m which may be described as follows (cf.

[3], pp. 78-79). Let à be the group of Dirichlet characters modulo m.
For each cyclic subgroup of à choose a generator X, let tp (mod f03C8) be
the primitive character which induces X (so that f03C8 is the conductor of
both X and 03C8), and let n03C8 be the order of tp. Denote by 03C8 = 1/I’(m) the
set of such tp with f/J( - 1) == -1. Let N03C8 be the norm map N03C8 : Cn03C8 ~ Q
and put 039803C8 = 2014 (2f03C8)-1 ~f03C8a=1 a03C8(a). Then

where Q = 1 if m is a prime power and Q = 2 otherwise, and w is the
number of distinct roots of unity in Cm. We use the following
properties of the N03C8(039803C8).

LEMMA 2: Let 03C8 be a primitive Dirichlet character mod f03C8 with

03C8(- 1) = - 1 and let n03C8 be the order of tp.
(A) If f03C8 is divisible by more than one prime, then N03C8(039803C8) E Z.
(B) Suppose n03C8 is a power of 2.
(i) If at least three distinct primes divide f03C8, then N03C8(039803C8) E 2Z.
(ii) If exactly two primes p &#x3E; q divide fl/J, then N03C8(039803C8) is an even or an

odd integer according as the quadratic residue symbol (’) = 1 or
- 1.

(C) If fl/J = p" for p a prime, then N03C8(039803C8) ~ (2p)-1 Z and, more

precisely, the absolute value of the denominator (in lowest terms)
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(i) may be divisible by p for p odd and n03C8 = cp(pa).
(ii) is divisible by 2 if p is odd and n03C8 = 2" (since li(- 1) 1, this

occurs only for 2ullp - 1).
(iii) is 4 for f", = 4 and is 2 for f03C8 = 2", a - 3.
(iv) is 1, i.e. N03C8(039803C8) E Z, in all other cases.

PROOF: This is the content of Sätze 30-33 in [3].

From the properties of the N03C8(039803C8) recorded in Lemma 2 we have
proved in [7], Lemma 5 that

LEMMA 3 : If min, then h*m|h*n .

By virtue of Lemma 3 we limit the admissible values of m to those
m whose prime power factors are admissible. That there are only
finitely many admissible m follows then from

PROOF: It is known ([7], Cor. 1) that h*p &#x3E; 1020 f or p &#x3E; 131. Now the

numbers h*p, 3 ~ p  200 have been calculated independently by
Schrutka [10] and M. Newman [9] and one sees then that the prime p
is admissible if and only if p  32. With regard to prime powers one
knows ([8]) that h*p03B1 &#x3E; e3h*p03B1-1 for a ~ 2 and pa &#x3E; 100. Hence, h*p03B1 &#x3E;

e3 &#x3E; 10 for p 03B1 = 53, 112, 13B 172, 192, 232, 292, 312. We have ([3] or [10])
h*p03B1 &#x3E; 10 for p03B1 = 26, 34, 72 so by Lemma 3 we are done.

The following two lemmas are useful for showing that values of m
are inadmissible.

LEMMA 5: If p ~ q are odd primes, then h*pq/(h*ph*q) =
03A003C8~03C8(pq)f03C8 = pqN03C8 (039803C8) E Z. In particular, if there exists 03C8 E 03C8(pq) of
conductor pq with N03C8(039803C8) &#x3E; 10/(h*ph*q) then pq is inadmissible.

PROOF: Use (2.1) for m = p, q, and pq to get the expression for
h*pq /(h*ph*q) as a product of norms. Lemma 2A says that each norm in
the product EZ.

LEMMA 6: If p and q are odd primes, p ~q mod 4, then for K =

Q((- pq)1/2) we have hKh*ph*q |2h*pq.
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PROOF: Use Lemma 5, Lemma 2A, and the fact that the quadratic
character Qk mod pq satisfies hK = 2N03C8(039803C8).

It is now easy to find all admissible m. The result is as follows:

PROPOSITION 1: Let m ~ 2 mod 4 be an integer greater than 1. Then

the relative class number h * of the cyclotomic field Cm is less than 11

precisely for m = 51, 55, 57, 63, 68, 80, 96, 120 and all m with

|Cm :Q| = ~(m)  32.

REMARK: A more exact breakdown of this list is provided in the
statement of the Main Theorem because we shall show in the next

section that h+m = 1 and hence h*m = hm for all admissible m.

PROOF of Proposition 1: An admissible m = pq11 . . . pqtt with

p1, . . ., pt distinct primes must have p iqi ~ 32 for 1 s i s t by Lemmas 3
and 4. We use Lemmas 2, 5, and 6 to cut down the possibilities even
further. For example, h*221 = h*221/(h*13 h*17) is a product of the integers
N03C8(039803C8) with 4, E 03C8 (221 ),f03C8 = 221 (cf. Lemma 5). There are six such tp
with a power of 2 so by Lemma 2B(ii) we have 26|h*221, and, by
Lemma 3, 26|h*13·17.k for any positive integer k. Lemma 3 also shows that
h*23 h*29 = 24 divides h*23·29·k·
The values of h m for ~(m) ~ 256 which are given in the tables of

Schrutka [10] show that most values of m are inadmissible. For

example, h*75 = h*132 = 11 so m = 3 · 5 · k and m = 3 · 4 · 11 · k, k any
positive integer, are inadmissible. For values not covered in available
tables one can check that m is inadmissible by computing enough
N03C8(039803C8 )-type factors, «/J E 03C8 (m) keeping Lemma 2 in mind. A remarka-
bly simple scheme for computing N03C8(039803C8) when more than one prime
divides is given in §§28,33 of [3]. We used these methods and Lemma
5 to show that m = 31 - 19, 31 - 13, 31 · 11, 29 - 17, 29 - 13, 19 - 17 and
their multiples are inadmissible. We used Lemma 6 to see that

m = 31 · 29, 31 - 17, 29 - 19, 29 - 11, 23 - 17, 23 - 13 and their multiples
are inadmissible. From all these considerations the only m with

h*m ~ 10 are found to be the 44 values mentioned in the proposition and
the Main Theorem.

3. Class numbers of maximal real subfields

In this section we show that h+m = 1 whenever h m  11. Hence, the
admissible m determined in §2 all give cyclotomic fields with class
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numbers  11 and these are all the full cyclotomic fields with such low
class numbers.

We have already shown ([5], [6], [7]) that h m = 1 when h*m ~ 2. The m
with 3 ~ h*m ~ 10 are m = 23, 29, 31, 51, 52, 55, 57, 63, 68, 72, 80, 96, and
120. For m = 23, 29, 31, 51, 52, 55, 57, and 68 we have C+m cyclic over Q
and then h+m = 1 from computations of Bauer [1]. For m = 63, 72, 80,
96, and 120 we will use other methods to determine h+m. We will need

LEMMA 7: Let L /K be a cyclic extension with |L : KI = p " for p a
prime. Suppose only one prime divisor of K ramifies in L. Then p IhL
only if p| hK·

PROOF: This lemma was first proved by Iwasawa [4]. The result is
true under the weaker assumption that L /K is a p-extension (cf.
Yokoyama [11]).

DEFINITION: Let L /K be a cyclic extension of algebraic number
fields and let p be a rational prime. We say L /K pushes p away if

|L : K| = p03B1, p # hK, and if there is a unique prime P of K above p and
P is the only prime divisor of K ramified in L.

We note that C+63/C+21 pushes 3 away so 3 # h+63 by Lemma 7. We claim
also that C+72/C+9(61/2), C+80/C+40, C+120/C+60, C+60/C+15, and C+96/F96 push 2 away
where F96 is the cyclic subfield of C;6 of degree 8 and conductor 96. All
the conditions are easy to check except that h+60 = h+40 = 1 which is done
in [7] and that hF96 = hC9+(61/2) = 1 which is covered in Bauer’s computa-
tions [1]. Hence h+72, h+ 80, h+120, and h;6 are odd by Lemma 7.
We are now ready to prove the

MAIN THEOREM: Let m be an integer greater than one, m ~ 2 mod 4
and let hm be the class number of Q(exp 203C0ï/m). Then all the m with
2 ~ hm ~ 10 are listed in the table :

Furthermore, the twenty-nine other values of m with ~ (m) ~ 24 are all
the m with hm = 1.
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PROOF: All that remains is to show that no odd prime divides h;2, h+80,
h 96, or h 720 and that no prime other than 3 divides h 6’3. We have used the
(p, p )-lemma to verify this. To illustrate the procedure we will show
that h+120 = h+63 = 1.

Suppose the odd prime q divides h 20. Now C+120/C+20 is a (2, 2)-
extension with intermediate fields C+20(61/2), C6o, @ (C 40 + . Since h 60 = h+40 = 1
(see [7]), the (2, 2)-lemma implies that q must divide the class number
of C+20(61/2). Now C+20(61/2)/C+5 is again a (2, 2)-extension so then q must
divide the class number of at least one of C+20, C+5(61/2), or F120 where F120
is a cyclic extension of degree 4 over 0, has conductor 120, and
contains C+ = 0(51/2) as unique quadratic subfield. The field C+20 has
class number one ([7]) and the (2, 2)-lemma shows that the class

number of C+5(61/2) is prime to q so it suffices to show that q does not
divide hF120 to obtain a contradiction. A defining equation for F120 is
f (x ) = x4 - 30x2 + 180 (cf. [2]). It is easy to verify that the ideals
generated by 2 and 3 are each the square of a prime ideal, that the ideal
generated by 5 is the fourth power of a prime ideal ( f (x ) is Eisenstein
for 5), and that all other prime ideals of norm less than the Minkowski
bound are in the ideal classes generated by the prime ideals above 2, 3,
and 5. Therefore, no class has odd order in CF,2o and q does not divide
hF’i 20’

Similarly, assume the prime q ~ 3 divides h +63. Now C+63/Q(211/2) is a
(3, 3)-extension with four proper intermediate fields (cf. [3], p. 169)
each of which is a cyclic extension of 0 of degree 6. The tables of
Bauer [1] show that two of these fields have class number three and the
other two have class number one. However, the (3, 3)-lemma implies
that q divides the class number of one of these four fields. This

contradiction proves that q § h¡3 and since we have already seen that
3 # h+63 we obtain h+63 = 1 and h63 = 7.

REMARKS:

1. There are 189 real cyclic fields with conductor not exceeding 100.
For those fields of degree 8 or higher we can improve the Minkowski
bound for minimal norms of integral ideals in an ideal class. If the field
has degree n, we multiply the usual Minkowski bound by

This formula can be found in [H]. Bauer’s paper [1] lists those of the
189 fields which have improved Minkowski bound of more than 50,000.

2. The bound of 10 was chosen because h*132 = 11 and C+132 contains
a cyclic field of degree 10 not covered by Bauer’s computations.
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3. New methods have developed which have allowed us to check all
of Bauer’s computations which were needed in [5-7] and this paper.
Refinements of the new methods will probably allow us to verify all the
results of [1].

4. It would be useful to have divisors of h 1 computed for m = pq
with p and q distinct primes  70. It seems likely that then we could
determine all m with hm  1,000,000.

5. The structure of the class groups of Cm for m = 120, 68, 57, and 96
is unknown. For the other m with hm  11, the class group is cyclic
except for that of C29 which is of exponent 2.
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