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Abstract

Let K be a field and G a periodic abelian group containing no elements
of order p if char K = p &#x3E; 0. We establish necessary and sufficient

conditions for the group ring KG to contain primitive idempotents.
We also characterize the socle of KG, and show that when the socle is
non-zero the ascending socular series reaches KG after a finite number
of steps.

1. Introduction

Let K be a field and G a periodic abelian group containing no elements
of order p if char K = p &#x3E; 0. We shall investigate the circumstances
under which the group ring KG contains primitive idempotents. We find
(Lemma 3.1 and Theorem 3.4) that the following three conditions are
necessary and sufficient:

(a) G is almost locally cyclic (i.e. has a locally cyclic subgroup of
finite index);

(b) G satisfies the minimum condition on subgroups; and
(c) lk(G) n K: kl  oo, where k is the prime field of K, and k(G) is

a certain algebraic extension of k, to be defined in Section 2.
Note that (a) and (b) hold if and only if G has the form

where F is a finite abelian group and the Cp? are Prüfer pi-groups for
distinct primes Pi. To foreshadow the significance of (c), we remark that
(c) always holds if G is finite or K is a finite extension of k, but if K is
algebraically closed then (c) holds only if G is finite.
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For groups G satisfying (a) and (b), we consider the connection between
primitive idempotents in KG and irreducible KG-modules. When (c)
holds, there is a one-to-one onto correspondence between primitive
idempotents in KG and isomorphism classes of irreducible KG-modules
with finite centralizer (i.e. finite kernel in G); moreover there are only
finitely many non-isomorphic such modules having any fixed finite

subgroup of G as centralizer (Theorem 3.4). But if (c) fails to hold the
situation is quite différent : there are no primitive idempotents in KG,
but given any finite subgroup C of G such that G/C is locally cyclic,
there exist 2N0 non-isomorphic irreducible KG-modules with centralizer
C (Theorem 3.3).

In Section 4 we characterize the socle of KG : it is zero if (c) fails,
and otherwise it is the intersection of certain maximal ideals of KG

(Theorem 4.2). When (a), (b) and (c) hold we find that the ascending
socular series of KG reaches KG after a finite number of steps, i.e. that
KG has a finite series with completely reducible factors. The number
of steps is one plus the number of primes involved in the maximal
divisible subgroup of G (Theorem 4.3).
When G is a locally cyclic group with Min, it is convenient to consider

a condition equivalent both to (c) and to the existence of primitive
idempotents in KG : namely, the existence of K-inductive subgroups in G.
We call a finite subgroup H of G K-inductive if every irreducible KH-
module faithful for H remains irreducible when induced up to G. It is

with the study of K-inductive subgroups that we commence.
Special cases of some of the results have been obtained in papers of

Hartley [2], Berman [1], and Müller [4]; more detailed references
will be given in the sequel. The author is deeply indebted to

Dr Brian Hartley for his aid and encouragement in the writing of this
paper.

2. K-Inductive subgroups

Let G be a periodic abelian group; 03C0(G) the set of primes p such that
G has elements of order p, and K a field with char K 0 n(G). Let KG be
the group ring of G over K. Let K be an algebraic closure of K, and K*
its multiplicative group. We denote by K(G) the K-subalgebra of K
generated by all images of homomorphisms G ~ K* ; K(G) is in fact
a subfield of K. Since the torsion subgroup of K* is a direct product
of Prüfer groups, one for each prime not equal to char K, if G is locally
cyclic then K* has exactly one subgroup isomorphic to G; the elements
of this subgroup generate K(G) as a K-algebra, for any quotient of G
is isomorphic (albeit unnaturally) to a subgroup of G.
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LEMMA (2.1): Let H be a finite cyclic group and K a field with
char K 0 n(H). Then there exist irreducible KH-modules faithful for H,
and all such modules have dimension |K(H): KI over K.

PROOF : K(H)* has a unique subgroup isomorphic to H, so we may
choose a monomorphism 0: H - K(H)*. Then K(H) becomes a KH-
module with H-action given by

If 0 ~ v E K(H) then v - KH = vK(H) = K(H), so K(H) is an irreducible
KH-module ; it is faithful for H as 0 is one-to-one.
Let V be any irreducible KH-module faithful for H. Then V is iso-

morphic to KH/M for some maximal ideal M of KH. Now KH/M is a
field, containing (since V is faithful) a multiplicative subgroup isomorphic
to H which generates it over K. It follows that KH/M is algebraic over K,
and thence isomorphic to the field K(H). Thus

completing the proof.
If G is a periodic abelian group, we will denote by 03A9(G) the subgroup

generated by all elements of prime order in G. This subgroup is finite
if and only if G satisfies Min, the minimum condition on subgroups.
If K is a field and Tl a KG-module, we write

LEMMA (2.2): Let G be a periodic abelian group, H a subgroup of G
containing Q(G), and K a field with char K 0 n(G). Let V be an irreducible
KH-module faithful for H, and W a non-zero submodule of the induced
module VG = V~KH KG. Then W is faithful for G.

PROOF: Since G is abelian, the restriction VG IH of VG to H is a direct
sum of copies of V. As V is irreducible, WH is also a direct sum of copies
of V. Suppose 1 ~ g ~ CG(W). There exists an integer n such that
1 ~ gn ~ 03A9(G) ~ H. But then 1 =/=gnECH(WH) = CH(V), a contradiction
as V is faithful for H. Hence W is faithful for G.

Let K be a field and G a locally cyclic group with Min such that
char K 0 n(G). A finite subgroup H of G will be called K-inductive in G
if whenever V is an irreducible KH-module faithful for H, the induced
module VG is an irreducible KG-module.
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LEMMA (2.3) : A finite subgroup H of G is K-inductive if and only if the
following two conditions are satisfied :
(a) H contains 03A9(G);
(b) whenever L is a finite subgroup of G containing H, we have

P’ROOF : Suppose H is K-inductive in G. By Lemma 2.1 there exists an
irreducible KH-module V faithful for H ; then hG is irreducible.

(a) Suppose H  Q(G) ; then there exists a finite non-trivial subgroup
L of G with HL = H x L. Now VH L is reducible: indeed

is a proper submodule. A fortiori VG is reducible, a contradiction. So
H ~ S2(G).

(b) Let L be a finite subgroup of G containing H. Then V’ like VG
is irreducible; by (a) and Lemma 2.2 VL is faithful for L. Hence using
Lemma 2.1,

since VL = V Q KH KL.
Now suppose (a) and (b) hold. We may express G as the union of a chain

of finite subgroups. Let V be any irreducible KH-module faithful for H.
By (a) and Lemma 2.2, any irreducible submodule of VHi is faithful for
Hi, so has dimension |K(Hi): KI by Lemma 2.1. But by (b) and Lemma 2.1,

Hence VHi is itself irreducible. Now VG may be regarded as the union
of the hHt, so is also irreducible. Thus H is K-inductive in G.
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COROLLARY (2.4): A finite subgroup H of G is K-inductive if and
only if there exists an irreducible KH-module V faithful for H such that
vG is irreducible.

PROOF : If such a V exists then by the first half of the proof of Lemma
2.3 H satisfies (a) and (b); then by the second half H is K-inductive. The
converse follows from Lemma 2.1.

Note also that if H ~ L ~ G and L is finite then in any case we have

For if m = |L:H| and the subgroup of K(L)* isomorphic to L is generated
by 03BE, then 03BEm E K(H), so the polynomial f(X) = Xm - Çm has degree m
over K(H) and 03BE as a root. Hence |K(L): K(H)| = |K(03BE): K(H)| ~ m.

LEMMA (2.5): Let F and K be subfields of some field. Then

(Here the ring KF may or may not be a field.)

PROOF : Any basis of K over K n F also spans KF over F.

THEOREM (2.6) : Let G be a locally cyclic group with Min, and K a field
with char K 0 n(G). If there exists any K-inductive subgroup in G, then
there exists a unique minimal K-inductive subgroup in G.

PROOF : Since K-inductive subgroups are finite, it is sufficient to show
that if Hi and H2 are K-inductive in G, then so is Hi n H2. But let Hi
be K-inductive, and H2 any subgroup of G. Then

Moreover, if L is a finite subgroup of H2 containing Hi n H2, then
H 1 n H 2 = H 1 n L, so

by Lemma 2.5. Since LH1 is cyclic, we have K(H1)K(L) = K(LH1). So as
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H 1 is K-inductive in G,

But |K(L): K(H1 ~ H2)| ~ |L: Hl n H21 by the remark following Corol-
lary 2.4, so by Lemma 2.3 Hl n H2 is K-inductive in H2. If now H2
is also K-inductive in G, it easily follows that H 1 n H2 is K-inductive
in G. This completes the proof.
We shall now investigate more closely the conditions under which

a locally cyclic group with Min contains inductive subgroups for various
fields.

LEMMA (2.7): Let G be a locally cyclic group with Min. Then Q(G) is
0-inductive in G.

PROOF : Suppose L is a finite subgroup of G containing H = 03A9(G),
and let 8 be a primitive ILl-th root of unity. Then

where ç is the Euler function. Thus

for n(L) = 03C0(H) and if p is a prime dividing an integer m, then

qJ(pm) = pqJ(m). Hence 03A9(G) = H is Q-inductive in G by Lemma 2.3.
If m and n are positive integers, their highest common factor is denoted

by (m, n). If (m, n) = 1, we will denote by o(m, n) the order of m modulo n,
i.e. the smallest positive integer r such that nlmr -1. If G is a locally
cyclic group with Min, say

where the pi are distinct primes and 1 ~ ni ~ oo, then
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will be called the Steinitz number associated with G. Evidently the
concepts of divisibility and highest common factor extend to Steinitz
numbers.

The following is a slightly strengthened form of Lemma 2.2 in [2].

LEMMA (2.8): Let G be a locally cyclic group with Min, and Fpd a finite
field of order pd, with p ~ rc(G). Let N be the Steinitz number associated
with G, and put

Then the unique subgroup H of order m in G is rF pd-inductive in G.

PROOF : Since n|pdr - 1, we have nlm, whence 03A9(G) ~ H. Let L be a
finite subgroup of G containing H. Then L is cyclic and rF pd(L) is the
smallest extension rF pdt of rF pd such that L may be embedded in rF;dt, i.e.
such that l = |L| dividcs 1 rF:dtl = pdt - 1. Hence t is the smallest positive
integer such that l|pdt-1, so we have

By Lemma 2.3, to show that H is 03A6pd-inductive in G it is sufficient to prove
that |Fpd(L): Fpd(H)| = IL : HI, i.e. that if m|l|N then

Note that o(p’, m) = r, for since n ( m, r = o(p’, n)|o(pd, m), while as

m|pdr -1, o(p’, m)lr. We will prove by induction on 1/m (more precisely,
on the sum of the exponents in the prime power factors of 1/m) that
if o(pd, l) = t and pdt -1 = kl, then (k, N/m) = 1, and t/r = l/m.

Firstly, let 1 = m, so t = r. Write pdr -1 = km. Then

so (k, N/m) = 1. Also t/r = 1 = l/m.
Now suppose that m|l|lq|N, where q is a prime. Let t = o(p’, 1) and

pdt -1 = kl. By induction we may assume that (k, N /m) = 1 and that
t/r = I/m. We then have
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Let qtlN be prime. If q1 ~ q then as qq1|l we have

If q 1 = q we have qll so (since q ((s) for s = 2, ..., q -1 )

whence

provided q &#x3E; 2. But if q = 2 then 22|lq|N whence 22|n|m|l, and again
we obtain

In particular we see that lq|pdtq-1, so t’ = o(p’, lq)l tq. Moreover, ll1q,
so t = 0(p’, l)lt’. If lqlpdt -1 = kl, then qlk. But mlll1qlN, so ql(N/m), a
contradiction as (k, N/m) = 1. Hence lq  pdt -1. Thus tlt’Itq, but t =1= t’,
so o(pd, lq) = t’ = tq. We have

Now write pdt’ -1 = k’lq. By the above congruences, if ql is any prime
divisor of N, we have

whence

Thus if q 1 1 (k’, Nlm) then q1|(k, N/m) = 1, a contradiction. Hence

(k’, N/m) = 1. This completes the induction, and the proof.
It can be shown that H is the minimal F,,,-inductive subgroup of G

unless 102(G)j = 4 and pd ~ 3 (mod 4), in which case the subgroup of
index 2 in H is minimal inductive.

LEMMA (2.9): Let D and E be subfields of some field, and suppose that E
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is a finite normal extension of D n E. Then
(a) D and E are linearly disjoint over D n E;
(b) if F is a subfield of E containing D n E then FD n E = F.

PROOF : 

(a) E is the splitting field of some monic irreducible polynomial f
over D n E. In fact f is still irreducible over D. For if f = gh, where g
and h are monic polynomials over D, then the roots of g and h are roots
of f, so all lie in E. The coefficients of 9 and h are (plus or minus)
elementary symmetric functions in the roots, so lie in D n E. But f is
irreducible over D n E, so over D too.

Let n be the degree of f, and 03BE one of its roots. Then {1, 03BE,..., 03BEn - 1}
is a basis of E over D n E, consisting of elements which are linearly
independent over D. So D and E are linearly disjoint over D n E.

(b) Let coi be a basis of D over D n E, with col = 1. Then FD = 1 Fcvi.
By (a), the coi are linearly independent over E (see Chapter IV Section 5
of [3]). Suppose

Then

THEOREM (2.10): Let K be any field, k its prime field, and G a locally
cyclic group satisfying Min with char k 0 n(G). Then G has a K-inductive
subgroup if and only if

(Here k(G) n K is a subfield of K, in which k and k(G) are embedded.)

PROOF : Suppose H is a K-inductive subgroup of G, and that L is a
finite subgroup of G containing H. Then by the remark following
Corollary 2.4 we have |k(L): k(H)| ~ |L: H| = |K(L): K(H)j (as H is

K-inductive). Now K(L) = k(L)· K(H), so by Lemma 2.5
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(as k(H) ~ k(L) n K(H)). We now have |k(L): k(L) n K(H)| = |k(L): k(H)|,
whence

As G is locally finite it follows that k(G) n K ~ k(H). Hence

Conversely, suppose that ik(G) n K: kl  oo : say k(G) n K = k(y). By
Lemma 2.7 or 2.8, as k is a prime field, G contains a k-inductive subgroup
H1. Since G is locally finite, there exists a finite subgroup H of G con-
taining H 1 and such that y E k(H). Then

We will show that H is K-inductive in G. Note first that H ~ H1 ~ Q(G)
by Lemma 2.3.

Let L be a finite subgroup of G containing H. Then the cyclotomic
field k(L) is a finite normal extension of k(L) n K ; moreover

Hence by Lemma 2.9(b), with D = K, E = k(L), and F = k(H), we have

By Lemma 2.9(a), K(H) (= D) and k(L) (= E) are linearly disjoint over
their intersection k(H). Hence a basis for k(L) over k(H) also constitutes
a basis for K(L) = K(N) · k(L) over K(H). Thus

as Hi is k-inductive. By Lemma 2.3, H is K-inductive in G.

COROLLARY (2.11): Let K be any field, k its prime field, and G a periodic
abelian group with char k 0 03C0(G). Suppose that
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Then every locally cyclic quotient of G satisfying Min contains a

K-inductive subgroup.

PROOF : If G is any quotient of G, every image of G in k* is also an image
of G, and therefore k(G) ~ k(G). Now apply Theorem 2.10.

3. Primitive idempotents in KG

Let G be an abelian group and K a field. If 03B1 = 03A3 agg E KG, we denote
by supp oc the finite set {g E G : l/.,g =1= 01. We will write

Since G is abelian, C,(oc) is in fact the centralizer C. ,(ocKG) in G of (XKG
considered as a KG-module. If e is an idempotent in KG, we say e is
faithful (for G) if C,(e) = 1.

LEMMA (3.1): Let G be a periodic abelian group and K a field with
char K 0 n(G). Suppose KG contains a primitive idempotent e. Then G

satisfies Min and is almost locally cyclic (i.e. has a locally cyclic subgroup
of finite index). If e is faithful, G is locally cyclic, and supp e) is

K-inductive in G.

PROOF: Let H = supp e), a finite subgroup of G. Then eKH is an
irreducible KH-module, and EKHIG = eKG is an irreducible KG-module
(for otherwise G would contain a finite subgroup L ~ H with eKL
reducible; but e is primitive in KL). As in the proof of Lemma 2.3,
it follows that H ~ Q(G), whence Q(G) is finite and G satisfies Min. If e is
faithful for G so for H, then H is K-inductive in G by Corollary 2.4.
The group C = C,(e) is finite, since it acts as a group of permutations

on the finite set supp e. The irreducible KG-module eKG, considered
as a ring, is actually a field F. The homomorphism G - F*, 9 1-+ eg has
kernel C. Hence G/C embeds in F* so is locally cyclic. Let |C| = m.
Since G is abelian, Gm - {gm: g ~ G} is a quotient of G and indeed of
G/C, as Cm - 1. Thus Gm is locally cyclic. But G/Gm has finite exponent
and satisfies Min, so is finite. Hence G is almost locally cyclic. If e is
faithful then m = 1 and G itself is locally cyclic. This completes the proof.
We shall now investigate the circumstances under which KG contains

primitive idempotents faithful for G, given that G is locally cyclic and
satisfies Min. We shall need:
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LEMMA (3.2) : Let G be a periodic abelian group, K a field with

char K 0 03C0(G), and H0 ~ H1 ~ ... ~ G a chain of finite subgroùps with
union G. For each i, let ei be a primitive idempotent in KHi, such that
eiei+1 = ei+ 1. Then there exists a maximal ideal M of KG such that :

PROOF : For each i, write

where Mi = (1-ei)KHi is a maximal ideal of KHi. We have

whence

Since G = ~~i=0Hi, M = ~~i=0 Mi is an ideal of KG. Moreover e0 ~ M,
for if eo E Mi then eoei = 0, but then ei = eiei-l ... e 1 eo = 0. Thus M
is a proper ideal of KG; furthermore it is maximal since M n KHi = Mi
for each i. For each i, 1- ei E Mi - M, so as 1 ~ M, ei 0 M. Thus we have
(a).

Let x ~ C,(e,) and a E KG. Choose j ~ i such that x, a E KHi. Since
ei = ejej-l ... ei’ we have XE CG(ej). Thus (03B1x - 03B1)ej = 0, whence

ax - oc E (1- ej(KHj = Mj ~ M, i.e. (a + M)x = oc + M. It follows that

~~i=0 CG(ei) ~ CG(KG/M).
Conversely let x ~ CG(KG/M), so that x -1 E M. Choose i so that

x E Hi. Then x -1 E M n KHi = Mi (as Mi is maximal in KHi). Thus
ei(x-1) = 0, so eix = ei and XE CG(ei). This completes the proof of (b).

THEOREM (3.3): Let G be a locally cyclic group with Min and K a field
with char K 0 n(G). Then the following are equivalent :

(a) KG contains a faithful primitive idempotent;
(b) G contains a K-inductive subgroup;
(c) there are only finitely many non-isomorphic irreducible KG-modules

faithful for G;
(d) there do not exist 2eO non-isomorphic irreducible KG-modules

faithful for G;
(e) lk(G) n K : kl  oo, where k is the prime field of K.



215

Furthermore, when (a)-4e) hold, there is a one-to-one onto correspondence
between faithful primitive idempotents of KG and isomorphism classes of
irreducible KG-modules faithful for G.

PROOF : (a) implies (b) by Lemma 3.1, and (b) is equivalent to (e) by
Theorem 2.10.

Now suppose H is a K-inductive subgroup of G, and V is an irreducible
KG-module faithful for G. Since H is finite, VH is completely reducible,
so it contains an irreducible KH-submodule W say. Then VH = 03A3x~GWx,
and Wx éé W as KH-modules since G is abelian. Hence

So as H is K-inductive, WG is irreducible. But there is a non-zero KG-map
WG -+ v: w Q X 1-+ wx, so V ~ WG. Thus every irreducible KG-module
faithful for G is isomorphic to WG for some irreducible KH-module
W faithful for H. (Note that W ~ eKH and V ~ eK G for some idem-

potent e in KH which is faithful and primitive in KG.) There are only
finitely many non-isomorphic such W, and therefore only finitely many
non-isomorphic irreducible KG-modules faithful for G. Hence (b)
implies (c). Trivially (c) implies (d).
The last part of the Theorem now also follows. For if e is a faithful

primitive idempotent in KG, then eKG is an irreducible KG-module
faithful for G; as we have just shown, every such module arises in this way.
If e and f are idempotents in KG and eKG ’a’ f KG, then if

0 : eKG ~ f KG is an isomorphism, we have 0(e) f 0(e) = O(e)f;
applying 03B8-1 we obtain e = ef. Similarly f = fe, so e = f.
To prove that (d) implies (a), we shall assume that KG contains no

faithful primitive idempotent, and exhibit 2N0 non-isomorphic irreducible
KG-modules faithful for G. Let

be a chain of finite subgroups with union G.
For n = 0, 1, 2, ... let Tn denote the set of all n-tuples with each entry

either 0 or 1. By induction we will construct for each integer n a finite
subgroup Hn of G and for each ç E Tn a faithful primitive idempotent
ecp in KHn. Firstly, let Ho = Lo = Q(G). By Lemma 2.1, KHO contains
a faithful primitive idempotent e.
Now suppose inductively that we have constructed Hn and {e~: ç E Tn}.

By Lemma 2.2 each e. is faithful for G, so by hypothesis is not primitive
in KG. Hence we may choose a finite subgroup Hn + 1 of G containing
Ln + 1 and such that for each qJE Tn, ecp decomposes in KHn + 1; say
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where e(~, 0) and e(~, 1) are primitive idempotents in KHn + 1. BY Lemma
2.2, since e~KHn + 1 = e~KHn|Hn+1, e(~, 0) and e(~, 1) are faithful for Hn + 1.
Thus we have chosen e~’ for each ~’ E Tn + 1. This completes the inductive
construction. Note that

Let 9 = (a1, a2, a31 ...) be an infinite sequence of O’s and l’s. Write

e0(~) = e and en(qJ) = e(a1,...,an) (n = 1, 2, 3, ...). By Lemma 3.2 there is
a maximal ideal M = M(g) of KG with 1- en(~) E M(g) and en(~) ~ M(9)
for all n, and

Thus V(g) = KG/M(qJ) is an irreducible KG-module faithful for G.
If cp =1= t/J then V(g) and V(§) are not KG-isomorphic. For if 9 and 03C8

differ first in the n-th place, then en(~)en(03C8) = 0; hence

so en(03C8) annihilates V(g). But 1- en(03C8) E M(03C8), so en(03C8) acts as the identity
on V(03C8). This completes the proof of the Theorem.

In Lemma 2.12 of [1], S. D. Berman proves a result related to part of
Theorem 3.3, for the special case of abelian p-groups. Note that a field
K with prime field k is "of the first kind for p", in Berman’s terminology,
if and only if |k(Cp~) n K : kl  00.

The following corollary to Theorem 3.3 generalizes Lemma 2.5 of [2].

THEOREM (3.4): Let K be a field, k its prime field, and G an abelian
almost locally cyclic group with Min such that char k 0 n(G). If
lk(G) n K: kl = oo, then KG contains no primitive idempotents. Suppose
that ik(G) n K : kl  oo. If C is any finite subgroup of G such that G/C
is locally cyclic, then KG contains a non-zero finite number of primitive
idempotents e with CG(e) = C, and there is a one-to-one onto correspondence
between such idempotents and isomorphism classes of irreducible KG-
modules V with CG(V) = C.

PROOF: Let C be any finite subgroup of G. We may write
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where cG is the ideal of KG generated by the augmentation ideal c of

KC, and v is the idempotent

It is easily deduced that the canonical group ring projection

determines a one-to-one map from the set of primitive idempotents e
in KG with CG (e) = C onto the set of faithful primitive idempotents in
K[G/C]. (Both these sets might be empty.)
Suppose KG contains a primitive idempotent e; we will show that

lk(G) n K: kl  oo. Let C = CG(e). By the above the image of e in K[G/C]
is a primitive idempotent faithful for G/C. Thus G/C is locally cyclic,
and by Theorem 3.3 lk(GIC) n K: kl  oo.

Since every image of G/C is an image of G, we have k(G/C) ~ k(G).
Now let

where the product is taken over those primes p such that Op(G) is finite.
Then IF: kl  oc since G satisfies Min. Moreover k(G) = F · k(G/C). For
k(G) is determined by the exponents of the primary components of G,
and since C is finite, if exp 0 p(G) = oo then exp 0 p(G/C) = oo. Hence
by Lemma 2.5,

Now k(G/C) is a union of finite normal extensions of k, so also of
k(G/C) n K; Lemma 2.9(a) together with a local argument shows that
k(G/C) and K are linearly disjoint over k(G/C) n K. In particular,
any subset of k(G) n K which is linearly independent over k(G/C) n K
is a subset of k(G) which is linearly independent over k(G/C). Hence

We now have
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Now suppose that Ik(G) n K: ki  oo, and that C is a finite subgroup
of G such that G/C is locally cyclic. Since k(G/C) ~ k(G) we also
have lk(GIC) n K: ki  00. In view of the one-to-one correspondence
mentioned in the first paragraph of this proof, an application of Theorem
3.3 to K[G/C] yields the remaining statements of Theorem 3.4.

4. The socular séries of KG

If V is a module recall that the socle So(V) of V is the sum of all
irreducible submodules of V. We define the ascending socular series of
V by

In particular if A is a commutative ring, we obtain an ascending socular
series of A considered as an A-module.

LEMMA (4.1): Let G be a locally finite group and K a field with
char K 0 n(G). Then the socle of KG (considered as left or right KG-
module) contains and is generated by all primitive idempotents in KG.
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PROOF : We consider the right module case; the proof for the left

module case is analogous. If e is a primitive idempotent in KG then
eKG is irreducible, for otherwise as G is locally finite there exists a
finite subgroup H of G with e ~ KH such that eKH is reducible, a
contradiction as KH is completely reducible and e is primitive in KH.
Hence e ~ eKG ~ So(KGKG).

Let N be a minimal right ideal of KG. Since G is locally finite there
exists a finite subgroup H of G with KH n N ~ 0. As KH is completely
reducible, KH n N contains an idempotent e. Then N = eKG, so e
is primitive in KG. Hence So(KGKG) is generated as a right ideal by the
primitive idempotents of KG.

THEOREM (4.2): Let K be a field with prime field k, and G a periodic
abelian group such that char k ~ 03C0(G). If |k(G) ~ K:k| = oo, then the
socle of KG is zero. If |k(G) n K: k|  oo, then the socle of KG is the
intersection T of the maximal ideals M of KG such that CG(KG/M) is
infinite.

PROOF : If Ik(G) n K: k| = oo, then by Lemma 3.1 and Theorem 3.4,
KG contains no primitive idempotents. Hence So(KG) = 0 by Lemma
4.1. Now assume that |k(G) n K : k|  oo.

Suppose that N is a minimal ideal of KG, M is a maximal ideal, and
N 1: M. Then KG = N ~ M, so CG(KG/M) = CG(N). Let 0 ~ 03B1 e N;
then CG(N) is contained in CG(03B1), which is finite since it acts as a group of
permutations on supp a. Hence CG(KG/M) is finite. It follows that

So(KG) ~ T.
To show that T ~ So(KG), suppose 0 ~ 03B1 ~ T. Let,H = supp 03B1&#x3E;,

and write

where the ei are orthogonal primitive idempotents in KH, and rxei =1= 0
for each i. Since eiKH is irreducible, aeiKH = eiKH, so there exists
Pi E KH such that ei = 03B1ei03B2i; thus ei E T. Hence it is sufficient to show that
if H is a finite subgroup of G, e is a primitive idempotent in KH, and
e E T, then e E So(KG), i.e. if e 0 So(KG) then e 0 T.

If CG(KG/M) is infinite for all maximal ideals M of KG, then T is
the Jacobson radical of KG. But KG is semisimple (see Theorem 18.7
of [5]), so T = 0 ~ So(KG) as required. Hence we may assume that
there exists a maximal ideal M of KG with C = CG(KG/M) finite. Then
G/C embeds in the multiplicative subgroup of the field KG/M, so is

locally cyclic whence countable. Thus G is also countable. Hence there
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exists a chain

of finite subgroups with union G.
Assume first that G does not satisfy Min. Then by Lemmas 3.1 and

4.1 So(KG) = 0, so the condition that e 0 So(KG) is vacuous; in effect
we must show that T is also zero. We shall construct by induction a
subchain Hn0 ~ Hn1 ~ ... of H0 ~ H1 ~ ... and for each i a primitive
idempotent ei in KHni such that eiei+1 = ei+1. Firstly, let no = 0 and
e. = e. Suppose we have already found ni and ei. Since G does not satisfy
Min and CG(ei) is finite, Q(G) is not contained in CG(ei), so there exists
a non-trivial finite subgroup Li of G with CG(ei) n Li = 1. Choose ni, 1
such that Hni + 1 ~ LiHni. Let

be the trivial primitive idempotent in KLi, and choose a primitive
idempotent ei+ 1 in KHni + 1 such that (eivi)ei + 1 = ei + 1; then also

eiei + 1 = ei+1. Now Li ~ CG(ei + 1), so CG(ei)  CG(ei + 1). By Lemma 3.2
there exists a maximal ideal M of KG such that e = e0 ~ M, and

which by construction is infinite. Thus e ~ T as required. Hence we may
assume that G satisfies Min.

If f is a primitive idempotent in KHn for some n ~ 0, consider the
set of an sequences (fn’ fn + 1,...) such that

(i) h is a primitive idempotent in KHi for all i ~ n ;
(ii) fn = f;
(iii) fifi+1 = fi+1 for an i ~ n.
If m ~ 0 we shall say that f is m-stationary if for an such sequences
(fn, fn+1,...) and an i ~ 0 we have fn+m = fn+m+i. Note that if

where the f’j are orthogonal primitive idempotents in KHn+1, then f
is m-stationary (for m ~ 1) if and only if each fj’ is (m-1)-stationary.
Moreover f is 0-stationary if and only if it is primitive in KG. Hence
if f is m-stationary and we write f as a sum of orthogonal primitive
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idempotents in KHn+m, then each such idempotent will be 0-stationary;
thus by Lemma 4.1 we have f E So(KG).
Now let e be a primitive idempotent in KH with e 0 So(KG). Then

e = eo is not m-stationary for any m. Hence among the finitely many
orthogonal primitive idempotents in KH 1 whose sum is eo, there must
exist one, say el, which is not m-stationary for any m. Similarly we may
choose a primitive idempotent e2 in KH2 which satisfies ele2 = e2 and
is not m-stationary for any m, and so on. In this way we obtain a sequence
eo = e, el, e2l ... such that ei is a primitive idempotent in KHi, and
eiei + 1 = ei+1.

Consider the chain of subgroups CG(e0) ~ CG(e1) ~ ..., and suppose
that C = U 0 CG(ei) is finite; then C = CG(en) for some n. For i ~ n,

eiKHi is an irreducible module faithful for HiC, so Hi/C is cyclic;
hence G/C is locally cyclic. Also kk(G/C) n K : kl ~ k(G) n K : kl  oo,

so by Theorem 2.10 G/C contains a K-inductive subgroup. Thus we may
choose s ? n so that HS/C is K-inductive in G/C. But es is a primitive
idempotent in KH., with CG(es) = C, so es is primitive in KG, i.e.

0-stationary, a contradiction. It follows that ~~i=0CG(ei) is infinite,
whence by Lemma 3.2 there is a maximal ideal M of KG such that
e = e0 ~ M and CG(KG/M) = U î = 0 CG(ei) is infinite. Hence e 0 T. This
completes the proof of the theorem.
As an example we may take G to be a Prüfer group and K any field

satisfying the hypotheses of Theorem 4.2. Then the augmentation ideal
g of KG is the only maximal ideal M such that CG(KG/M) is infinite.
Hence So(KG) = g, a result obtained by W. Müller in [4] in the case
where K is a subfield of the field of complex numbers. But KG/g is the
trivial irreducible KG-module, so So2(KG) = KG. The next theorem
generalizes this observation.

THEOREM (4.3): Let K be a field with prime field k, and G an abelian
almost locally cyclic group with Min such that char k ~ 03C0(G) and

lk(G) n K : kl  00. Let m be the number of factors in a decomposition of
the maximal divisible subgroup of G as a direct product of Prüfer groups.
Then the ascending socular series of KG reaches KG after exactly m + 1
steps, i.e. SOm(KG) =1= KG = Som+ 1(KG).

PROOF : We may write

where F is finite and for i = 1,..., m Pi is a Prüfer p,-group, where the
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Pi are distinct primes. We proceed by induction on m. If m = 0 then G
is finite, so KG is completely reducible and So(KG) = KG.
Suppose m ~ 1. Let (pi: KG- K[G/Pi] be the canonical projection

of group rings, and define a KG-homomorphism 0 by the commutativity
of the diagrams

Then

where piG is the ideal of KG generated by the augmentation ideal V,
of KPi.

Since KG/piG ~ K[G/Pi] and K[G/Pi] is semisimple, it follows that
piG is the intersection of the maximal ideals M of KG containing it. But
if M ~ p;G then CG(KGIM) contains Pi so is infinite. Thus ker 0 is the
intersection of certain maximal ideals M with CG(KG/M) infinite,
so by Theorem 4.2 ker 03B8 ~ So(KG). On the other hand if M is any
maximal ideal of KG with CG(KG/M) infinite, then CG(KG/M) contains
Pi for some i, whence ker 03B8 ~ piG ~ M. Thus by Theorem 4.2 again
we have ker 03B8 ~ So(KG). Therefore ker 0 = So(KG).
Hence 0 induces a KG-monomorphism

By induction, the ascending socular series of K[G/Pi] (as K[G/Pi]-
module) reaches K[G/Pi] after exactly m steps. Thus the ascending socular
series of B (as KG-module) reaches B after m steps, i.e. SOm(BKG) = B.
Hence

whence So., (KG) = KG. If Som(KG) = KG then we would have
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a contradiction as K[G/Pi] is a quotient of KGISO(KG) but

This completes the proof of the theorem.
Despite Theorem 4.3 the group rings we have been studying do not

seem to satisfy any form of the Jordan-Hôlder Theorem. In fact, if K
and G satisfy the hypotheses of Theorem 4.3 and G is infinite, we may
enumerate the primitive idempotents of KG, say as el, e2, e3’ .... Then
KG has a descending composition series

of type co, where for n ~ 1

(Since ~~n=0Vn contains no primitive idempotents it is disjoint from
So(KG) by Lemma 4.1, whence zero by Theorem 4.3.) For each n ~ 0
the factor Vn/Vn+1 is isomorphic to en+1 KG, so CG(Vn/Vn+1) is finite.

Hence for example the trivial irreducible KG-module does not occur
as a factor in the composition series.
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