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Introduction

In this paper we wish to prove that under certain conditions the Fourier

coefficients of certain Eisenstein series for an arithmetic group acting
on a tube domain are rational numbers. The conditions are that the

domain be equivalent to a bounded symmetric domain having a
0-dimensional boundary component (with respect to the arithmetic
group), and that the arithmetic group be a subgroup of a special arithmetic
group (cf. § 7.1).

* This paper was written with partial support from National Science Foundation grant
GP36418X1.
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As in [4], let G be a connected, semi-simple, Q-simple, linear algebraic
group defined over the rational number field Q. Let R be the real number

field. We assume that G0R is centerless and has no compact simple factors,
and that if K is a maximal compact subgroup of G0R then X = KBG0R is a
Hermitian symmetric space. We may write G = RfM./QG’, where G’ is

absolutely simple, and defined over a totally real algebraic number
field K and RK/Q is the ground field reduction functor [21, Chapt. 1].
We assume also that X is isomorphic to a tube domain

where C is the complex number field and R is a homogeneous, self-adjoint
cone in RM. It follows that the relative R-root system of G is a sum of

simple root systems of type C. We assume further that, when X is realized
as a bounded symmetric domain D in CM, then D has a 0-dimensional
boundary component Fo. Then X may be identified with the tube domain
:1: in such a way that every element of N(F 0) = {g E G0R|F0 · g = FOI
acts on :1: by a linear affine transformation of the ambient vector space
CM of :1:, that every element of the unipotent radical UR = U(F 0) of
N(F 0) acts by a real translation, and that N(Fo) is a Q-parabolic subgroup
of G0R. Let Nh be the normalizer of N(Fo) in the group Gh of all holo-
morphic automorphisms of :1:, and r be an arithmetic subgroup of Gh.

Let 0393’ = Go n r, and 03930 = r n Nh* If g ~ Gh and Z E :1:, let j(Z, g)
be the functional determinant of g at Z. Let G’ = GQ n G0R; and if

a E G’Q, let 03930,a = r n aNha -1. Then, if 1 is a large positive rational
number (with conditions on its denominator to be indicated later),
we form the following Eisenstein series at the cusp a :

which converges absolutely and uniformly on compact subsets of:1:
and represents there an automorphic form with respect to r.

Let G*Q be the normalizer of G’ in Gh, and let NQ = Nh n G*Q. Then
r ~ G*Q, and we can write G*Q = ~03B1~A0393aNQ, a disjoint union of a finite
number of double cosets with A c G’Q. We have also GQ = U aeAl r’ aP Q
for some finite set A1, where P is a maximal Q-parabolic subgroup of G
such that P n G0R = N(F 0).
For each a E A, let c(a) be a complex number, and define an Eisenstein

series
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Let ’ = r n U Q’ then ’ is a lattice in UQ; let  be its dual lattice

with respect to the non-degenerate symmetric bilinear form induced by
the trace function on UR = RM, when the latter is realized as a real

Jordan algebra.
Since El(Z+S) = El(Z) for all £ e A’, El has a Fourier expansion:

where 8( ) = e203C0i(), and ( , ) is the induced symmetric bilinear form on CM.
In this paper, we restrict ourselves to the case when r c G0R and r is

a subgroup of a special arithmetic group. Then we are able to prove
that the Fourier coefficients al(T) are rational numbers for suitably
chosen c(a).
Our methods have been adapted largely from the proof of this result

in a special case in [5].
For the historical background, see [6, Introduction].
We sketch the contents of each section of this paper as follows :
In Section 1, we describe the relationships between tube domains and

Jordan algebras. The next two sections are then devoted to Jordan
algebras. Some technical lemmas, which are important for the later
calculation of exponential sums, are proved. Sections 4, 5 and 6 are
devoted to parabolic subgroups, functional determinants and boundary
components, respectively, and the relationships among them, which
enable us in Section 7 to reduce our treatment of the Fourier coefficients,
by induction, to those of the ‘biggest cell’. Also, in Section 7, we describe
the way of choosing c(a). In Section 8, we apply Gamma integral and
Poisson summation formula to the biggest cell, and express the Fourier
coefficients in terms of exponential sums and the volume v() of a
fundamental period parallelogram of the lattice A. In Section 9, by
applying Hensel’s lemma [3], we further reduce the calculations of the
exponential sums to those over finite Jordan algebras. Then we devote
Section 10 to the explicit calculations of the exponential sums, which
turn out to be products of Euler factors; and then devote Section 11
to the calculation of the volume v(A). Finally, in the last section, by
using the values of L-functions (which come from the product of
exponential sums), we are able to prove the rationality of the Fourier
coefficients.

In June, 1972, when the author submitted part of this paper as the
dissertation (see [19] for the announcement) at the University of Chicago,
he was not able to calculate the value of v() for certain tube domains
of type A, thus left the work uncompleted. In the summer of that year,
Baily [6] carried out this calculation via theory of quadratic forms
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while the author did it in a rather straightforward way and was able
to dispose the type A case in full generality. We combine this calculation
with the dissertation and present here the whole story.
The author would like to express his appreciation and thanks to his

thesis advisor, Professor W. L. Baily, Jr., without whose advice and

encouragement this work would not have been possible. Thanks also
are due to Dr. M. Karel, with whom the author has had several fruitful
talks.

0. Notation

0.1. As usual, Z, 0, R, C denote, respectively, the ring of integers,
and the fields of rational, real and complex numbers. Fp03B1 denotes the
finite field of p03B1 elements, where p is a prime and a is a positive integer.

0.2. If A is an algebra, then A* denotes the set of invertible elements
of A.

0.3. Let E c F be two field, then NF/E(x) or N(x) (resp. TrfF/fE(x) or
Tr (x)) denotes the norm (resp. trace) of x e F in E.

0.4. Let K be an algebraic number field. Then p denotes a prime of
K dividing a prime p of O. Kp (resp. Op) is the local field at p (resp. p),
and ?Lp (resp. Zp) is the p-adic (resp. p-adic) integers of Kp (resp. Op).
Let n be a local parameter of KP. Let L (resp. 11.) be the standard norm
on Kp (resp. (JJp) (so that the product formula is true).

0.5. Let A be an algebra with an involution J : a ~ a*. We write
(A, J) for such an algebra, and H(A, J) for the set of all symmetric
elements in this algebra; if there is no confusion we write

H(A) = H(A, J). Let M(n, A) denote the set of all n x n matrices over A.
Denote the identity matrix by I (or In), and the matrix with 1 on the

(i, j)-th entry and 0 elsewhere by eij. If X is a matrix (not necessarily a
square matrix), then X* denotes the transpose conjugate (w.r.t. a ~ a*)
of X. Given an invertible element A in M(n, s) such that A = A*, define
an involution JA on M(n, s) by X AX*A-1. Write

Write diag (al, ..., an) for a diagonal matrix in M(n, A).
0.6. Let H be a non-empty subset of a group G, then N(H) (resp. Z(H))

denotes the normalizer (resp. centralizer) of H in G. If G is an algebraic
group defined over an algebraic number field K, we write Gp for GKp
for a prime p. (Also applied to an algebra A defined over K : Ap = ’W K, 
if there is no confusion.) 
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Part I. TUBE DOMAINS

1. Tube domains and Jordan algebras

We summarize the relationships between tube domains and Jordan
algebras as stated in [4, §§ 2,3].

1.1. Let G be a centerless, connected, simple, linear algebraic group
defined over R. If K is a maximal compact subgroup of G0R, we assume that
X = KBG0R is isomorphic to a bounded hermitian symmetric domain D.
Assume further that the relative R-root system of G is of type C, then X is
isomorphic to a tube domain

where R is a homogeneous irreducible self-adjoint cone in RM.
Let S = RT be a maximal R-trivial torus of G with simple R-root

system R0394. Then precisely one simple root a is non-compact, since R0394 is
of type C. Let So be the 1-dimensional subtorus of S on which all simple
R-roots vanish except a. The centralizer Z(So) of So and the positive
R-root subgroups of G generate a maximal R-parabolic subgroup P of G.
Then P n Go = N(F 0) = {g ~ G0R|F0 · g = FOI for some 0-dimensional
boundary component F 0 of D, and X may be identified with 2 in such
a way that every element of N(F0) acts on 2 by a linear affine trans-
formation on the ambient vector space CM of:1:, and every element of
the unipotent radical UR (= U n G’, U being the unipotent radical of P)
of N(F0) by a real translation. Then UR may be identified with RM,
and will have a simple compact real Jordan algebra structure such that
the cone R may be described as the interior of the set of all squares of

this Jordan algebra [13; 20].
1.2. Let G be taken subject to the general assumption of the Introduc-

tion ; then G = RK/QG’ for some absolutely simple linear algebraic group
G’ defined over a totally real number field K. We may choose a maximal
torus T, a maximal R-trivial torus RT, and a maximal Q-trivial torus
QT in G such that T is defined over Q and QT ~ RT c T. Then for a
suitable maximal K-trivial torus KT’, a maximal R-trivial torus RT’ and a
maximal K-torus T’in G’, we have KT’ ~ RT’ ~ T’ and QT c RK/Q(KT’),
T = RK/QT’. We take compatible orderings on all the root systems.
Assume that D has a 0-dimensional rational boundary component F0.

Let P = N(F o)c’ and let U be the unipotent radical of P. The R-root
system of each simple factor of G is of type C; and since dim Fo = 0,
we know that the non-compact simple root in each simple factor of G
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is critical and that the simple Q-root system Q0394 of G is of type C. Let So
be the subtorus of QT on which all simple Q-roots vanish except the
non-compact one. Then P is the maximal Q-parabolic subgroup of G
generated by the centralizer Z(So) of So and the positive Q-root subgroups
of G, and then P = RIM./QP’, U = RIM./QU’, where P’ is the maximal

K-parabolic (and hence R-parabolic) subgroup of G’ of § 1.1 (in which
they were denoted by P and G, respectively), and U’ is its unipotent
radical. Then UR is a semi-simple compact real Jordan algebra with
Q-structure U Q induced (via the ground field reduction functor RK/Q)
by the simple real compact Jordan algebra U’ defined over the totally
real algebraic number field K.
The tube demain Xis then a direct product of irreducible tube domains

03C3F’ corresponding to simple factors 03C3G’, where G = RK/QG’ = 03A003C3~03A303C3G’,
and Z is the set of all isomorphisms of K into R.

2. Jordan algebras

In this section, we discuss the compact real Jordan algebras and their
K-structures, where K is a totally real algebraic number field.

2.1. In this article, we intend to describe all the simple compact real
Jordan algebras [20, Chapt. 2].

Let V be a vector space of dimension ~ 1 over R, provided with a
negative definite bilinear form ( , ). Consider the vector space R E9 V
with the product of two of its elements defined by

for a, b ~ R, u, v E Tl Then R ~ V becomes an algebra with involution
a+u ~ (a+u)* = a-u.

Let W be any one of the real, the complex, the quaternion, the Cayley
or the above-constructed algebra, then W is a real algebra with involution
c ~ c* such that

(1) trace of c ~ F : tr(c) = c + c* ~ R,
(2) norm of c ~ F : n(c) = cc* = c*c E R, and
(3) the norm form is positive definite on the real vector space W.

Let dim W = n., and denote Fn0n the space of all n x n hermitian (with
respect to the involution *) symmetric matrices with entries in W. Then
any simple compact real Jordan algebra F is isomorphic to one of the
following five types:
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provided with the Jordan multiplication A 0 B = 1 2(AB + BA), where
AB is the usual matrix multiplication.

Note : The restrictions on n for the first three types and no for the last

type are not necessary; but, by such restrictions, no two of the Jordan
algebras listed above are isomorphic.
Now, the irreducible homogeneous self-adjoint cone R may be

described as R = {T* TI T is an n x n upper triangular matrix with entries
in W and with positive real numbers on the diagonal}, and Z + iR
is the irreducible tube domain.

2.2. Let us collect some well-known facts about the general structure
theory of Jordan algebras over any field e of characteristic ~ 2
[12, Chapt. 4, 5].

THEOREM 2.2.1: A finite-dimensional central simple Jordan algebra is
one of the following types :

(1) a Jordan algebra of a non-degenerate symmetric bilinear form
03A6 ~ V, dim V ~ 2;

(2) a Jordan algebra H(A, J) of symmetric elements of a finite-
dimensional central simple associative algebra with involution (A, J);

(3) a Jordan algebra F, such that F03A9, for Q the algebraic closure of 0,
is isomorphic to H(O3, fI) of 3 x 3 octonion symmetric matrices over the
octonion algebra 0 over Q.

THEOREM 2.2.2: [12, p. 209]. If (si, J) is a finite-dimensional central
simple associative algebra with involution, then (si n’ J) is isomorphic to
(Dn, JI), n ~ 1, the n x n matrices over the split composition algebra D
over Q, of dimension 2, 1 or 4.

The algebra (A, J) is then said to be of type A, B or C, respectively,
and n is called the degree of (A, J).

THEOREM 2.2.3: [12, p. 209]. Two finite-dimensional central simple
associative algebras with involutions (d n, JI) and (R03A9, JI) are isomorphic
if and only if they are of the same type and of the same degree.

THEOREM 2.2.4: [12, p 210]. A Jordan algebra is finite-dimensional,
special, and central simple of degree ~ 3 if and only if it is isomorphic
to a Jordan algebra H(A, J), where (A, J) is a finite-dimensional simple
associative algebra with involution of degree n. If (A, J) and (R, J’) are
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two finite-dimensional central simple algebras with involutions of degree
~ 3, then they are isomorphic if and only if the Jordan algebras J)
and H(R, J’) are isomorphic.

A Jordan algebra H(A, J) is of type A, B or C if and only if (A, J) is
of the corresponding type. And the Jordan algebras of (1) and (3) in
Theorem 2.2.1 are said to be of types D and E, respectively.

THEOREM 2.2.5: [12, p. 208]. There are three types of finite-dimensional
central simple associative algebras with involutions :

(1) (A, J), where d is central simple and J is an involution of the first
kind;

(2) (A, J), where d is central simple, and J is an involution of the
second kind;

(3) (A, J) = (f18 E9 f18, J), where P4 is central simple, and J is the inter-
change involution.

Now we restrict ourselves to the case when 03A6 = K, and consider the
Jordan algebraf defined over K such that FR is a compact real Jordan
algebra of § 2.1.
The third case of the above theorem is then ruled out, because A E9 P4

has a two-dimensional split center which cannot occur in the associative
algebra corresponding to a simple compact real Jordan algebra. We shall
discuss (1) and (2) over a totally real algebraic number field in the next
two articles.

THEOREM 2.3 : If (AK, J) is a finite-dimensional central simple associa-
tive algebra with involution of the first kind, then (AK, J) = (Dn, JA),
where D is K or a quaternion division algebra over K, and

PROOF : W. is central simple, hence is a matrix algebra over a division
algebra over the field K. When J is restricted to this division algebra,
it is an involution of the first kind. It is known [1, Chapt. 10, Th. 20]
that a division algebra with involution of the first kind over an algebraic
number field is either the number field itself or a quaternion division
algebra over it. Then it is a well-known fact that J = JA for some
A = diag (al, ..., an)’ with ai E K*.
The algebras are of type B or C, respectively.
Note that J) (8) IR is a real compact Jordan algebra if and only

if all ai are positive.
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2.4. We turn to the case of involution of the second kind. Then (AK, J)
is isomorphic to (Dm, JA), where D must be a central simple associative
division algebra with positive definite involution of the second kind,
and A = diag (al, ..., an), ai E K* and ai are positive. Such algebra D
is a cyclic division algebra with positive definite involution j of the second
kind and may be described as follows [17, §§ 4, 5] :

Let IK(,) be a real cyclic extension of K, and K(0) be a complex quadratic
extension of K. Then D is an s(= [K(03B6): K])-dimensional left vector space
over K«, 0) with a basis {1, ~, ~2, ..., ~s-1} such that ~c = 03C4c~, for all
c ~ K(03B6, 0), where r is a generator of the Galois group

and such that tls = b E K(03B8). It is required that there exist a E K«) such
that NK(03B6)/K(a) = NK(03B8)/K(b), and that, for any k, 0  k  s, there exist no
c ~ K(03B6, 0) such that NK(03B6, 03B8)/K(03B8)(c) = b. Then the positive definite involu-
tion j of the second kind is defined in the following way : j fixes elements
of K(03B6), and takes 0 to - 03B8, and il to a~-1. We have n = ms.

This disposes the cases of types A, B and C. We shall devote the next
two articles to type D Jordan algebras.

2.5. Let V be a vector space of dimension ~ 1 over a field 4Y of char-
acteristic ~ 2, provided with a non-degenerate symmetric bilinear form
f. Let F = F(V, f) = 03A6 ~ V and define the multiplication of any two
elements of f by (03B11 + v1)(03B12 + v2) = (ala2 + f(v1, v2)) + (al V2 + a2vl)’ for
al, a2 E 03A6, vl, v2 E Y. Then is the central simple Jordan algebra of
type D. We also note that 03B1 + v ~ 03B1 - v is an involution in F.

THEOREM 2.5: H(F(V, f)2, JI) is a central simple Jordan algebra of
type D.

PROOF : Let W = 03A6 ~ 03A6 ~ V, and define a non-degenerate symmetric
bilinear form g on W by g(03B1 + 03B2 + v) = a2+p2- f(v). Then

defines a Jordan algebra isomorphism of H(F(V, f)2, JI) onto f(W, g),
a Jordan algebra of type D.

2.6. For the tube domain of type D, n0 ~ 3, we may take

G’ = SO(h)/center, where h is a quadratic form in more than 6 variables,
of R-rank 2, with coefficients in K. We may assume [14, p. 74] that
h = 03B1103B12 + 03B123 - g such that g is the positive definite symmetric bilinear
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form of the Jordan algebra F(W, g) corresponding to the tube domain
(cf. §§ 2.1, 2.5). The R-rank of 03B123-g is 1, and 03B123-g is in more than 4
variables, and hence is of Kp-rank ~ 1 for each prime ideal p of K.
Thus, by Hasse principal for the quadratic forms, 03B123-g is of K-rank = 1.
Then we may write g = x21 + g0 in a suitable basis. If we write

g0 = a(x22 - f), then F(W,g) is isomorphic to H(F(V, f)2, JA), with
A = diag (a, 1). The isomorphism sends

of H(F(V, f)2, JA) to

of F(W, g).
2.7. It is known [2] that, over an algebraic number field K, a finite

dimensional central simple exceptional Jordan algebra is reduced and
isomorphic to :Yt( (D 3’ JA), where O is an octonion algebra over K, and
A = diag (a1, a2, a3), with ai E K*.
For a totally real number field K, H(O3, JA) (D R is isomorphic to a

compact real Jordan algebra if and only if CD is a division algebra and ai
are positive.

2.8. We summarize the preceding results as

THEOREM 2.8: The K-structure U’K of the Jordan algebra U’ of § 1.2
for tube domains of types B, C, D or E is of the form H(An, JA), where A
is K, a division quaternion algebra over K, F(V, f) of § 2.6 or an octonion
division algebra over K, respectively, and A = diag (al, ..., an), with all ai
totally positive in K. (The last statement follows from the fact that the
real extensions of the conjugates of the Jordan algebra U’K are all compact
(cf. § 2.10).)

We know that :Yt(sln, JA) ~ R is isomorphic to H((AR)n, JI) = Wnno of
§ 2.1. The isomorphism may be described as follows : Any element of
H(An, JA) ~ R is of the form AX, for X E H(An, JI) (D R. The isomor-
phism sends AX to X’ E H(AR)n, JI), where if X = (xij), X’ = (X’ i)’ then
xj = r¡¡(¡x...

2.9. As for type A, the Jordan algebra is H(Dm, JA), where D is a
cyclic division algebra of 2s2 dimensions over K with positive definite
involution of the second kind, and A = diag (al, ..., am), with ai totally
positive in K. We have n = ms.
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Now we describe the isomorphism of H(Dm, JA) Q R with W2@ the
n x n hermitian symmetric matrices.
As a first step, we have

LEMMA 2.9: B. is isomorphic to M(s, C).

PROOF: [1] We use the notations of § 2.4. Define an isomorphism Ro
from K(03B6, 0) ~K R into M(s, C) by RO(C) = right regular representation
of ( on K(03B6,03B8) over K(0) with respect to the basis {03B60, 03B61, ..., 03B6s-1},
where (j = Ti,. If a = 03A3ci03B6i E K(03B6, 8) ~K R, then extend Ro to a by
defining R0(03B1) = LciRo(’i) E M(s, C).
Let be one of the s-th roots of b E K(0) ~ C in C. Then

03B2 ~ C c K(03B6, 03B8) ~K R is such that det R0(03B2) = IRo(P)1 = b. Define

R0(~) = constant matrix P times the matrix of the linear transformation
L of K(03B6, 03B8) over K(0) with respect to {03B60, 03B61, ..., 03B6s-1}, and then Ro
can be extended to be an isomorphism from B. onto M(s, C).

If no confusion is likely to arise, we shall use X for Ro(X), X E DR,
and r for the matrix that represents it.

Now, the involutiôn j on DR ~ M(s, C) is induced by a hermitian
symmetric matrix Bo = B* of M(s, C) with IBOI = 1 in the sense that
j(X) = B0X*B-10 for all X E DR ~ M(s, C). Put B = diag (Bo, Bo, ..., Bo)’
m factors. Then it is obvious that (Dm, JA) (D R ~ (Cn’ JAB), and the latter
is in turn isomorphic to (Cn’ JI) by the correspondence ABY ~ CYC*,
for any Y e (Cn, JI), where C is such that CC* = AB.
The isomorphisms of the central simple associative algebras give the

desired isomorphism for the Jordan algebras H(Dm, JA) (8) [R and

W2 = H(Cn, JI):

for each S E H(Dm, JI) (D R.
2.10. Let G = RK/QG’ be as in § 1.2. Write F (resp. f’) for the abelian

group U (resp. U’) with Jordan algebra structure. Then FR = 03A003C3~03A303C3F’R,
f Q = RI,,f’ and 03C3F’R = F’03C3K ~ R, where L is the set of all isomor-
phisms of K into R. 

In the sequel, we identify F (as a vector space) with the Lie algebra
(a vector space) of the abelian group U [§ 7.2].

It is easy to see that 03C3F’R are isomorphic to one another for all 6 e 1.
If F’ is of type A, B, C, D or E, we say that the corresponding tube
domaine is, respectively, of type A, B, C, D or E.
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3. Determinant and rank

In this section, we define the determinant and the rank of an element of
a finite-dimensional central simple Jordan matrix algebra and develop
some theorems that will be very useful for the calculation of exponential
sums in § 10.

3.1. Let 0 be any field of characteristic ~ 2, 03A9 be its algebraic closure.
Consider the finite-dimensional central simple Jordan algebras of the
following types:

A. H(Dn, JI):n n hermitian symmetric matrices over a quadratic
extension of 0.

B. e(Dn, JI):n x n symmetric matrices over 0.
C. H(Dn, JI) : n x n quaternion symmetric matrices over a quaternion

algebra over 0.
D. H(F(V, f)2,JI):2 2 (’hermitian’) symmetric matrices over a

Jordan algebra F(V, f) of a non-degenerate quadratic form f on a
vector space V of dimension ~ 1 over 03A6.

E. H(O3,JI):3 3 octonion symmetric matrices over an octonion
algebra over 0.

We use the notation H(An, JI) to denote any one of the Jordan
algebras listed above, n being the size of the matrix. In the following
discussion, we also include the classes n  2 of type D and n  3 of type E.

3.2. In A, we have the usual involution a ~ a* such that

and that n(a) is a non-degenerate quadratic form and

defines a non-degenerate symmetric bilinear form.

THEOREM 3.2: The generic minimum polynomial MX(03BB) of X E H(An, JI)
is of degree n. The generic trace of X is the sum of diagonal entries.

PROOF: The generic minimum polynomial (and hence the generic
trace) is unchanged under the extension of base field; thus we may assume
that X E (sin, JI)n. By [12, Chapt. VI, § 4], the theorem is obviously
true for Jordan algebras of type A, B or E. (For n = 2 of type E, the Jordan
algebra is isomorphic to a Jordan algebra of type D, for which the
theorem will be proved later; for n = 1, it is trivial.)
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For type C, we notice that :Yt(d n’ JI)03A9 ~ H(03A92n, JS), where

The generic minimum polynomial calculated in Yt(Q2n’ Js) is of degree n,
hence it is also of degree n when calculated in H(An, JI)03A9. The generic
trace calculated in Yt(Q2n’ is) is one half of the sum of all the diagonal
entries [12, Chapt. VI, § 4] ; but a diagonal element a of a matrix in
H(An, JI)03A9 corresponds to the diagonal form

of the corresponding matrix in H(03C92n, Js). Therefore, the generic trace
calculated in H(An, JI)03A9 is the sum of all the diagonal elements.
For type D, we notice that (§ 2.5) H(F(V, f)2, JI) ~ f(»: g), where

dim W = dim V + 2, and g = x21 + x22 - f. The isomorphism between
them is

The generic minimum polynomial of Y is [12, Chapt. VI, § 4]

Thus the generic minimum polynomial of X is of degree 2, and the generic
trace of X is a + b, the sum of all the diagonal elements.

3.3. If MX(03BB) = 03BBn - 03C31(X)03BBn-1 + ... + (-1)n03C3n(X), then the generic
trace tr (X) of X is 03C31(X), the generic norm N(X) of X is 03C3n(X). It is

known that MX(X) = 0, from which we have

If we put
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then X = X = N(X)I. If N(X) ~ 0, then X -1 - N(X)-1.
We know that N(X) is the determinant of X when X belongs to a

Jordan algebra of type A or B. For type D, from (1), we have
N(X) = ab-(C(2- f(v)) if

And for type E, if

then

This, and the theorems of the next article, imply that the generic norm
is a generalization of the usual determinant. We shall use the terms
’generic norm’ and ’déterminant’ interchangeably, and denote by IXI the
determinant of X.

The notions of generic polynormial, generic norm, etc., also apply to
H(An, JA), since H(An, JA)03A9 is isomorphic to H((A03A9)n, JI).

3.4. Define a unipotent transformation (cf., [5, §2.1]) (a)ij’ i =1= j,
a ~ A, of H(An, JI) by (a)ij · X = (I+a*eji)X(I+aeij). Let M be the
group generated by (a)ij for all a E a and i =1= j. If J-l = (a)ij... (b)kl E M,
define J-l* by 11* = (b*)’k... (a*)ji E M. By abuse of language, we shall
occasionally write 03BC*X03BC instead of 03BC · X. Note that M contains

wij = (1)ij(-1)ji(1)ij which permutes the i-th and j-th rows and the i-th
and j-th columns. Note also that

where (X, Y) = tr (X 0 Y) is a non-degenerate symmetric bilinear form
on the Jordan algebra H(An, JI).

THEOREM 3.4.1: For any X ~ H(an, JI), there is a J1 E M such that
J1 . X is of diagonal form.

PROOF : We may assume that X ~ 0. If xii ~ 0 for some i, then by
applying Wi1, we may assume from the beginning that x11 ~ 0. If xii = 0
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for all i, then Xij =1= 0 for some i ~ j. Again we may assume that i = 1.

If y ~ A is such that (y, x1j) ~ 0, then the (1, 1)-entry of (y*)j1 · X is
(y, x1j) ~ 0. Therefore, again, we may assume that x11 ~ 0 to begin with.
Then let J1 = (-x-111x12)12 ...(-x-111x1n)~M, we have

and hence, by induction, we may prove the theorem.

THEOREM 3.4.2: |03BC · X| = IXI for any J1 E M.

PROOF : We may check this theorem directly for the generators of M
for Jordan algebras of type D or E.
For special Jordan algebras of type A, B or C, we may use the result of

[12, Chapt. VI, § 8]. It is known that if Y E M(n, A), then X - Y*X Y
is a norm similarity of the Jordan algebra :Yt(dn, JI), and is a norm
preserving if and only if N( Y* Y) = 1. If J1 is a generator of M, it is trivial
to check that N(03BC*03BC) = 1 for Jordan algebras of type A or B. For type C,
we use the isomorphisms A03A9 ~ M(2n, 03A9) and H(An, JI)03A9 ~ Yt(Q2n’ JS),
then it is a routine work to check our theorem.

Thus, if y - X = A is of diagonal form, then N(X) = IXI = 03A0ni=1ai, if
A = diag(a1,...,an).

If Y E H(An, JI) and 03BE is an n x 1 column vector with entries in A

(for type D, we assume n  2, and type E, n  3), we define Y[03BE] = 03BE*Y03BE
except for type E, n = 2, in which case we define

if

THEOREM 3.4.3: (a) If
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where Y is (n - 1) x (n - 1), 03BE is (n -1) x 1, and x ~ 03A6, then |X| = x|Y| - [03BE];
(b) (03BC · X)- = (03BC*)-1 · X .

PROOF : For Jordan algebras of type D or E, we may check the theorem
by direct calculation. Now we treat the cases of types A, B and C.

(a) Suppose that |Y| ~ 0, then

and hence IXI = |Y|(-Y-1[03BE]+x) = x|Y|-[03BE].
Since IXI and the entries of Y are polynormial functions of the entries

of X, and since |X||Y| ~ 0} is a Zariski-open dense subset, we conclude
that the polynormial identity IXI = x|Y| - [03BE] is true for all X.

(b) Form the (n+ 1) x (n+ 1) matrix

where ( is an arbitrary (n + 1) x 1 matrix. Since

is in the group M for the (n+1) x (n+1) matrices, we have

Since this holds true for any 03B6, we have X = 03BC* · (J.1. X) and hence
(03BC · X) = (03BC*)-1 · .
We note that if A = diag (a 1, ..., an), then

3.5. Let X ~ F = H(An, JI), define LX(Y) = X  Y for Y ~ F, then
Lx E Hom, (F, F). Define Px = 2Ex - LX2 and
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Then AIX) is a linear subspace of F. From the easily checked fact that

P03BC·X = 03BCPX03BC* for J.1 E M, it follows that dim N(X) = dim N(03BC · X) for
any J.1 E M. If J.1. X is of diagonal form having r non-zero diagonal entries,
then it is easy to see that

Thus r depends only on X and is called the rank of X. Henceforth, we
denote the rank of X by R(X). Note that for any X E f , we can find
p E M, such that y - X is of diagonal form, and then R(X) = number of
non-zero diagonal entries of 03BC · X; it is independent of the way we
diagonalize X.

LEMMA 3.5.1: If there exists an m x m principal minor of X ~ F with
non-zero subdeterminant, then R(X) ~ m.

PROOF : We may assume that the principal minor consists of the first m
rows and m columns :

Then there exists y E M(m) ( = the group M for the m x m matrices), such
that y - Y = A is of diagonal form. Then

and

and hence R(X) ~ R(A) = m.
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where ri is of (n-1) x 1, then

for any x E 03A6.

PROOF : Let

Since

at least one of the ~i’s, say ~1, is non-zero. Then there exists ’1 ~ A,
such that (03B61, ~1) = x. And then we have

Thus

for any x E 03A6.

LEMMA 3.5.3: 

if and only if ~ = 0, x = 0.
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PROOF : Assume the rank is 0. If x ~ 0, then

which implies that the rank is non-zero, a contradiction. If ~ ~ 0, then
by the proof of Lemma 3.5.2,

and the latter is ~ 1 by the preceding argument. Thus both x and q
are zero. The converse is trivial.

LEMMA 3.5.4:

where 03BE is of (n -1) x 1.

PROOF : This is obviously true for type D or E. Thus one may assume
that n0 ~ 4, and hence it is sufficient to show that

By the method employed in the preceding two lemmas, it suffices to

show that R( ç ç*) ;£ 1. If for some i, say i = 1, ç 1 ç! =1= 0, then

and hence R(03BE03BE*) = 1. If all çiçi = 0, and for some i ~ j, say i = 1,
J = 2, (03BE1, 03BE2) ~ 0, then (03BE1 + 03BE2)(03BE1 + 03BE2)* = (03BE1, 03BE2) ~ 0. Thus we may
replace 03BE1 by Çl + Ç2 and again we have R(03BE03BE*) = 1. Finally, assume
that all (03BEi, ç) = 0. Then the subspace generated by ç/s is isotropic,
and hence has dimension
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Thus we may assume that 03BE3 = 03BE4 = 0, and then the lemma is trivial.

COROLLARY : Notation as in Theorem 3.4.3, we have

PROOF: Assume R(Y) = k, then there exists 03BC ~ M(n-1) such that

where A is a k x k non-singular diagonal form. Then

where

~1 and ~2 being of k x 1 and (n -1- k) x 1, respectively. We have further
that

with x’ = - A-1[~1]+x. Thus

from which the corollary follows.
3.6. Let F = lld= 1 fi be a direct product of the Jordan algebras fi

of §3.1. Let M = Of= 1 Mi, with Mi the group of § 3.4 for Fi, then
obviously we have
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THEOREM 3.6: Any matrix X ~ F can be transformed by an element of
M to the diagonal form (i.e., diagonal form in each factor).

If X = 03A0di=1 Xi, define the determinant IXI of X by IXI = 03A0di=1|Xi|,
and the trace tr (X) of X by tr (X) = 03A3di=1 tr(Xi). Then |X| and tr (X)
are the generic norm and generic trace, respectively, of X. The bilinear
form on f induced by the trace is non-degenerate.

4. Parabolic subgroups and Bruhat decompositions

4.1. Let G be as in § 1.1. In particular, the R-root system of G is of type
Cn. Let S = RT be a maximal R-split torus of G and Op 1 ~ j ~ n, be
the simple roots. Define Sj, 0 ~ j ~ n -1, as the identity component
of the group {s E S|03C3i(s) = 1, i ~ n-j}. Let Z(8) be the centralizer of Sj
in G. Then Z(Sj) = Lj · Sj · Ej, an almost direct product, where Lj and
Li are almost simple and their R-root systems are of types Ci and An-j-1,
respectively. Let P* be the minimal R-parabolic subgroup corresponding
to the positive R-roots, and U be its unipotent radical [7, § 1].
Denote the Weyl group of G with respect to S by W = RW(S, G), then,

by assumption, W is of type Cn, which consists of all permutations of
coordinates with respect to a maximal strongly orthogonal set of positive
non-compact roots, together with all possible combinations of sign
changes of these coordinates. Let W’ be the subgroup of W consisting
of all the permutations. Then

where ig = ln-j+l1ln-j+2 ... ln, and ii is such that Ad ii is the reflection
with respect to the plane orthogonal to the i-th positive non-compact
root (i.e., corresponding to the sign change of the i-th coordinate).
(We let l(0) = the identity of G.)

Since the R-root system is of type Cn, if S = {s = diag (sl, ..., sn)},
we may order the roots in such a way that

i) the roots qJJ: ~ij(s) = sis-1j, i ~ j, are compact; positive if i  j,
negative if i &#x3E; j ;

ii) the roots ~ij: qJij(S) = sisj, are positive non-compact, and
iii) the roots ~ij: ~ij(s) = Si-1Sj-1, are negative non-compact.

We then take (5j = ~jj+1, for 1 ~ j ~ n-1, and Un = qJnn and form the
simple R-root system j = {03C31,..., 03C3n}.
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4.2. Let Pj be the maximal R-parabolic subgroup of G generated by
Z(Sj) and U. By convention, let Sn = {identity}, Pn = G.

If J ~ {1, 2,..., nl, let ij = 03A0j~Jlj (if J is empty, then let J = identity);
this is independent of the order of the product. In particular, we have
(k) = {n - k+ 1,...,n}.

LEMMA 4.2.1 : 1(i) E Z(Si) - Pi.

PROOF : If S = {diag (sl, ..., sn)}, then Si = {diag (s,..., s,1,...,1)}
(there are j l’s). Since 1(i) only changes signs of the last j coordinates,
it is obvious that l(i) E Z(Sj) c Pi*

LEMMA 4.2.2: If J is non-empty, then li 0 Po.

PROOF : Po contains compact and positive non-compact root groups
only. If li E P.’ then Po would contain negative non-compact root groups,
which is absurd.

4.3. Let I be the subgroup of W generated by all ik, 1 ~ k ~ n, then
I is an abelian normal subgroup of W

LEMMA 4.3 : Let w’c- W’, i E I, then

PROOF : May assume 1 = lJ, for some non-empty J. We take j E J and
write li = ljlJ’, where J’ = J-{j}. Assume that the lemma is true for
lJ’: lJ’P*Rw’P*R ~ P*RlJ’w’P*R, Since y is a fundamental reflection with
respect to a suitable ordering of W, and since, for any w E W, if we let l(w)
denote the least number of fundamental reflections (with respect to this
ordering) such that the product of them is w, then l(ljlJ’w’) &#x3E; l(lJ’w’) for
w’e W’, therefore we have [8]

Thus, by induction on the size of J, we have our lemma. (Second
formula can be proved in a similar way.)

4.4. Let us resume the assumption of § 1.2. By our assumption, both
the simple R- and K-root systems A’ and IM.L1’ of G’ are of type C. Let
r:R0394’ ~ K0394’ be the restriction of the roots. If on R0394’ = {03C31,...,03C3n}
we use the canonical numbering, and for each L E IM.L1’, let m(i) be the
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greatest index i such that r(6i) = r, and number the elements 03C41,..., in,
of K0394’ in such a way that i  j if and only if m(03C4i)  m( T j)’ and then write
m( j) for m(Lj)’ then [7, Prop. 2.9] the numbering of IM.L1’ is the canonical
one, and each s E IM.L1’ is the restriction of one and only one simple R-root.

Let RT’ = {diag(t1,...,tn)}, then, by the numbering of the root

systems and the above remarks, it is easy to see that

(by assumption m(0) = 0).
Thus the k-th maximal K-parabolic subgroup KP’k of G’ with respect

to (KT’, IM.L1’) is just the m(k)-th maximal R-parabolic subgroup RP’m(k) of
G’ with respect to (RT’, and hence the k-th maximal Q-parabolic
subgroup QPk = Pk of G with respect to (QT,Q0394) is of the form

Since the Q-root system of G is also of type C, we may define ik, l(k), etc.,
as in §§ 4.1-4.3, and note that ik = 03A003C303C3l’m(k), l(k) = 03A003C303C3l’(m(k)). Then what
we did in §§ 4.1-4.3 is true if we replace R by Q and n by the Q-rank of G.
Though the Q-rank of G may be strictly less than the R-rank of G’,

we still use n for the Q-rank of G in the following discussions when no
confusion is likely to arise.

P*ijQ = P0ijQl(j)P0ijQ. Note that Po = P is the Q-maximal parabolic
subgroup of § 1.2.

LEMMA 4.5:

and the union is disjoint.

PROOF : By (1), and the Bruhat decompositions GQ = P*QWP*Q’
PU = P*QW’P*Q [8, § 5.15], it follows that

Now, if P Ql(i)P Q n PQl(i)PQ ~ 03A6, then pl(i) = l(j)03C1’, for some p, p’ e PQ.
Then, by Lemma 4.3,
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but also

Therefore,

for some w’1, w2 e W’, which implies l(j)w’1 = w’2l(i) and hence i = j.

LEMMA 4.6: 

and the union is disjoint.

PROOF : Let W be the Weyl group of Pj with respect to the maximal
Q-split torus S, then W is generated by permutations of the first n - j
coordinates (i.e., of type An-j-1) and permutations and sign changes of
the last j coordinates (i.e., of type Ci).

Since

where W’ denotes the group generated by the permutations of the first
n - j coordinates and the permutations of the last j coordinates, we have

Since each P0jQl(i)P0jQ is contained in PQl(i)PQ, the union is disjoint.
As an easy consequence, we have

PROOF: From



249

we have

on the other hand,

4.9. Let 0 be any field containing Q, U be the unipotent radical of
P corresponding to all positive non-compact roots. If J ~ {1, 2, ..., nl,
denote U J the subgroup of U generated by the subgroups corresponding
to the positive non-compact roots qJij, i, j ~ J. If a is any positive non-
compact root not among the above, and if U03B1 is the subgroup of U03A6
corresponding to a, then l -; 1 U i J c P. Therefore, if 03C1 ~ U03A6, we have

5. Group actions and functional determinant

We shall study the group actions on the tube domains and calculate
the corresponding functional determinants, which will be very useful in
the studying of Eisenstein series.

5.1. In this article we retain the assumption of § 1.1. Let Gh be the
group of holomorphic automorphisms of Z. Then we have [Gh: G0R] = 1
or 2. In every case where [Gh: G0R] = 2, Gh contains an element r of
order 2, not in G0R, such that T operates on :1: by a linear transformation
of Clu [4, § 2].

It is known that the group G0R is generated by 1 = l(n), which acts on
Z by Z. 1 = - Z-1 for Z E :1:, and the group UR of real translations
tX: Z ~ Z + X, X ~ FR = RM, and that Gh is generated by i and

Aut (R) - U., where Aut (R) is the group of all linear automorphisms of
the cone R. In the notation of § 1.1, we also have

5.2. Let S = {s = (sl, ..., sn)} be an n-dimensional torus. Let f be a
Jordan algebra of § 2.1, and let FC be its complexification. Let S act on
FC from the left by S. Z = s · (zij) = (sisjzij), with s E S, Z = (zij) E f C.
Let M be the group of unipotent transformations of FC constructed
in § 3.4. Now we let SR act on the tube domain 2 c FC from the right
by Z · s = s-1 · Z, Z E:1:, s E SR, and let MR act on the tube demain T
from the right by Z . J1 = J1* . Z, Z E F, 03BC E MR. Note that
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for any s E SR, 03BC E MR, X, Y E FR, and that R is self-adjoint with respect
to ( , ), we know that SR and MR actually map 1 onto itself. Therefore
G’ (as a transformation group on:1:) contains SR and MR (as transforma-
tion groups on F) as subgroups. And, moreover, SR is a maximal R-split
torus of G0R. Since s(y)ijs-1 = (sis-1jy)ij, (Y)ij belongs to the root subgroup
of G corresponding to the compact root ~ij. Go also contains UR; and
since stxeijS-l = t(sisjx)eij, txeij belongs to the root subgroup of G corre-
sponding to the positive non-compact root cpij.

PROOF : This follows by a direct calculation.

In general, when a tube domain is not necessarily irreducible, we may
define the group actions componentwise.

5.3. In this article we consider G in general setting, and retain the
notations of § 1.2 and § 2.10.
For each W§° of § 2.1, we define N = N(n, no) = (n-1)n0 + 2. In the rest

of this paper we fix the notation i for the element 1(n)’

PROOF: Note that

so it suffices to prove the theorem for the irreducible tube domain

corresponding to the simple compact real Jordan algebra Fn0n.
Now let:1: be irreducible. If j(Z, 1) = |Z|-N for Z = iY E iR, then,

since j(Z, i) and IZI - ’ are analytic functions on :1:, j(Z, 1) = IZI - ’ will
be true for all Z E 1.

For any given Z = i Y, there is J1 E MR such that Z. J1 is of diagonal
form. Since 1 = 03BCl(03BC*)-1 (Theorem 3.4.3(b)), we have

and since |Z · y = |Z|, thus if we can prove that j(Z., 1) = |Z0|-N for all
diagonal elements Z0 ~ F, then j(Z, 1) = |Z|-N is true for all Z E iR,
and hence for all Z E :1:.

Now let Z be a variable element and Z. be a fixed diagonal element
in F. Write Z = (zij) and
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for i =1= j, where {c1,..., cn0} is a basis of FC over C, and z(k)ij e C. Also
write e(k)ji+e(k)ij = c*keji+ckeij. From ZZ = IZII, we have

Using (1), we then have

Thus,

where Zo = diag (z1, ..., zn).
By counting the dimensions of the entries, it follows easily that

j(Zo, i) = ±|Z0|-N. This completes the proof.
Observe that j(Z, tX) = 1 for any tX e UR, and also that j(Z, 03C4) = + 1,

thus essentially we have calculated the functional determinant for any
9 E Gh.

6. Boundary components and functional determinant

In this section we describe the boundary components of the tube
domain :1: and relate the functional determinant on :1: with those on the

boundary components. The result is one of the key points that we are
able to reduce the treatment of the Fourier coefficients to those for the

biggest cell of the Bruhat decomposition.
6.1. (cf., [5, § 6]). Let W be the real algebra of § 2.1. Let M(j, FC) denote
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the set of all j x j matrices with entries in W,.

in particular, Fn = F and F0 = {0}.
If Z(j) E :1: j’ let

Define F~j (resp. 3?) as the set of the limits of sequences of the form
{Z03BBn(j)} for Z(j) e 3y and 03BBn ~ oo (resp. Àn ~ 0). We remark that we embed
:1: in its compact dual Z* and then take limits in F*.
From what we know about the actions of the groups SR, MR, UR and

the element l on the tube domain :1:, we conclude the follqwing

(1) F~j · l = F0j and F0j · l = F~j;
(2) Z(Sj) stabilizes both F~j and 3?, 0 ~ j ~ n -1;
(3) the normalizer N(F~j)R of F~j is P,,;
(4) the group LjR, 1 ~ j ~ n-1, acts non-trivially on F~j and on F0j;

and

(5) F~j and F0j are proper boundary components of Z, 0 ~ j ~ n - 1.

6.2. Let’s retain the assumption of § 1.2. Then by § 4.4, it is clear
that the rational boundary components F~k and F0k associated with Pk
are direct products of boundary components of 0":1:’, i.e.,

6.3. Let J ~ {1, 2, ..., nl, then denote by Z J the submatrix of Z ci
consisting of (i, j) entries, i, j E J, of each factor of Z.

PROOF: By suitable permutations of rows and columns, we may
assume that J = {k} = {n- k+ 1,..., nl. We may also assume that Z
is irreducible. By Lemma 4.2.1, 1 (k) c- P k n G0R which implies [7, § 7.9]
that j(Z, i(k» is constant along the fibers of the canonical projection
03C0kn from ex: onto F~k. Thus we may assume that
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If the theorem is true for all

then it is also true for all

Now, let

then there exists 03BC e M(k) ( = the group generated by all (Y)ij’ y e F, i, j e (k))
such that Z’jM is of diagonal form. Let (k)’ = {1, 2, ..., n- k}, then,
from l = 03BCi(03BC*)-1, we have

from which we have and

Therefore, from the fact that

we may assume that Z is of diagonal form. Write

with z = diag (z1, ..., zn-1), and write z-1 = diag (z=11, ..., z-1n-1). Then,
by the fact y = tennl-1tennltenn and Theorem 5.3, we have
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Since the action of in has no effect on the coordinates of Z except zn,
and this is also true for any i instead of n, and since l(k) = ln-k+1... ln,
it is easy to see that j(Z, l(k))2 = :t |Z(k)|-2N for diagonal elements Z of :1:.
This completes our proof.

6.4. Define Ni = Pi n G0R, N ij = Pij n G0R. We know that if g E NkQ,
then [7, § 7.9] j(Z, g) is constant along the fibers of 1tkn: Zn’ F~k; thus
we may regard jn(Z(k), g) - j(Z, g) as a function on the tube domain Fk
of degree k ; where n refers to the degree of the original tube domain
£t = Fn. On the other hand, if we identify F~k with Fk, then g acts on Fk
as a holomorphic automorphism; thus we may consider the functional
determinant of g at Z(k) E :1:k, which we denote by ik(Z(k), g). We are going
to study the relation between jn(Z(k), g) and jk(Z(k), g) for

We remark that Lk and Pk - Lk n P are the groups for Fk as G and P
for :1:n.
The number N depends on n; thus write N(n) for N whenever it is

necessary.
For i(k) E L*kQ, we have seen that jn(Z(k)’ l(k» 2 = + 1?(k)l- 2N(n); on the

other hand, since l(k) plays the same role for Lk and :1:k as 1 does for G

and:1:, thus we have ik(Z(k), l(k» 2 = |Z(k)|-2N(k) (Theorem 5.3). Therefore
jn(Z(k), l(k))2/N(n) = ±jk(Z(k), l(k))2/N(k).

PROOF: By Lemma 4.5, we have

By Theorems 5.3 and 6.3, the theorem is true for all l(i), 0 ~ j ~ k;
therefore we have only to prove the case when g E P#kQ.

Let S(k) = {s E Sis = (1, ...,1, Sn-k+1,..., Sn)} then P#k is generated by
Zk(S(k»)’ the centralizer of S(k) in Lk, and elements which act on:1:k by
real transformations. Since both jn(*, p) and jk(*, p) are constant functions
on :1:k for fixed p E P#kR, they are real continuous characters on P#kR. Since
Zk(S(k)) is a direct product of S(k) and a compact subgroup of Lk and
since a real continuous character can take only ± 1 on a compact group,
we only have to check our theorem for elements of S(k), which can be
completed by a routine work.
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Part II. EISENSTEIN SERIES

AND THEIR FOURIER COEFFICIENTS

7. Automorphic forms and Eisenstein series

We shall define certain Eisenstein series on a tube domain, then apply
the knowledge from the preceding three sections to obtain the first step
of the reduction of the treatment of the Fourier coefficients.

7.1. Let G be in general. (cf. [6, § 1].) For the sake of technical simplifica-
tion, we assume G to be simply-connected (in any case, we could replace
G by its simply-connected covering). Let P be the maximal parabolic
subgroup of § 1.2, and let r be an arithmetic subgroup of G contained
in G0R subject to the following restriction: For each prime p in Q and a
prime ideal p in K dividing p, we can choose a special maximal compact
subgroup Kp of G’p = G’Kp, such that Kp = 03A0p|p Kp is a spécial maximal
compact subgroup of Gp = GQp, and that r c r Zp c Kp, where r Zp is
the closure of r in Gp, and that we have G’ p KpP’p and Gp = KpPp.
A maximal arithmetic subgroup with this property is called special.
Thus r is an arithmetic subgroup of a special arithmetic subgroup,
an assumption we shall assume henceforth.

It is known that GQ is the disjoint union of a finite number of double
cosets raP Q’ a E A c GQ n G0R. Let 1 = l1/N be a large, positive fraction
with N = (n-1)n0+2 [§5.3] and li a multiple of 410 for a certain fixed
10 (see the remark of § 7.3). Then, by § 5.3 and [4, § 5], the series

converges normally on Z and represents there an automorphic form
with respect to r.
Our main interest, in this paper, is to pick, in a suitable way, a number

c(a) for each a, and then show that the Fourier coefficients of the
Eisenstein series El,a = zac-AEI, ac(a)’ are all rational numbers for all

the tube domains considered.

7.2. The mapping X ~ tX from the Jordan algebra f onto the abelian
group U (cf. § 5.1) gives an isomorphism of F onto U. Hence f can be
viewed as the Lie algebra of U.

If g ~ GQ ~ Gp = KpPp, we write g = yp, with y ~ Kp, p E Pp, then
define cp(g) = |det (Ad. 03C1)|-1p (see § 0.4 for the notation ||p), and

c(g) = 03A0pcp(g).

LEMMA 7.2: cp(g) is independent of the representation of g as yp.
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PROOF: Assume g = yp = 03B3103C11, then 03C103C1-11 = 03B3-103B31 03B5 Kp n P p. Since
the continuous character Idet (Ad F*)|p is trivial on the compact subgroup
jf n P we have det (AdF P )Ip = det (AdF 03C11)|p, from which the lemma
follows.

LEMMA 7.3: 

PROOF : First we contend that there is a 1 - 1 onto correspondence ç
between GQ/PQ and ~a~A0393/03930,a. We know that GQ = U,,,AFaPe
is a disjoint union. If g = yap E GQ, then define qJ(gP Q) = 03B303930,a. If

g = yap = y l ap l, then 03B3-1103B3 = a(03C1103C1-1 )a-1 ~ 0393 n aP,a-1 = ro,a. Thus
ç is well defined. It is also easy to check that ç is 1-1 and onto.

If g = yap, then

here we use the product formula (§ 0.4) and the fact that

REMARK: 1. of § 7.1 is chosen so that j(Z, ya)’c(a)’ is independent of
the choice of the coset representation of y in 0393/03930,a [4, § 5].

7.4. Let F be an automorphic form on 2 of weight 1 with respect to
an arithmetic group r of § 7.1. Then, by definition, we have

and then

Therefore,
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and

(3) implies that F has a Fourier expansion

where 8( ) = e203C0i(), and (T, Z) = tr (T  Z) is the generic trace of the
Jordan product lr 0 Z of T and Z, and A is the dual lattice of A’ with
respect to the nondegenerate symmetric bilinear form ( , ). Actually,
the sum is over T ~ A + = A ~ R (provided 2 has no simple 1-dimensional
factors); i.e.,

7.5. E,(Z) is an automorphic form onZ ; thus we have

By Lemma 4.5, we have

But now we should pay attention to the fact that, if n denotes the real
rank of G, then only those k corresponding to rational boundary
components should appear in this decomposition. We refer to such k
as ’rational’ k, and denote by 03A3n*k=1 the summation over those ’rational’
k’s. In the remainder of Section 7, we assume that k is ’rational’.

By the decomposition of GQ, we may write

with

It is obvious that E(k)l(Z+S) = E(k)l(Z) for all S ~ A’. Thus E(k)l(Z)
also has a Fourier expansion
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Hence, we have

7.6. Let 03BC E MQ be fixed. We are going to consider the Eisenstein series
Il E, with respect to the arithmetic subgroup 4F = 03BC039303BC-1 of Go.
For any 9 E GQ, g = J1g1 = J1yap = (03BC03B303BC-1)03BCa03C1, thus

is a double set decomposition of GQ with respect to 03BC0393. Let "c(pa) be the
number chosen for pa with respect to this decomposition, then it is easy
to see that 03BCc(03BCa) = c(a). Then

Since "r n U = Il(r n U) = "A’ = (,u*) -1 ’, by Lemma 5.2, the dual
lattice of "r n U is ,u A. Thus al(T) is the Fourier coefficient of 03BCEl(Z)
at 03BC · T ~ 03BC · .

If we write T = (03C3T’), then all the factors have the same rank, which
will be called the rank R(T) of T. We shall see in § 8.8 that, if R(T) = m
is not’rational’, then al(T) = 0. On the other hand, if R(T) = k is’rational’,
then there is ,u E MQ such that 03BC · T has the form

for each factor, where 03C3T’1 is k x k. Thus we have

LEMMA 7.6 : In order to prove the rationality of the Fourier coefficient
al(T), we may assume that T is of the form

for each factor, where 03C3T’1 is k x k, and k = R(T).
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7.7. It is known [7, § 10.14] that if F is an automorphic form on 2,
then the restriction of F to a fundamental set F for r in £t has a con-

tinuous extension to F such that the restriction to F ~ F~k of that
extension coincides with an automorphic form 0 F on 3’ n F~k. If the
Fourier expansion of F is given by (6), then it follows from § 6.1 that
the Fourier expansion of 03A6kF, as an automorphic form on Z k ’, is (by
identifying F~k ~ F0k) (cf., [5, § 7.2])

where

Denote the mapping dual to 1tkn’ the canonical mapping from 2 onto
F~k, by 1t:n. If 9 e PkP n G0R, then [7, § 7.9J j(Z, g)l is constant along the
fibers of 1tkn’ and if 9 fj PkP n G0R, then the limit of j(Z, g)l as Z ~ F~k is
zero. Since (PkP)Q = PkQPQ and since PkQPQ/PQ may be identified with
PkQ/P0kQ, we have

It is also clear that 03B5((T, Z)) is constant along the fibers of 03C0kn if T ~ A’
thus we have

Now note that PkQ/POkQ may be identified with LkQ/Lk n PQ, and by
Theorem 6.4, that j(Z, g)’ = jk(Z(k)’ g)lN(n)/N(k) and c(g)’ = ck(g)lN(n)/N(k) for
g E L*kQ, we conclude that the left hand side of (12) is the Eisenstein series
of weight lN(n)/N(k) with respect to Lk and its arithmetic subgroup
r n Lk, and the right hand side of (12) is its Fourier expansion. Combining
Lemma 7.6, we have

LEMMA 7.7 : I n order to prove the rationality of the Fourier coefficient
al(T), we may assume that T is of maximal rank.
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PROOF : It may be assumed that M2 = identity. Then there exists o E P Q
such that 03BCl tX1l(k) = tX2l(k)03C1. Let Wl’ W2 E W’ be such that 03BC1 E P*Qw1P*Q,
p E P*Qw2P*Q. (See § 4 for notations.) Then

By Lemma 4.3, we have

from which we conclude that w1l(k) = l(k)w2. It follows that w1 = W2 E PkQ
and that 03BC1 ~ PkQ, from which l-1(k)03BC1l(k) ~ PQ and hence our lemma.

By § 4.9, every element of PQl(k)PQ/PQ can be represented by
03BCtXl(k)PQ/PQ, 03BC ~ MQ, tx E U(k)Q. Thus, by the preceding lemma, we have

with

Put g, = te, then c(g 1 ) = c(g) and

Thus we have 03BCE(k)l(Z + S) = 03BCE(k)l(Z), and hence the Fourier expansion

with

where ’F is a fundamental period parallelogram of the lattice A’, and
dX’ is the measure with respect to a basis of A’.

Let F(k) denote the subspace of the real Jordan algebra f corre-
sponding to the subgroup U(k) of UR, and F(k)* denote the orthogonal
complement of F(k) in F. Write T = T 1 + -F 2 E Il. F(k) + Il. /(k)*.



261

If lr 2 =1= 0, then 03BCal(k)(T) = 0, because 03BCE(k)l(Z) is constant when X

varies in ’F n (03BC*)*-1 · F(k)*, in which 8«lr, Z)) is non-trivial. Thus

Since the rank of lr ~ + n 03BC · F(k) is ~ k, combining the results of
the preceding lemmas, we have

LEMMA 7.8.2 : In order to prove the rationality of’the Fourier coefficients,
it is sufficient to prove this for the Fourier coefficients of En(n)l(Z).

7.9. Now we look at the biggest cell P Q’P Q and the corresponding
series E(n)l. Every element of PQlPQ/PQ can be written uniquely in the
form t x,.

If we let x(X) = c(tXl), then we have

which is ready for applying the Poisson summation formula.

8. Gamma integral and Poisson summation formula

The purpose of this section is to apply some generalized gamma
integral and Poisson summation formula and obtain a formula for the
Fourier coefficients of (13) of § 7.9.

LEMMA 8.1: Let R be an irreducible homogeneous self-adjoint cone of
§ 2.1, and dX be the ordinary euclidean measure of the ambient space of R.
Then

where p &#x3E; N/2-1, fBJ = (n-1)n0 + 2 as before, and y( ) is the ordinary
gamma integral.

PROOF: This can be done by changing variable X ~ T * T (cf., § 2.1)
and then reducing to the ordinary gamma integral [10, § 24.6].
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LEMMA 8.2: Let Z be in the irreducible tube domain Z corresponding
to R. Then, for p &#x3E; N/2-1, we have

PROOF: This follows from Lemma 8.1 by appropriate changes of
variables.

8.3. Let A, A’ be mutually dual lattices with respect to an inner
product ( , ) in RM. Let f be a continuous function with continuous
partial derivatives up to order v in RM. Let g(X) = 03A303BB~f(X+03BB), and
assume that this series and the corresponding series with f replaced by
any of its partial derivatives of order ~ v converge normally in RM.
If v is sufficiently large, then Poisson summation formula says

where

and the measure dX is with respect to (a basis of) A.

LEMMA 8.4 : Let A, A’ be as in § 7, then for sufficiently large p, we have

where v() is the volume (of a fundamental period parallelogram) of A
with respect to dX.

PROOF : Apply Poisson summation formula (§ 8.2) to the function fz
defined on the ambient space of R by

we obtain
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LEMMA 8.5 : For R(T) = n, lr irreducible, the Fourier coefficient
al(T) = a(n)l(T) of (13) in § 7.9 has the following expression

PROOF : From (4), we have

Let p = Nl, and apply this formula, with Z replaced by Z + X, to the
inner sum of (13) of § 7.9, we have

from which (5) follows.
8.6. We lift the irreducibility assumption of R, and let d = [K : Q],

then we have

LEMMA 8.6: Let p &#x3E; N/2, and dX be the ordinary euclidean measure on
the ambient space of R, then
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PROOF : This follows from the fact that the left hand side of this equation
can be written as a product of the gamma integrals of Lemma 8.1 for
the irreducible components of the cone R.

Proceeding as in §§ 8.2-8.5, we have

LEMMA 8.7: The Fourier coefficient al(T), R(T) = n, is given by

8.8. From (6), we see that a(n)l(T) = 0 if R(T) ~ n. By the result of § 7.7,
we also see that a(k)l(T) = 0 if R(T) ~ k. That is, E(k) only gives the Fourier
coefficients al(T) with R(T) = k. In particular, this implies that if R(T) = m
is not ’rational’, then al(T) = 0; that is needed in § 7.6.

9. Content and Hensel’s lemma

We know from Section 8 that the formula for al(T) involves an infinite
series

In this section, we shall calculate x(X) in terms of a new concept,
the content of X. And then apply Hensel’s lemma [3] and express S as a
product of finite series.

9.1. Following the same idea as in [16, §7; 5, ; 9], we may write
S = flpsp, where Sp is given by

where ’p = A’ Q Zp’ f p = f Qp’ xp(X) = cp(tXl) and 03B5p is the character

of Qp/Zp such that if q ~ Qp, q ~ 03BE = 03A3v~0avp-v (mod Zp), with av e Z,
then 03B5p(q) = 03B5(03BE) = e203C0i03BE. We add the convention that if a e Z and if a is
the image of a in Fp, the finite field of p elements, then 03B5p(p-1a) = Ep(p -1 a).

9.2. Since F = RK/QF’ implies that Fp = 03A0p|p(RKp/QpF’)Qp [20, p. 9J,
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On the other hand, if tXl = YP E KpPp, then
hence

If we define cp(g), ~p(X’p) in the same way as we did for cp(g) and ~p(X),
then ~p(X’p) = cp(tX’pl’) = |det(AdF’03C1’)|-1p. Thus, from (2), we have

where ’p = ’p Q Zp. If we write

then we have Sp = OplpSp.
In the subsequent discussions, for simplicity, if there is no confusion,

we shall drop the subscripts and superscripts of an element.

PROOF : Let JU be a square root of u in the algebraic closure of Kp.
Let u1 also denote the element diag (fl, ..., u) of the maximal split
torus S’of G’. Let tXl = yp E KpP’p, then

Since ,,[u--’t,.,[û = tu-1Y for any Y ~ F’p, and u commutes with any
element of Z(S’0), it follows that JU - 1 pJU E P’, the group generated by
tY and Z(S’0). Observing that we may take Jf to be the group denoted by
M in [9, p. 869] and that ç(q1) is in Z*p for any K-root ~ of G’, it follows
that flyu% is in Jfp, and hence ~p(uX) = ~p(X).

9.4. Notations as in § 1.1. The maximal parabolic subgroup P is the
semi-direct product of Z(So) and U. An element k of Z(S,,), through the
adjoint representation on U, is a norm similarity of the Jordan algebra F.
Let v(k) be the number such that N(Ad (k) - X) = v(k)N(X) for all X E J,
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then v(k) is a rational character of Z(So). If p = ku e P = Z(S0). U, let
v( p) = v(k), then v(p) is a rational character of P. On the other hand,
det (Ad p) is also a rational character of P. By restricting to So, it is easy
to see that det (Ad 03C1) = v(03C1)N/2, where, again, N = (n-1)n0 + 2. If

Xp e F’p, then tXp i = yp e G’p = KpP’p. Define the p-adic content Kp(Xp)
to be |v(03C1)|1 2p. If X = (Xp) ~ F, define the content K(X) of X to be
03A0p03BAp(Xp). Kp is well defined and we have ~p(Xp) = 03BAp(Xp)-N and
~(X) = 03BA(X)-N.

In order to calculate 03BAp(X), we have to study the IKp-structure of F’.
For F’ = H(Dm, JJ, the Jordan algebra of § 2.9, it is known [6, § 3J that,
V ( = for all but a finite number of) prime ideals p of K, F’p is isomorphic
either to H(K(03B8)p)n, JA), when p is a prime in K(03B8), or to

when p splits in !K(0). Furthermore, the elements ai of A are units of Zp,
V. For other types of Jordan algebras, the situation is even simpler and
similar, and we summarize the result as

THEOREM 9.4.1: ~’p, F’p = H(An, JA), where A is an algebra of § 3.1
with tP = IKp’ A = diag (al, ..., an) and ai e 1L:. Moreover, we may assume
that F’Zp = Yt«d 7L )n, JA), which is isomorphic to a component of r 7L p n U.

Assumption as in the theorem, any element X e F’p is of the form

X = A Y with Y e :YtC91n, JI). An element of M’ (the subgroup M of § 5.2
for G’) acts on F’p by Jl. X = A(A-1(03BC · (AY A)) A-1), and M’Z
is generated by (aj/aiy)ij, y e AZp (cf., § 2.8). 

LEMMA 9.4.2: ’yi’ p, if X = AY e F’p, then there exists 03BC e M’Z such that

.Jl . X is of diagonal form, with diagonal en tries ~i = vi03C0ui, where 1t is a
prime element in Kp (§ 0.4), ViE 7L:, and Jli are rational integers or + ~
(by which we mean rii = 0) such that 03BC1 ~ 03BC2 ~ ... ~ Jln.

PROOF : Choose a basis {e1,..., en0} of d IM.’ then V’p, d 7L = 03A3iZpei,
and the norm form on dp has coefficients in 1L:. Using thèse facts,
the proof then follows the same idea of the proof for a special case in
[5, §3.4].

Assumptions as in Theorem 9.4.1 and Lemma 9.4.2, let

03BAp(X) = 03A003BCi0|03C0|03BCip. We shall show that Kp(X) = Kp(X), and hence Kp(X)
is unchanged by an element of M’Z, and is computable when X is
diagonalized by an element of M’Z.
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9.5. As in [5, § 7.7], for fixed j, 1 ~ j ~ n, define an injection ii of the
group SL(2,K,,) into G’ as follows. If a E [Kp’ let

Then SL (2, Kp) is generated by ua, a E Kp and 6. We define ii(J) = y and
ij(ua) = taejj, If we restrict ourselves to the subdomain

which is isomorphic to the upper half plane, then lj and taejj play the same
roles as 6 and ua do, respectively, on the upper half plane. Thus, ij is
clearly an isomorphism onto its image. Note that ~’p,03B3~SL(2,Zp)
if and only if ij(03B3) e G’Z.

LEMMA 9.5.1 : Assumptions as in § 9.4. If taejjlj03C1 e ij(SL (2, Zp)), a e Kp,
P E P’p, then |det (AdF’03C1)|p = 03BAp(aejj)-N.

PROOF : Let

be mapped by ij to

Note that

with s in the j-th entry. Then

The last equality follows from a direct calculation (cf., [5, § 7.7]).
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SL (2, IKp) has two types of elements, corresponding to the Bruhat
decomposition, one of which is the type of elements y mentioned above,
and the other one is the type of elements in upper triangular form. For
the second type of elements, the lemma is trivial.

LEMMA 9.5.2 : iiSL (2, IKp)) are mutually commutative for all j, 1 ~ j ~ n.

PROOF : We may check the generators for commutativity.

THEOREM 9.5.3 : Assumptions as in § 9.4. If tXl03C1 E G’ X C-,f p E P’p,
then Idet (Adf’P)lp = 03BAp(X)-N.

PROOF: There exists J.1 E M’Z such that J.1. X = 03A3cjejj. We have
t03BC·Xl03BC*03C1 = (03BC*)-1tXl03C1 E G’Z. Since Idet (AdF’03BC*)|p = 1, we may assume
that X is of diagonal form Ycjejj. Choose 03C1j ~ iiSL (2, IKp)) such that
tcjejlj03C1j E G’ then 03A0jtciejjlj03C1j E G’ and by Lemma 9.5.2, this element
is tXl03A0j03C1j. Note that if both tXl03C1 and tXl03C1’ are in G’Zp, then 03C1-103C1’ E G’Zp,
and hence Idet (AdF’03C1)|p = Idet (Ad f,p’)lp. Therefore, we may assume that
p = OjP j’and then

COROLLARY : Assumptions as in § 9.4. If X E F’p, then 03BAp(X) = 03BAp(X).

PROOF : Let tXl = y p, then tXl03C1-1 = 03B3 ~ G’Zp (~’p, G’Zp, = K’p). Thus,
by the theorem 03BAp(X)-N = |det(AdF’03C1-1)|p = Xp(X) = 03BAp(X)-N.

9.6. Identify Hp = Z(S’0)p as a subgroup of End (F’p) by adjoint
representation. Let H’ = Hp n 0393Z, then H’ is an open subgroup of

HZ = {g e Np|g · ’p ~ ’p}. Let Hp(m) = {g e Hp|g = e mod 03C0m}, where e
is the identity transformation of F’p. Then for m large, H(m) c H’. Let
F’p,m denote the set 03C0-m ’p/’pB03C0-(m-1)’p/’p. Then F’p,m is a finite set
and is stable under H’/H(m), and hence is a finite union of the orbits of
H’/H(m). Moreover, each point of the orbit occurs the same number of
times.

LEMMA 9.6 : 03A3g~H’/H(m)03B5p(Tr(T,g · X)) is zero for m &#x3E; vp, where Vp is a
fixed positive integer depending on p, and is 1~’p.

PROOF : It is sufficient to prove that the linear functional s : F’p ~ Kp
defined by 03C4(X) = (T, X) satisfies the conditions of [3, Prop. 2J (here
we replace HlL of Prop. 2 by H’, a modification which is justifiable).
If X e ’p, define hX: End (F’p) ~ IKp by hX(g) = 7:(g. X) = (T, g · X) for
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g E End (,î’), then if X is non-zero, the conditions of Prop. 2 are
(i) hX ~ 0, (ii) h0X is nowhere tangent to H’, where h0X denotes the
hyperplane annihilated by hX, (iii) V’p, if X is a primitive vector of A’, then
hx is primitive relative to H’.
As done in [3, Part 2] and [5, § 10.2] we intend to verify the above

three conditions by showing the following: If X is a primitive vector in

F’p, then we can find some 9 E H(m) such that (T, g · X - X ) ~ 0(03C0m+vp)
for some fixed positive integer vp, which is 1~’p.
Given AX1, AX 2 E J_4), we have (AX1, AX2) = (AX lA, X 2).

Thus we may assume that both T and X of hX = (T, g · X) are in
H(An, J j). Furthermore, for any

and (03BC*)-1g03BC* E H(m). Thus we may choose some special J1 and assume,
from the beginning, that T is of diagonal form (Theorem 3.4.1, Theorem
2.8 and § 2.4).
Now consider the following two types of elements of H(m) :
(i) elements g of H(m), which act on X by

with y ~ Z*p;
(ii) elements 9 of H(m) of the form (03C0my)ij, with i j and y primitive in

FZp.

Dividing the possible cases into the case when some diagonal element
xii of X is primitive and the case when all diagonal elements of X are
divisible by n and some xij, i ~ j, is primitive, it is easy to see that we can
find g and vp which verify the requirement.

C,OROLLARY: For any p, Sp ~ Q.

PROOF: This follows from [3, Lemma 2].

9.7. From the result of§ 9.6 and the fact that Xp(X) = ~p(g · X) for any
g ~ H’, by (3), we know that, V’p,
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Observing that, ~’p, F’Zp/F’Zp may be identified with H(An, JA) as sets,
where is the algebra of § 3.1 with 0 = Fp03B1, the field of p03B1 elements,
a = [ Kp: Qp], and that, ~’p, Y ~ F’Zp/03C0F’Zp can be diagonalized by an
element of M’Zp, we have, by the corollary to Theorem 9.5.3, that, ~’p,
|N(03BAp(03C0-1Y))| = p-03B1R(Y)Nl, where R(Y) is the rank of Y as an element
of Yt(d n’ JA). On the other hand, T may be identified to an element of
H(An, JA) with maximal rank ~’p. By doing so, we may replace Tr lM. p /Q p
by TrFp03B1/Fp, and we have, V’p, 

a finite exponential sum to be evaluated in the next section.

10. Exponential sums

10.1. Let p ~ 2 be a rational prime and a be a positive integer. Let

Fp03B1 be the field of p03B1 elements. Then Fp03B1 consists of all the roots of
xp03B1 = x. Let ( be a primitive root of xp03B1-1 = 1. Then any element of Fp03B1
is a power of ( and it is obvious that we have

LEMMA 10.1.1: 03BEk is a square element of Fp03B1 if and only if k is even.

For a non-zero element x ~ Fp03B1, we define (x/p)03B1 = 1 if x is a square
element and (x/p)03B1 = -1 if x is a non-square element. When a = 1, then
(x/p) = (x/p)1 is the usual Legendre symbol.

Put

Define

Then O = O1(1) is the usual Gaussian sum, for which we have
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LEMMA 10.1.2: O03B1(a) = (a/p)03B1O03B1(1).

PROOF : Let

If a is a square b2, then

If a is non-square, then

because 1 + R1 + R1 = 0 and Lemma 10.1.1.
The trace induces an inner product (x, y) = Tr (xy) on Fp03B1 over Fp.

If {03B61,..., 03B603B1} is a basis of Fp03B1 over Fp, then brx = det ((03BEi, Ç) is called the
discriminant of Fp03B1; it is determined up to a square (in Fp) by the choosing
of the bases. Thus (03B403B1/p) is uniquely determined for the field Fp03B1. It can be
shown that (brx/p) = (-1)03B1-1.

LEMMA 10.1.3: O03B1(a) = (-1)03B1-1(03B1/p)03B1O03B1.

PROOF : Choose an orthogonal basis {03B61,..., 03B603B1} of Fp with respect to
the inner product. Write x = 03A303B1i=1xi03B6i for x ~ Fp03B1, where xi ~ Fp. Then

The lemma then follows from Lemma 10.1.2.

REMARK : If a ~ Fp ~ Fp03B1, then

Thus (a/p)03B1 = (a/p)rx, if a E Fp.

LEMMA 10.1.4: If a =1= 0 in Fp03B1, then
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PROOF :

where R 1, R-1 were defined in Lemma 10.1.2.
10.2. Let Fp03B1 be a Jordan algebra of § 3.1, with 0 = Fp03B1. Define

(X, Y) = tr (X - Y), for X, Y E Fp03B1. For any fixed 1 E Fp03B1, we define, for
m, n such that 0 ~ m ~ n,

and, if w is an indeterminant, define

If there is no confusion likely to arise, we write Sp03B1(T) or Sp03B1(T)(w) or
Sp03B1(w) or Sp03B1(n)(w) for Sp03B1(n)(T)(w), and Sp03B1(n, m) for Spa(n, m)(T).

Let A be the algebra of § 3.1 for Fp03B1, dim A = no. Let |f| be the
discriminant of the norm form f on A, then 6 = (|f|/p)03B1 is well defined
(not depending on the choice of the basis).

LEMMA 10.2.1: If Y ~ Fp03B1 is of full rank, then

where we assume n  2 for type D Jordan algebras and n  3 for type E
Jordan algebras.

PROOF : If /1 = (y)ij E M, define Mil = (I + yeij)~. Then it is clear that

(/1. Y)[~] = Y[03BC~] (cf., Theorem 3.4.3 for type E case). Now, if

/1 = (y1)i1j1 ... (Yk)ikjk E M, we define inductively
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It is clear that (y - Y)[q] = Y[03BC~]. ~ ~ 03BC~ is a non-singular linear
transformation of An onto itself; thus if we assume that 03BC-1 · Y = A
is of diagonal form, then we have

LEMMA 10.2.2: Sp03B1(n, m)(J1. lr) = Sp03B1(n, m)(T) for any J1 E M.

PROOF : This is because

for any y E M.

For a given T ~ Fp03B1, we can find a J.1 E M such that J.1 . T is of diagonal
form. Therefore, in calculating exponential sums, it suffices to treat the
case when Z is of diagonal form, which we shall assume henceforth.

LEMMA 10.3: If no is even, then Sp03B1(n, n) = (-1)n(03C3(O03B1n0)n(n-1)/2.

PROOF: Let

where Y is of (n -1 ) x (n -1 ). If R( Y)  n -1, then 1 YI = 0 and hence
IXI = -[03BE]. Thus for such Y and a fixed 03BE, x can be arbitrary (such
that R(X) = n). Therefore,

Thus we may assume that R(Y) = n -1 (i.e., |Y| ~ 0). Then

and then
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Note that we let lr n-l = diag (tl, ..., t, - 1) when lr n = T = diag (tl, ..., tn).
Write

as before. Assume that R(X) = m and R(Y) = k. Then by the proof of
the corollary to Lemma 3.5.4, X is M-equivalent to

where A = diag (a1,...,ak), ~2 is (n-k-1) 1, and x’ = -A-1[~1]+x
for some ~1 of k x 1. Thus we have

which is ~ 2 by Lemma 3.5.4.

LEMMA 10.4: 

PROOF: 

i) If R( Y) = k = m, then

which implies that ~2 = 0, x’ = 0 and



275

Then

ii) If R( Y) = k = m -1, then

for all z E Fp03B1 by Lemma 3.5.2. Thus, fixing such Y and 03BE, the exponential
sum over all x is zero, since x can be any element of Fp03B1. If

then 112 = 0 and x’ ~ 0. Thus

iii) If R(Y) = k = m - 2, then

The argument for the case

is the same as that in ii) and the corresponding sum is zero. If

then 112 = 0 and
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contradicting the assumption.
Combining i), ii) and iii), the lemma follows.

THEOREM 10.5: If no is even, then

PROOF: By Lemma 10.4, using Lemma 10.2.1, we have

Note that, by convention, we define Spa(n, m) to be zero when m &#x3E; n or

m  0.

Substitute (3) in (2), we have

Thus, by induction, the theorem follows.

THEOREM 10.6: For the case of type D, no odd, we have

PROOF: By Lemma 10.4,
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Now,

Hence

10.7. For the case of type B(03C3 = 1), the computation is much more
complicated. By Lemma 10.4,

Now, apply the argument of Lemma 10.4 again, but noting that,
when A and x’ for X are replaced by B and y’ for Y, then in i) of the proof
of Lemma 10.4, we have lAI = |B|, and in ii) we have y’|B| = lAI. Thus
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Thus we have

THEOREM 10.8: For the case of type B, we have

PROOF : First, by induction, we want to prove that

For m = 0, Sp03B1(2n + 1, 0) = 1; on the other hand, by (4),
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from which, by induction on n, we have Sp03B1(2n + 1, 1) = -1. Thus (5)
holds true for m = 0. Then by (4), the induction process goes, and (5)
is true in general. Now also by (4), we have

Substitute (6) in (2), we have

Let

Then

and the theorem follows.

THEOREM 10.9: For the case of type B, we have

We need a lemma.
Let Nk = {1,2,..., kl be the set of the integers from 1 to k. If M is
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a subset of Nk, let |M| = member of elements in M, and

(The notations Nk, M are used, in the above meaning, in this article only.)

LEMMA: ffi(k, m) == O403B1m(O(k-1, m) + O(k-1, m -1)).

PROOF: 

PROOF OF THE THEOREM : Let

We contend that Sp03B1(2n)(w) = Bn(w), hence our theorem.
For n = 1, Sp03B1(2) is the Spa(2) in Theorem 10.6, with u = 1, no = 1.

Thus Spa(2) = B1. Suppose Spa(2j) = Bj is true up to j = n -1, then the
comparison of the coefficients of Spa(2n - 2) and Bn-1 gives

and

Hence
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and

From (4), we have

Thus (7) holds true for 2n. Similarly, (8) holds true for 2n.
Write
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Then we have

Since bo = so = 1, we have, by induction, bk = sk for all k. Thus

Bn = Sp03B1(2n), hence our theorem.

11. Volume of the Lattice

11.1. Because our purpose is to prove the rationality of the Fourier
coefficients al(T) = a(n)l(T) of § 8.7, it is enough to determine v() up to
a multiplicative rational constant, an observation which simplifies the
calculation.

First, since  and FZ(= U ae) are commeasurable, we may take  = f ae
and a Q-basis of fQ as a basis of A.

11.2. Now, we restrict ourselves to the cases of § 2.8, where the
K-structure of the Jordan algebra f’K is of the form H(An, JA).

In terms of the ’standard’ R-basis of (RK/QK) Q R zé 03A003C303C3K (8) in,
a Q-basis of RK/QK has a volume equal to d 2, the square root of the
discriminant L1 of K over Q. By ’standard’ we mean that based on which
we define the euclidean measure dX of § 8.6.

Again, let N = (n-1)n0+2, then H(An,JA) has nN/2 dimensions
over Q, which contributes a factor AnN/4 to the volume v(A) of A.

Next, turn to the isomorphism between

of § 2.8. It obviously contributes another factor (N(|A|))N/2 to v(A), where
N(IAI) is the norm down to Q of the determinant lAI of A.

Finally, let the norm form of W. be

is with respect to a K-basis {e1,..., en0} of A, and ai are totally positive
numbers of K. (Note: for type D, in the notation of § 2.8, the norm form
would be a2 - f.) Then the isomorphism which maps x = (xi) to C.jiiXi)
of W of § 2.1, transfers a K-basis of A onto the standard R-basis ofW n no.
This isomorphism contributes the third factor (N(|f|))n(n-1)/4 to v(A),
where |f| = 03A0n0i=103B1i. Thus in conclusion, we have
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THEOREM 11.2: Assumptions as in § 2.8,

We shall devote the rest of Section 11 to the cases of type A.
11.3. Notations as in §§ 2.4 and 2.9. If we use the notation

then

Let will ~ i ~ s2} denote the set {R(03C303B6j03C3~k), 0 ~ j, k ~ s-1} and
{03C3ui|1 ~ i ~ s2} the set of the standard C-basis of D03C3K (D R, when the
latter is identified with M(s, C) by Lemma 2.9. Let {03BEi, 1 ~ i ~ d} be a
basis of K over Q, then {03C303BEi, 1 ~ i ~ dl is a basis of 6K over Q. Then
the 0-basis of (RK/QD)R is

Let

then

and

Thus the lattice formed by the Q-basis of (RK/QD)R has a volume, with
respect to {03C3uk, -103C3uk},
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where 03C3W = (03C3ckj), 1 ~ k, j ~ S2; R(03C3ckj) = real part of (J" Ckj’ I(03C3ckj) =
imaginary part of 03C3ckj; R(03C3W) = (IR(O"Ck))k,j’ I(03C3w) = (I(03C3ckj))k,j.
By some manipulations on rows and columns of the determinant,

we have

11.4. To calculate |W|, let {03B6j~k, 0 ~ j, k ~ s -1} be ordered in the way
below : ’0’...’ 03B6s-1, 03B60~, ..., 03B6s-1 ~, ..., 03B6s-1 ~s-1. Let eij be the standard
basis of M(s, C) ordered by e11,..., els’ e21’...’ esse If (aij) E M(s, C), define
L«aij)) = (a11, ..., a1s, a21’...’ ass), a row vector.

LEMMA 11.4.1: Let Ei, F E M(s, C), 1 ~ i ~ s, then

PROOF : This is an easy consequence from the definition of L and the

matrix multiplications.

LEMMA 11.4.2: |W| ~ bs(s-1)/2, mod K*.

PROOF : From the orderings of the two bases and the above lemma,
we have
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with Aij E M(s, K).
Note that for any X E M(s, K), we have

with X1 = i -1 X03C4 E M(s, K).
Thus, by putting Ajk~j-1 ~ ~j-1Bjk, with Bjk E M(s, K), we have

LEMMA 11.4.3: v1 ~ 0394s2NK/Q(-03B82)s2/2, mod Q*.

PROOF: This follows directly from (1) and Lemma 11.4.2.
11.5. Now, we turn to the calculation of the volume of the lattice of a

basis of the set H((RK/QK)R) of the symmetric elements of (RK/Q/K)R.
Let {03C3wi, 1 ~ i ~ s2} be the 03C3K-basis of H(D03C3K ~ R) and

{03C3ui, 1 ~ i ~ s2} be the standard R-basis of H(D03C3K Q R) when it is

identified with the hermitian symmetric elements H(s, C) of M(s,C).
As before, let {03C303BEi, 1 ~ i ~ dl be the Q-basis of O"IK over Q. Then the
Q-basis of H(RK/QK) is {03A303C303C303BE03C3iwj}.

Let 6W j = 1 O"CkjO"Uk’ 6Ck j E C, then E 03C303BE03C3iwi = 03A303C3,k03C3ckj03C303BE03C3iuk.
Thus the lattice of the Q-basis of H(RK/QK) has a volume
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where, again, 03C3W = (03C3ckj)k,j.
11.6. In general, let S(i) = (s(i)jk) ~ H(s, C), 1 ~ i ~ s2, be s2 linearly

independent matrices, let the R-basis of H(s, C) be ordered by

Then the volume of {S(i)} with respect to this basis is

11.7. We are ready to calculate |W| of § 11.5. First, we deal with the
case when s is odd. Then the K-basis of H(DR) is:

From (3), we have
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The last step follows by the same argument used in the proof of Lemma
11.4.2. We know that

Thus

from which we have

11.8. For s even, the K-basis of H(DR) is:

By a similar calculation we have

LEMMA 11.8: For s even, we also have

11.9. We have m(m-1)/2 off diagonal elements of H(RK/QD), each of
which contributes to v(A), by Lemma 11.4.3, a factor 0394s2NK/Q(-03B82)s2/2,
mod Q*, and m diagonal elements of H(RK/QD), each of which

contributes to v(A), by Lemma 11.7 and Lemma 11.8, a factor
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The total contribution is N(-03B82)n(n-1)/40394nN/4, mod Q*, which is the

volume of A with respect to the R-basis of the product of H(Cn, JAB)
in § 2.9.
We have another factor of v(A) when we go from H(Cn, JAB) to

H(Cn, JI). This factor is N(IABI)N/2 = N(|A|)N/2. Thus, for type A, we also
have

THEOREM 11.9: Assumptions as in § 2.9,

Combining Theorem 11.2 and Theorem 11.9, we have

THEOREM 11.10: For any type, we have

where f is the norm form of AK.

12. Rationality of the Fourier coefficients

Having done the calculations of the exponential sums and the volume
of the lattice, we are ready to use the values of L-functions to prove the
rationality of the Fourier coefficients.

12.1. Let K be a totally real algebraic number field of degree d over
Q, L1 be its discriminant. Let p be a prime ideal of K, then denote the
number of elements in the residue field of K. by Np. If a ~ Kpl then define
(a/p) = 1 or -1 according as a is a square or a non-square element of

IKp. Define

and

If a is totally positive, then we know [15, § 23] that



289

and

Observing that we also have

and

THEOREM 12.2: al(T) are rational numbers.

PROOF: By § 8.7, we may write al(T) = v(A)03C8S, where

and

If Y e F’K, we also use Y to dénote its image in F’K. If Y e F’Zn,
we use the same symbol Y to dénote its image in F’FNp, when its coor-
dinates are projected canonically into the residue field of Kp.
We have T = (03C3A03C3T’) ~ 03A003C3 H(An, J03C3A). Then ~’p, we have [§ 9.7]

where Np = p03B1, w = (Np)-Nl = p-03B1Nl.
Thus, by the corollary of § 9.6, we have

Using the results of § 10, we know that S is a product of L-functions,
mod Q*; then by the values provided by 12.1, we may write
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where a1, ..., e 1 are rational numbers.

Likewise 03C8 ~ (N(|T’|))c203C0e2, mod Q*, and by Theorem 11.10,

It is routine to check that E ai ~ Ibi =- 1 ci ~ E di ~ 0, mod Z, and
E ei = 0, which implies the rationality of the Fourier coefficients.

COROLLARY : If ris maximal discrete in Gh, then the Satake compactifica-
tion of Z IF has a biregularly equivalent projective model defined over the
rational number field.

This follows immediately from the theorem and from the main result
of [4].
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