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SYMMETRIC BASES IN MINKOWSKI SPACES

D. R. Lewis* and P. Wojtaszczyk

An analog of a well-known property of symmetric bases in infinite
dimensional Banach spaces is established for finite dimensional spaces.
It is shown that if a finite dimensional space E has a basis with the
property that each permutation of indices naturally induces an iso-
morphism of norm at most 4, then E has a (possibly different)
94-unconditional basis. Restated in terms of symmetry parameters this
answers a question posed by Gordon [2], which is implicit in the paper
of Gurarii, Kadec and Macaev [4]. Some examples are given to show
the non-isometric nature of the result.

Let B = (b,),,; be a basic sequence (finite or countably infinite) in a
normed space E. For n a permutation of I with n(i) # i only finitely
often, g, is the isomorphism of E defined by g,(b,) = b, icl; and for
(¢;);.r @ sequence of scalars with |¢;| = 1 for all ie] and ¢; # 1 only finitely
often, g, is the operator defined by g,(b;) = ¢b,. Three symmetry param-
eters of B are defined as follows:

the unconditional basis constant of B is x(B) = sup,|ig.|l;

the diagonal symmetry constant of B is 6(B) = sup,||g,ll;
and the total symmetry constant of B is t(B) = sup, ,llg,9./l-

Clearly x(B) =< t(B) and §(B) < t(B) for every basis B, and it is known
that x(B) < 2Bd(B)?, where B is the basis constant of B (cf. [7]). But
also observe that no inequalities of the form x(B) < f(J(B)) or
d(B) £ f(x(B)) are valid for all bases, where f indicates a real function
independent of the particular basis. A simple sequence of examples
showing that the first relation cannot hold may be given as follows.
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294 D. R. Lewis and P. Wojtaszczyk [2]

For n odd let B be the unit vector basis of R” considered with the norm
[Ix]] = max |[{x,&)|, where the maximum is taken over all n-tuples
&= (¢,,&,...¢,) of signs with ), _ &, = 1. Then 6(B) = 1 and x(B) = n.

For p any one of the parameters x, d or ¢ define the corresponding
symmetry parameter of E by p(E) = inf, p(B), with the infimum taken
over all bases for E.

The Banach Mazur distance between isomorphic spaces E and F is
defined as d(E, F) = inf|lu|||lu"?||, the infimum being taken over all
isomorphisms u between E and F. It is immediate that each of the three
symmetry parameters of E defined above is continuous in the sense that
p(E) £ d(E, F)p(F) holds for all E and F.

Although the diagonal and total symmetry constants of a particular
basis in a finite dimensional space may behave quite differently, the
diagonal and total symmetry constants of the space itself are equivalent.
More precisely,

THEOREM 1: The relations J(E) < t(E) < 90(E) hold in every finite
dimensional space E.

The first inequality is obvious. To prove the second it is convenient
to first consider the case in which E has a basis B = (b)), ., with 6(B) = 1.
The coefficient functionals of the basis are denoted by (b)),.,, and m is
the greatest integer satisfying 2m < n. The group of all permutations of
{1,2,..,k} is written S,. The proof of the special case requires two
lemmata, the first of which is given without proof.

LemMA 1: Let wy,w,,...,w, and v,,v,,...,v, be two finite sequences
of non-negative reals with v, Z v,,, for 1 Si<m. For 1 £k < m set
Uy, = Uy = U, and u, = 0 if nis odd. Then

max, s, Z [“n(Zk)+u1:(2k— 1)]Wk = 2max, Z UeayWi-
k<m ksm

LEMMA 2: Let || be any norm on E for which (B < (E,| |)) = 1. Then
@ q=n""Q,<b) ® Qb is a norm one projection,
®)p= Z_IZk;m(b’Zk—b’Zk:l) ® (by,— b,y 1) is a norm one projection,
© 1;—q = (1= Dm™'(1) ™'Y 5.9, 'PY,> and
(d) t(bp— by 1)k§m c(E]| D=1

ProOF OF LEMMa 2: Part (a) follows from the equality g = (n!)™*)_ g,
and (b) is true since p = 27'(1—g,), where €S, interchanges 2k with
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2k—1foreachk=1,2,... . m.

To verify (c) write w = (n!)™'>_ g 'pg,. Since w commutes with each
g,, w = sl +tq for some scalars s and t. Write H for the kernel of 4.
Then

sly = () ™" Y (g,1H) ™ (plH)g,|H)
and p|H is a projection onto an m dimensional subspace of H, so
s(n—1) = trace (sl) = trace (p|H) = m.
Also
sn+t = trace (w) = trace (p) = m,

sothat s = —t = m(n—1)"1

Finally, givensigns é,, 6,,...,6,,andt e S, let € S, be the permutation
which maps {2k, 2k—1} onto {2t(k),2t(k)—1}, 1 £ k < m, and which
satisfies m(2k) = 2t(k) if 6, = 1, n(2k) = 2t(k)—1 if 6, = —1. For each
k=1,2,...m 6(by4y—breiy-1) = 9oy — b, 1), Which proves (d).

ProoF oF THEOREM 1: Assume §(B) = 1 and let (( )) be the norm on
E defined by

((x)) = max,_llpg,g,(x)Il,

where || || is the given norm on E and the maximum is over all n€ S,
and n-tuples of signs ¢. Let F denote E under (( )). Notice that each
operator g,g, is an isometry of F, and hence #(F) = 6(B < F) = 1, so the
assumptions of Lemma 2 are satisfied by the basis B in both norms,
(C)and || |I.

The first claim is that ((x)) = ||x|| for all x in [b,, —b,, _,], <, the span
of the vectors b, ,—b,,_,. The inequality ((x)) = ||x|| is “immediate,
and for the other direction it is enough, by Lemma 2(d), to consider
vectors of the form x =),_ a(by—by_,) with la| = |a,,,| for
1 £k < m. For ¢ an n-tuple of signs and we §,, choose x’' € E’ so that
[Ix]l = 1 and

Ipg,g; * (x|l = Kpg,g, (x), x|
é 2_1 Z [|<x, b:t(Zk)>I+|<x’ b;(Zk—1)>|]|<b2k—b2k—1’ x,>|

k=m
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Applying Lemma 1 with v, = |a,| and w, = |[<{b,, —b,, _, x'>| shows that

”pgggn_ l(x)” é maxresm z |a1;_(k1)“<b2k_b2k—p X’>|
k=m
= max, l&|=1|< Z 5kak(b2f(k)_b2[(k)—1), xl>| = |Ixl},

kZm

the last by part (d) of Lemma 2.
We next assert that the inequalities

ll=g)Nl = 2(x) and (1—-g)x)) = 2]l

hold for all x € E. For the first, applying Lemma 2 with both || || and
(()) yields

Q=@ = (n—Dm™ () ™" 3 llg; 'pg ()
< 2n)7! ; IIP%(X)IT
=2n)~" ;((Pg,,(x)))
<2m)7! ;((qn(X)))
= 2((x)),

and the other inequality follows by interchanging the réles of || || and

(€)).
Now let A be the constant satisfying

A b= (X b))
and define u: F — E by u = 1,+(4—1)g. Since ((¢(x))) = llg(x)||4 for all
x € E, [lu(x)l] < [I(1 —g)x)ll+((g(x))) < 3((x)) by the preceeding paragraph
and Lemma 2, and hence ||ul| < 3. Butu™! = 1,4+ (47! —1)g so the same
proof gives (u~(x))) < 3||x|| and thus d(E, F) < 9. Then

t(E) £ «(F)d(E,F) < 9.

More generally for B « E any basis let H be E with the norm
Ix| = max_ ||g,(x)||. Since (B =« H) = 1 and d(E, H) < 6(B) the special
case shows that t{(E) < d(E, H)t(H) £ 96(B).Taking the infimum over all
possible bases for E completes the proof of the theorem.
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ReEMARK 1: In [4] Gurarii, Kadec and Macaev define the symmetry
parameter o of a finite dimensional space E by o(E) = infy x(B)o(B).
The theorem implies that 6(E) < a(E) < 95(E)?, answering a question
raised by Gordon [2] and by Lewis [5].

ReMARK 2: Let E be a Banach space with a diagonally symmetric basis
B = (b,),» ;- Then for any ¢ > 0 and any finite dimensional F < E there
is finite dimensional W with F ¢ W< E and #(W) < (9+¢)0(B). This
follows from a routine pertubation argument and the fact that
t([b,,b,,....b,]) < 95(B) for all n. Thus, although the unconditional
basis constant of B depends on the basis constant of B, the local
unconditional structure of E depends only on §(B).

Following [1] define the asymmetry constant of a finite dimensional
space E by

S(E) = infG SUPyeq lgll,

with the infimum taken over all compact groups G of isomorphisms of E
which have the property that only scalar multiples of the identity
commute with the elements of G.

It is clear that s(E) < t(E), so the following theorem strongly indicates
the non-isometric nature of the relationship between o(E) and t(E).

THEOREM 2: There is a sequence (E,),, s of Minkowski spaces with
dimE, = n, 6(E,) = 1 and lim inf, S(E,) = 2~ ' +27 %)%

Proor: Let e, "' and €, el;*! be the unit vectors, 1 < 4 < n and
E, c I"*! be the kernel of ), ei+Ae,., (a sequence of values for A
will be specified later). The basis b, = ¢,—17le,,,, 1 <i<n, has
diagonal symmetry constant one so 6(E,) = 1. To estimate s(E,) from

below we use the inequality [1]
S(E,)* 2 ™'y (E)m(E,),

with y_(E,) and n,(E,) denoting, respectively, the projection constant
of E, and the l-absolutely summing norm [6] of the identity on E,.
Write G for the group of isometries of I of form g(e;) = e, for some
nesS,, , withn(n+1) = n+1.

(i)

If w is a projection of "' onto E, with [w|| =y_(E,), then
u=|G|1! deGg_lwg is also a projection onto E, with norm y_(E,).
Since u commutes with each element of G
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u=1-(Ye+ie,, )@ () e+se,,,)

iZn i<n

for some scalars s and ¢ with tn+ As = trace (1—u) = 1. Thus

Y(E,) = ||| = max {|{1—t|+(n+A—Dt|, n|s| + |1 —sA|}
2 inf, max {|{1 —¢|+(n+A—Dt|, n2 ™ |1 —nt| +nlt|}
— n(n—1)(n? =24+ 42"\,

To estimate n,(E,) from below, there is by Pietsch’s Theorem [6]
a measure p on Q = {€/|E,:1 < i < n+1} such that ||u|| = =,(E,) and
[Ix]l < u(<x,-)|) for all xeE, Let v be a measure on Q given by
Wf) = 1617} Y Hfog). s0 that [l = m,(E,), [Ixll < w(l<x, D) for
x e E, and v(f) = v(fog) for all f € C(Q) and g € G. The last implies that
s = v({b}) is independent of i, 1 <i < n. Setting ¢t = v({b., ,}) gives
scalars s and ¢ satisfying n,(E,) = sn+t and

Ixll < s 2 I<Cx, el +tx, e, Dl x € E,
i<n
Substituting e, —4"'e,, , and e, —e, in the last inequality shows that
s+tA™1 =1 and 2s = 1, so that

n,(E,) = sn+t = 27 (n+A).

Now vary A with nby taking A, = [2n(n—1)]* —nforn = 5. Combining
inequalities yields the desired lower estimate.

REMARK 3: As is observed above every Minkowski space satisfies
X(E) < t(E) and s(E) < t(E). Some other possible relations between the
three parameters x, ¢ and s are known to be false. The space 4, = I @ I,
has unconditional basis constant one but s(4,) and #(4,) behave asymp-
totically like n* [1], and the tensor product B, = I ® I has asymmetry
constant one but x(B,) and «(B,) both act asymptotically like n* [3].
Such examples suggest the following problem. Is there a real function
f of two variables such that {(E) < f(x(E), s(E)) for all finite dimensional
E?

The answer to this problem is negative as is shown by the following
example due to J. Lindenstrauss.

ExampPLE: Let
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n
E, = (Y B,
k=1

where each Ej is isometric to an n® dimensional Hilbert space. Then
S(E,) = x(E,) = 1 but ¢(E,) —,_, . The first two statements are clear
so we will prove only the last one. Let us start with the observation that
E, is isometric to a subspace of L,[0, 1].

Lemma 1: Let B = (b)), ., be a normalized basic sequence in L,[0,1]
with fB) = o. Then span{b},., is a-isomorphic to a subspace of
L,

Proor: The expression
1 n
12 4bf*
0 i=1

is a-equivalent to

1 1 n
4
b %: Z . |i§18i}“iba(i)|

g

where & = (g;)!_, ranges over all 2" choices of signs and ¢ over all n!
permutations of {1,2, ..., n}. This latter sum is of the form

13

a) A+
i=1

n
2y
i =1

for suitable positive a and c.

LEMMA 2: Let E < I, dimE = n* then d(E,I5™F)— _ oo

-0

This Lemma follows immediately from Corollary 3.1 of [8]. Using those
two Lemmas we will estimate #(E,). Suppose {E)) < Cforn = 1,2,3,...
then E, embeds uniformly into /2’ +I%”. Denote

B = |IP~ olEl

where ¢ is an isomorphic embedding from E, into I’ @ I* and P is a
projection from I’ @ I%’ onto %’ annihilating I%. Let

zeE,  llzll=1,  |IPeoE)l = B
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Then for some ¢, ¢ = 1

. n 1 n 1 n Y
=l Y aall z SlIPeo( Y gzl = < (X 1B
k=1 C k=1 C =

But this implies that for n big enough at least one , must be very small.
. . . 3 . .

Then an easy perturbation argument implies that [}’ contains uniformly

I" which contradicts Lemma 2.
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