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1. Introduction

A group G is called a locally normal group, if each finite set of elements
of G lies in a finite normal subgroup of G. If H is a subgroup of a locally
normal group G, we write CIGH and Lcl,H for the conjugacy class and
local conjugacy class respectively of H in G. A number of authors have
proved theorems asserting that, under various hypotheses, CIGH =
Lcl,H if and only if CIGH is finite (see [4], [6], [7], [8], [9], and [10]).
Most, if not all, of these theorems either have hypotheses which visibly
imply that G is a homomorphic image of a residually finite locally normal
group, or can be readily reduced to that case by arguments like that of
[8] Theorem 4.1. Let us for brevity write X for the class of all groups
which are homomorphic images of residually finite locally normal
groups. For X-groups, Gorëakov has proved the following result :

THEOREM 1: (Gorëakov [1]) Let H be a subgroup of an X-group G, and
suppose that IHIHGI is an infinite cardinal oc. Then ICIGHI = oc and ILCIGHI
= 2(%.

Here we have written HG = nXEG Hx for the largest normal subgroup
of G contained in H; we also write HG for the normal closure of H in G.
It follows from Theorem 1 that, if IHIHGI is infinite, then CIGH =1= LclGH.
On the other hand, if IHIH,1 is finite, then HG/HG is finite, and since the
conjugates and local conjugates of H lie between HG and HG, CI G H and
Lcl,H are finite. In fact, it is easy to see that they coincide (cf. [8] Theorem
3.1). Thus Gorëakov’s Theorem has the immediate

COROLLARY : If G ~ X and H ~ G, then CIG H = Lcl GH if and only if
CIGH is finite.
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and most of the other known results about the equality of CIGH and
LclGT can be deduced from this as we have explained.
We give in this paper an alternative proof of Gorëakov’s Theorem.

In fact, Gorëakov actually proves his theorem ([1] Theorem 4) under the
hypothesis that G is a homomorphic image of a subgroup of a direct
product of finite groups, but also proves ([1] Theorem 2) that every X-
group is such an image. The outcome is Theorem 1 as we have stated it.
However, we shall not appeal to Gorëakov’s description of X-groups,
but proceed directly to prove a result which on the face of it is more
general. Let  denote the class of all locally normal groups L satisfying
the following condition:

for every infinite subset T of L.

Clearly, the same class is obtained if the word ’subset’ is replaced by
’normal subgroup’. Also, for a subgroup H of a locally normal group G,
write ce = ce(H) = |H/HG|, 03B2 = 03B2(H) = |ClGH| = |G : NG(H)|, 03B2 = 03B2(H) =
|LclGH|. We prove

THEOREM 1’: Let G ~  and H ~ G. Suppose that ce is infinite. Then
03B2 = 03B1 and 03B2 = 203B1.

Theorem 1 follows from this and

PROPOSITION 1 : X ~ ,

which is immediate from Gorëakov’s result [1] that X-groups are homo-
morphic images of subgroups of direct products of finite groups, but for
which we give an independent proof in Section 2.

In connection with Theorem 1’, notice the following straightforward
and well known fact, which can be established by the considerations of
[8] Theorem 3.1:

PROPOSITION 2 : If one of 03B1, 03B2, 03B2 is finite, then all are, and in that case,
03B2 = 03B2.

We do not consider this situation further, but go on to consider the
relation between a, fi and j8 in a general locally normal group, when ce
is assumed infinite. Of course, if G is any locally normal group with
center Z, then G/Z is residually finite, and so in a sense G departs only
slightly from residual finiteness. But this departure seems to make the
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behaviour and discussion of a, fi and j8 quite a bit more complicated. We
obtain without much difficulty:

PROPOSITION 3: 1 f a is infinite, then

This is proved in Section 2.
Thus, if we assume the Generalized Continuum Hypothesis, then 03B1

and j8 must satisfy one of the equations 03B1 = 03B2, oc = 20, fi = 2a, and j8 and
03B2 must satisfy one of the equations e= j8, 20, 22ft. We shall show by an
example (Section 4) that, for arbitrary infinite a, each of these possibilities
occurs. It seems at first rather surprising that 03B2 can be as large as 22ft.
Next we come to the relation between a and 03B2. This is much closer,

and is the source of our main theorem :

THEOREM 2: If H is a subgroup of a locally normal group G and a(H) is
infinite, then ff(H) = 203B1(H).

This is an immediate consequence of Theorem B of Tomkinson [9] in
the case a = 0, and indeed we shall use his theorem in our proof. How-
ever, we have not been able to extend Tomkinson’s methods to the general
case, and have had to proceed much more indirectly. Let Z be the centre
of G. An immediate reduction using Theorem 1 allows us to assume that
HZ « G. We next deal with the case when HZ/Z is central in G/Z. In
that case, we use some of the mildly topological methods and results of
[3], the argument depending ultimately on knowing the cardinal of the
completion of an abelian group equipped with a Hausdorff topology in
which certain subgroups of finite index form a basis of neighborhoods of
the identity - an abelian cofinite group in the terminology of [3]. When
occasion demands, we shall use freely the notation of [3]. The case when
HZIZ is central in G/Z seems to be the crucial one, and the rest of the
argument deduces the general case from it by purely group theoretic
means. The proof of Theorem 2 is given in Section 5, and that of Theorem
l’ in Section 3. Section 2 contains some preliminary results, most of
which are in essence well known.
The author is grateful to the University of Wisconsin in Madison for

its support and hospitality while this work was being carried out.

2. Preliminary results

We begin by proving Propositions 1 and 3 of the Introduction.
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PROOF oF PROPOSITION 1: We have a homomorphic image G of a
residually finite locally normal group, and have to show that G ~ . By
(1) of the Introduction, we have to show that G : CG(T)| ~ |T| for each
infinite subset T of G. Since G is locally normal, 1 TI = 1 TGI, and so we
may assume that T is a normal subgroup of G.

We first consider the case when G itself is residually finite and locally
normal. The set of all finite normal subgroups of G contained in T is a set
of cardinal 1 Tl. Since G is residually finite, we may choose, for each such
finite normal subgroup F, a normal subgroup N(F) of G, contained as a
subgroup of finite index in T, such that F n N(F) = 1. We may then
choose a finite normal subgroup A(F) of G, contained in T, such that

A(F)N(F) = T.
For each g E G, let F(g) = gG n T, where gG is the normal closure of

g&#x3E; in G, and let 6(g) denote the automorphism induced on A(F(g)) by
conjugation with g. The map 0: g - (F(g), 03C3(g)) has as image a set of
cardinal at most |T|, since, for each of the possible subgroups F(g), there
are only finitely many possibilities for 6(g). But if g, g’ E G and 9(g) = 6(g’),
then F(g) = F(g’), N(F(g)) = N(F(g’)), A(F(g)) = A(F(g’)), and u(g) = u(g’).
Now [gG, N(F(g)) ~ F(g) n N(F(g)) = 1, and so g and g’ centralize

N(F(g)) = N(F(g’)). The automorphisms induced on T by g and g’ are
therefore completely determined by their restrictions to A(F(g)) = A(F(g’)),
that is, by 03C3(g) = 03C3(g’). Hence g’g-1 E CG(T). Thus 0 is injective on any
set of coset representatives of CG(T) in G, and |G: CG(T)| ~ |T|.
To deal with the general case, suppose G = L/M, where L is a residually

finite locally normal group and M i L. Then T = SM/M for some
normal subgroup S of L such that |S| = |T|. By what we have just seen,
|L: C| ~ |S|, where C = CL(S). Since CM/M centralizes T and has index
at most |S| = |T| in G, we have G : CG(T) ~ |T|, as required.

PROOF oF PROPOSITION 3: We have a subgroup H of a locally normal
group G, with oc = IH/HGI,f3 = |ClGH|, 03B2 = |LclGH|, and have to assume
ce infinite.

(i) ce ~ 203B2. To see this, let S be a transversal to NG(H) in G. Then
|S| = fi. Let SES. Then as G is locally normal and CH(s) ~ H n HS, we
have |H: H ~ Hs|  oo. Hence H n HS contains a normal subgroup
H(s) of H, of finite index in H, and containing HG’ Clearly HG = n,.s H(s),
and so HIHG can be embedded in the complete direct product of the 03B2
finite groups H/H(s). Hence |H/HG| ~ 203B2.

(ii) fi ~ 03B2 ~ 203B1 ~ 22P. Trivially, 03B2 ~ fl. Since G is locally normal and
|H/HG| = a, we have |HG/HG| = ce. Since local conjugates of H lie be-
tween HG and HG, 03B2 ~ 203B1 The last inequality is immediate from (i).
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The remaining results in this section are technical facts needed for the
proofs of Theorems l’and 2.

LEMMA 2.1 (Gorcakov [1]): Let G be a locally normal group, and sup-
pose that {N03BB: À E AI is a set of normal subgroups of finite index of G such
that nAEA NÂ = 1. Suppose that lAI is an infinite cardinal oc. Then

|G: Z(G)| ~ oc.

PROOF : The set of all intersections of finitely many NA may be indexed
by a set of cardinal oc, and so we may assume that the intersection of any
two of the NA contains a third. For each À E A, let

Then |H03BB: H03BB n N03BB|  oo, as IG: NÀI  00. Clearly HA n N. is central
in N.. We have G = NÀA for some finite set A. Now the centralizer of A
in H03BB n N. is clearly central in G, and has finite index in H03BB n N.. Thus,
if Z = Z(G), JH.: HA n ZI  oo, and so IHÀZ/ZI  ce. Now every

element g of G lies in a finite normal subgroup B of G, and we have
B n NÀ = 1, and hence [B, Nj = 1, for some 03BB E A. Thus g E HA. It fol-
lows that G/Z is the union of the finite normal subgroups H03BBZ/Z(03BB e A),
and so |G/Z| ~ 03B1.

LEMMA 2.2: Let G be a locally normal group, let N be an infinite normal
subgroup of G of cardinal Il, and let C = CG(N). Then there exists a normal
subgroup D of G such that C ~ D, [D, G] ~ C, [D, N] ~ Z(G), and
|G:D| ~ 03B1.

PROOF : The set of all finite normal subgroups of G contained in N
is a set of cardinal a. Clearly C = n CG(F), where F ranges over all such
finite normal subgroups. Thus, if B/C is the centre of G/C, Lemma 2.1
gives

(1) IG: B| ~ 03B1.

On the other hand, if Z = Z(G), then G/Z is well known to be residually
finite. By Proposition 1, if A/Z = CGIZ(NZIZ), we have IG: A| ~ Il. Let

D = A n B. From (1), IG: D| ~ oc, and [D, G] ~ [B, G] ~ C, [D, N] ~
[A, N] ~ Z(G).
The following result was used by Gorcakov [1]. We include a proof

for completeness. Notice that it yields an alternative proof of Proposition
1.
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LEMMA 2.3: Let G be a residually finite locally normal group, and let N
be a normal subgroup of G of infinite cardinal oc. Then there exists a normal
subgroup M of G such that IG: M| ~ oc and M n N = 1.

PROOF : For each non-identity element of N, choose a normal subgroup
of finite index of G which does not contain that element, and let L be the
intersection of the subgroups so obtained. By Lemma 2.1, if S/L is the
centre of G/L, |G: SI ~ a. Passing to G/L, we may assume that G : Z| ~ a,
where Z = Z(G).

Let M be a subgroup of Z maximal subject to the condition M n N n Z
- 1. Then M « G, and if we can show that

then G : M| ~ 03B1, and N n M = 1.
Write U = Z/M, and let V be the natural image of N n Z in U. Then

|V| ~ a, and every non-trivial subgroup of U intersects V non-trivially.
Thus, for each prime p, the subgroup of elements of order dividing p in U
lies in v and so has cardinal at most a. The Sylow p-subgroup of U
therefore also has cardinal at most oc, and hence ! |U| ~ 03B1, establishing (2).

Finally we recall the following facts about locally inner automor-
phisms :

LEMMA 2.4. (Stonehewer [5]): Let G be a locally normal group, let

A ~ G and B « G. Then

(i) Every locally inner automorphism of A can be extended to a locally
inner automorphism of G.

(ii) Every locally inner automorphism of G/B is naturally induced by a
locally inner automorphism of G.

An alternative proof can be given by viewing the group of locally inner
automorphisms of a locally normal group as the completion of the group
of inner automorphisms in its natural cofinite topology, as in [3].
However, since this seems to be a complication rather than a simplifica-
tion at present, we shall not pursue it further.

3. Proof of Theorem l’

Let G ~  and H ~ G. The hypothesis is that oc = !N/NJ is infinite,
and we have to show that 03B2 = oc and j6 = 21X.
We have H = HGS for some set S of cardinal oc, and the definition off
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gives |G : CG(S)| ~ 03B1. Since CG(S) ~ NG(H), 03B2 = |G: NG(H)| ~ (X. On the
other hand, G = NG(H) T for some subset T of cardinal 03B2. Since G ~ 9),
IG: CG(T)| ~ 03B2, and since HG ~ CH(T), oc = |H: HG| ~ 03B2. Thus, we have
proved that

From Proposition 3, stated in the Introduction, we have fi ~ 203B1. To

establish the reverse inequality, we consider families

of finite normal subgroups N03BB of G, satisfying the conditions

(4) For each À E A, there exists an element x A ENA such that
(H ~ N03BB)x03BB ~ H ~ N03BB.

It follows easily from these conditions that the N. are all distinct. The
collection of all such families may be partially ordered by set-theoretic
inclusion, and Zorn’s Lemma allows us to choose a maximal family,
say (2).
We shall show that |039B| ~ oc. If this is not so, then writing N = 03A003BB~039B NA,

we have |N|  a. Since G ~ , IG: CI  oc, where C = C,(N). Now if
H n C a C, then 03B2(H n C)  a, and hence, by (1) applied to H n C, we
obtain H n C : (H n C)G|  a. Since HG n C a G, we conclude that
IH n C: HG n CI  oc, and since JH: H n CI  oc, that JH: HG n CI  oc.

Finally, we obtain H : HGI  oc, a contradiction. Therefore, H n C is not
normal in C. Let y be an element of C and h an element of H n C such

that hy ~ H n C, and let M be a finite normal subgroup of G contained
in C and containing h, y&#x3E;. Then (H n M)y ~ H n M, and M centralizes
each N. since M ~ C = CG(N). Thus, we may adjoin M to (1) to obtain
a larger such family, a contradiction.
We have shown that |039B| ~ a. It is now convenient, though not strictly

necessary, to introduce a completion G of G in any cofinite topology of
G (see [3]). Thus G is a compact topological group containing G as a
normal dense subgroup, and the automorphisms induced on G by G are
precisely its locally inner automorphisms. Let M be any subset of A,
and for each finite subset 0 of A, let G(03A6) denote the set of all elements
g E G such that
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Then G(03A6) contains the element 03A003BB~M~03A6 XA and so is not empty; further-
more it is an intersection of cosets of the closed subgroups N a(N ¡ n H)
(2 ~ 03A6), and so is a closed subset ofG. The intersection of any finite number
of sets G(03A6) clearly contains another such set, and as G is compact, there
exists an element x = xm in their intersection. Write Hm = HX. Then
HM n NA = H" n NÂ = (H n N¡)X is equal to (H n N¡)xÂ or H n NA
according as 2 E M or Â 0 M. Therefore the subgroups Hm are all

distinct. By Theorem 5.5 and Lemma 3.1 of [3], they are all locally
conjugate to H in G. Since |039B| ~ a, there are at least 2CX of them. Thus,
03B2 ~ 203B1, and the proof of Theorem l’ is complete.

4. An example

We notice first that the possibility a = oc(H) = 03B2(H), fl(H) = 2P(H)
certainly occurs for arbitrary infinite oc. For example, take G to be the
direct product of a copies of the symmetric group of degree 3 and H to
be a Sylow 2-subgroup of G.
The example illustrating the other possibilities is essentially a version

of the ’infinite extra-special p-group’ first introduced by P. Hall in [2]
for p = 2 and presented in a different way for arbitrary p by Tomkinson
[8]. It will be convenient for us to give a third description of these groups.

Let A, B, C be three additive abelian groups, and suppose we are given
a bilinear map of A x B into C. In anticipation of what is to come, we
denote the map by (a, b) ~ [a, b]. We define a binary operation on the
set A x B x C by

A routine verification shows that A x B x C becomes a group with identity
(o, 0, 0). The set Co of all elements (0, 0, c) with c ~ C is a central subgroup
of G with abelian factor group. Thus G is nilpotent of class at most 2.
We now assume that the bilinear map is non-degenerate, in the sense

that, for a E A, b E B,
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Then it is easy to verify that Co is precisely the centre of G. We now
identify A, B and C with subgroups of G via the maps a - (a, 0, 0),
b - (0, b, 0), c ~ (0, 0, c) respectively. Then [a, b] becomes the com-
mutator of a and b, and G = ABC. We have [G, AG] ~ A n C = 1 since
G/C is abelian, and so AG ~ A n Z(G) = A n C = 1. Arguing similarly
with B, we have

The subgroup AC is abelian, and so NG(A) ~ AC. However

and by (2), we obtain B n NG(A) = 1. Since G = ABC, we obtain

NG(A) = AC. Arguing similarly with B gives

In general G will not be an FC-group. Since G = ABC and C is central,
G will be an FC-group if and only if each element of A ~ B has centralizer
of finite index. In terms of the bilinear map, this says that

(5) If a E A, b E B, then there exist subgroups X, Y of finite index in A
and B respectively, such that [X, b] = [a, Y] = 0.

This will certainly be satisfied if C is finite, since for fixed a E A, the map
b ~ [a, b] is a homomorphism of B into C, and similarly with the roles
of A and B interchanged.
We now introduce particular choices for A, B, C. Let be an arbitrary

infinite cardinal, let p be a prime, and let A be an elementary abelian
p-group of rank 03BB. Let C = Zp be an additive group of order p, and
B = A* = Hom (A, Zp). Then, if we write [a, b] for the image of a E A
under b E B, (1), (2) and (5) hold, and so we obtain an FC-group G as
above. Since G is a p-group it is locally normal, of nilpotency class 2 and
with centre of order p.
Now |B| = 2’. Thus, from (3) and (4), we obtain

Thus all pairs (oc, fi) allowed by Proposition 3 and the Generalized
Continuum Hypothesis can occur.
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We next calculate 03B2(A) and 03B2(B). Now AC ~ G and )AC) = 03BB. Since

AC contains every local conjugate of A, 03B2(A) ~ 2’. But 03B2(A) = 2À, by
(6). Hence

It is in fact not difficult to see that every complement to C in AC is
conjugate to A in G, so that the stronger result C1GA = LclGA holds
(cf. [8] p. 210). However, this does not concern us here.
Now let A** = Hom (A*, Zp), and let L be the group obtained by the

above construction from the triple (A**, A*, Zp). Then A can be em-
bedded in A** in the usual way via the map x (cf. [3] § 3), which assigns
to an element a E A the element i ~ r(a) (TEA*) of A**, and the map
(a, b, c) - (x(a), b, c) (a E A, b E B = A*, c ~ C) clearly embeds G as a
normal subgroup of L. Since IA**l = 22À, the considerations used above
show that |ClLB| = 22À. We claim that the elements of L induce by con-
jugation locally inner automorphisms of G; from this it will follow that

so that all pairs (fi, fl) allowed by Proposition 3 and the Generalized
Continuum Hypothesis can occur.

Let D be the subgroup of L corresponding to A**. Since the set of
locally inner automorphisms of G is a group and L = DG, it will follow
that L induces locally inner automorphisms on G if we can show that D
does so. Let F1 and F2 be finite subgroups of A and B respectively, and
F = F 1 F2 C. Then F is a finite normal subgroup of G, and every finite
set of elements of G lies in such an F. Let d ~ D. Then d centralizes F 1 C,
and commutation with d induces a homomorphism ç of F2 into C. We
have to show that 9 can be induced by commutation with an element
a E A. Then a and d induce the same automorphism on F.
Now in the bilinear map notation, F2 is a finite subgroup of A*. Let

E be its annihilator in A and let E1 be the annihilator of E in A*. Then
E1 is naturally isomorphic to Hom (A/E, Zp), and F2 is a subgroup of
E1 which has zero annihilator in A/E. By the duality theory of imite
abelian groups (or of finite dimensional vector spaces), F2 = E1-, and
every element of Hom (F2, Zp) is naturally induced by an element of
A/E, that is, by some x(a) with a E A. In particular, ç is so induced, and a
is the required element.
We have thus shown that L induces locally inner automorphisms on

G. In fact, it is not hard to see that L induces on G its full group of locally
inner automorphisms, though we shall not require that fact here.
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5. Proof of Theorem 2

Throughout this section, H denotes a subgroup of a locally normal
group G, a = IHIHGI is infinite, and g = |LclGH|. We have to show that
fl = 203B1. We begin by stating the following immediate consequence of
Lemma 2.4:

LEMMA 5.1 : Let B be a subgroup of a locally normal group A, X ~ A,

The next lemma establishes a special case of Theorem 2, and in fact
provides the key to the general situation.

LEMMA 5.2: If [H, G, G] = 1, then e = 203B1.

PROOF : Let L be the group of locally inner automorphisms of G and
A the group of inner automorphisms of G. We may take the set of central-
izers CL(F), where F ranges over the finite normal subgroups of G, as a
basis of neighborhoods of 1 inducing on L the structure of a Hausdorff
topological group. Then L is a cofinite group in the sense of [3], and by
[3], Proposition 5.6, L is compact and A is dense in it. In other words,
L is a completion of A in the topology which the latter inherits from L.
Now in proving Lemma 5.2, we may assume by Lemma 5.1 (iii), that

HG = 1. Writing Z = Z(G), we then have H n Z = 1, and so

Now every inner automorphism of G is trivial on HZ/Z and Z, and
hence so is every locally inner automorphism. Thus [H, L] ~ Z, [Z, L]
= 1. Therefore, for b E L, the map 03C8(b):h ~ [h, b] = h - 1 hbis a homo-
morphism of H into Z, and 1/1 is a homomorphism of L into the additive
group H* = Hom (H, Z), consisting of all abstract group homomor-
phisms of H into Z.

Let U denote the image of 1/1, and for each finite subgroup E of H, let

If F is a finite normal subgroup of G containing E, then F is L-invariant,
L/CL(F) is finite, and 03C8(CL(F) ~ E~. Therefore El has finite index in U.
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The subgroups E~ form a separating filter base of subgroups of finite
index in U, and induce on it a cofinite topology in the sense of [3]. The
fact that 03A8(CL(F)) ~ E~ as above shows that 03C8 is continuous with respect
to the topologies of L and U. Since L is compact and U is Hausdorff,
03C8 is a closed map, and so maps the closure L of A onto the closure T of
T = 03C8(A). Thus U = T We have

Furthermore, T is compact, being the continuous image of the compact
space L. Hence T is a completion of the cofinite group T (cf. [3]), in the
topology induced on T by T

Let b E L, h E H. Then hb = h[h, b] = h · (03C8(b))(h), and it follows easily
that, for b, b’ E L, Hb = Hb’ if and only if 03C8(b) = 03C8(b’). Thus, from (2),

We now need to assemble enough information about T to be able to
read off the cardinal of its completion T from [3] Corollary 3.6.
Now by assumption, HG = 1. Therefore, if 1 ~ h E H, there exists an

element a E A such that h 0 Ha. Since ha = h · (03C8(a))(h), this means that
(03C8(a))(h) ~ 1. Therefore

in the sense that if 1 ~ h E H, then there exists an element T E T such
that 03C4(h) ~ 1.

We also have :

For let a be an element of A such that 03C8(03B1) = i, and let a be an element
of G inducing the inner automorphism a. Then, if h E H, (03C8(03B1))(h) =
[h, a] = [h, a]. But [H, a] is certainly finite as G is locally normal.
We need to recall that

Now since T is a completion of the cofinite group T, we obtain from
[3] Corollary 3.6 that 1 TI = 20", where a is the cardinal of the set of open
subgroups of T. In view of (3), the proof of the lemma may be completed
by showing that 6 = a. We now deduce this from (4), (5) and (6).
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Since each open subgroup of T has finite index, the number of open
subgroups of T is equal to the number of subgroups in any basis of
meighborhoods of 0 in T. We therefore calculate the number of subgroups
ET = {03C4 ~ T : 03C4(E) = 01 = T n Eb, as E ranges over the finite sub-

groups of H ; these form a basis of neighborhoods of 0 in T.
For each h ~ H, let x(h) be the element i - i(h) (i E T) of T * = Hom ( T, Z).

Then x is a homomorphism of H into the additive group T*. If 1 ~ h E H,
then by (4), there exists T e T such that 03C4(h) ~ 1. Thus (~(h))(03C4) ~ 1, and
~(h) ~ 0. Hence x is injective, and allows us to identify H with a subgroup
of T*. Then

for each finite E ~ H.
For each finite E ~ H, define

H being identified with a subgroup of T * as above.
We claim that X(E) is finite. In fact, E j is a subgroup of finite index of

T, and so T = E j + D, for some finite subgroup D of T. Applying (5) to the
elements of D in turn, we find that there exists a finite subgroup Di of Z
such that ~(D) ~ D 1 for all ç ~ H ~ T*. Since any element of X(E) is
clearly determined by its effect on D, restriction to D gives an injective
map of X(E) into the finite group Hom (D, Dl). Thus, X(E) is indeed
finite.

Now from (7), E j is the intersection of the kernels of the members of
X(E), and so it follows that, for finite subgroups El and E2 of H, (El)T =
(E~2)T if and only if X(E1) = X(E2). Further, E ~ X(E), and so U X(E)
= H, as E ranges over all finite subgroups of H. Since |H| = a and each
X(E) is finite, the number of sets X(E) is a and hence the number of sub-
groups ET is a, since these are in bijective correspondence with the X(E).
The proof of Lemma 5.2 is now complete.
The next three lemmas provide further steps towards the general case

of Theorem 2. The first is perhaps somewhat unexpected.

LEMMA 5.3: If |G: HI  a, then e = 203B1.

PROOF : By Proposition 3, all we need to show is 03B2 ~ 203B1. We may
assume, by Lemma 5.1 (iii), that HG = 1. Let Z be the centre of G. Then
H n Z = 1, and so IHZIZI = IHI = a. Let U/Z = (HZ/Z)G/z’ If IHZ/UI
= a, then, as G/Z is residually finite, Theorem 1 and Lemma 5.1 (iii) give
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03B2 ~ 2". We may therefore assume that 1HZ: Ul  a. Then |U/Z| = a,
IH n Ul = a and (H n U)G = 1; also |LclGH| ~ |LclG(H n U)| by Lemma
5.1 (ii), and clearly IG: H ~ U|  a. Hence, considering H n U instead
of H, we may assume that

Let B be a normal subgroup of G of cardinal y  a such that G = HB,
and let C = CG(B). By Lemma 2.2, there exists a normal subgroup D of
G such that [D, G]  C ~ D and 1 G: D| ~ y  a. Let K = H n D. Then

IKI = a and KG = 1. Furthermore, from (8) [K, G] ~ C n HZ =
(H n C)Z as Z ~ C. But H n C = CH(B) ~ HG = 1. Hence [K, G] ~ Z.
Lemma 5.2 now gives |LclGK| = 2eB and Lemma 5.1 (ii) gives 03B2 = ILclaHI
~ 2’, as required.

LEMMA 5.4: Let X be a normal subgroup of index  oc ofG, let K = H n X,
and suppose IK/Kxl  oc. Then ff = 2a.

PROOF : Let L = KX. Consider the chain of subgroups H ~ HGK ~
HGL ~ HG. We have |H: HGK| ~ |H: K| ~ IG: XI  a, and IHGK: HaLl
~ |K : LI  oc. It follows that |L: L n Hal = |HGL: HG| = 03B1, and since
LG ~ HG n L, that |L: LGI = 03B3 ~ 03B1.

There exists a normal subgroup B of G, of cardinal  a, such that

G = XB. Let E = LB. Then as L a X, LG = ~b~B Lb = LE. Thus
IL/LEI = y, while lE: LI  y.

By Lemma 5.3, ILcl E LI = 2y. Hence, by Lemma 5.1 (i), |LclGL| ~ 203B3 ~ 22.
But if ç is a locally inner automorphism of G, then ç leaves X invariant,
and so LI’ = (Hep n X)x. Therefore distinct local conjugates of L lie in
distinct local conjugates of H, and fl = |LclGH| ~ 2’. The reverse inclu-
sion resulting from Proposition 3, the lemma is proved.

LEMMA 5.5: Suppose that H is a p-group and that every p’-element of
G normalizes H. Then ff = 2a.

PROOF : Let Q be the subgroup of G generated by the p’-elements of G,
and let P be any Sylow p-subgroup of G containing H. Then Q a G and
G = QP. Thus, H. = Hp, and since (by Proposition 3) all we have to
establish is that 03B2 ~ 2a, Lemma 5.1 (i) allows us to replace G by P and
assume that G is a p-group.

Let Z be the centre of G. Then, as in the first part of the proof of Lemma
5.3, we may assume that HG = 1, so that H n Z = 1, and that HZ « G.
Now in the case a = X., we have by Proposition 2 that G : N a(H)1 is
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infinite, and so we may appeal to Theorem B of Tomkinson [9] to
conclude that 03B2 ~ 2".
We next consider the case a &#x3E; N0. Let 1 = Z0 ~ Z1 = Z ~ Z2 ~ ...

be the upper central series of G. Since G is a locally normal p-group,
~~i=0 Zi = G, the union being understood to run over integers i ~ 0.
There exists an integer i ~ 1 such that IZi ~ H|  a, |Zi + 1 ~ HI oc,
since IHI = a and H = Uj (H n Zj). Since (Zi+l n H)G = 1, Lemma 5.1
(ii) allows us to assume that H ~ Zi + 1.
Now G/Z is residually finite, and so Lemma 2.3 furnishes a normal

subgroup X/Z of G/Z, of index  ce, such that X n H n Zi ~ Z. Let
K = H n X. If |K/KX|  a, then Lemma 5.4 gives fl = 203B1. But [K, X] ~
HZnZinX (as HZ ~ G and H ~ Zi+1) = (H ~ Zi)Z ~ X = (N n
Zi n X)Z n X = Z n X. Hence [K, X, X] = 1. By Lemma 5.2, if,

IKIKxl = 03B1, we obtain |LclXK| = 2". Lemma 5.1 (ii) now yields 03B2 ~ 2",
as required.

Now we are in a position to complete the proof of Theorem 2 by a
construction similar to that used in proving Theorem 1’.

PROOF OF THEOREM 2: We again notice that G : NG(H) is infinite, by
Proposition 2, and appeal to Theorem B of Tomkinson [9] to deal with
the case a = Nol
We now assume that a &#x3E; No* As at the beginning of the proof of

Lemma 5.3, writing Z = Z(G), we may assume that HG = 1, H n Z = 1,
and HZ ~ G. We have (HZ)’ = H’, and so H’ ~ G. Hence H’ - 1, and
H is abelian. Since a &#x3E; X., there exists a prime p such that the Sylow
p-subgroup HP of H has cardinal a. Since HpZ ~ G and Hp = H n HpZ,
Lemma 5.1 (ii) allows us to replace H by Hp and assume that H is an
abelian p-group. Then the normal closure L of H in G lies in the Sylow
p-subgroup of HZ and so is an abelian p-group.
We now consider systems of pairs

where N. is a finite normal subgroup of G, x03BB is a p’-element of N., and

It is immediate that the elements x03BB occurring in such a system are all
distinct. The set of all such systems may be partially ordered by set
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theoretic inclusion, and Zorn’s Lemma yields the existence of a maximal
such system, say the system (9).
We now claim that

Suppose then that this is not so, and let N = N03BB : 03BB E 039B&#x3E;, a normal sub-
group of cardinal  a of G. Let C = CG(N). By Lemma 2.2, there exists
a normal subgroup D of index  a in G, such that [D, G] ~ C ~ D
and [D, N] ~ Z. Let K = H n D. If |K/KD|  a, then Lemma 5.4 yields
03B2 = 203B1. Therefore, we may suppose that IKIKDI = a.
Now K is a p-group. If every p’-element of D normalizes K, then

Lemma 5.5 gives ILCIDKI = 203B1, Lemma 5.1 gives |LclGH| ~ 203B1, and

Proposition 3 gives fl = 2". Therefore we may assume that there exists a
p’-element y of D which does not normalize K. Let M be a finite normal
subgroup of G contained in D, containing y, such that (K n M)y ~ KnM,
that is, (H n M)y ~ H n M. Let E A. Since [D, N] ~ Z, we have
[L n N,, y, y] = 1, and since L n N. is a normal p-subgroup of G and y
is a p’-element, [L n NA, y] = 1. Furthermore,

and hence [L n M, x03BB] = 1 as before. Thus the pair (M, y) can be ad-
joined to the system (9), contradicting its maximality.
We have now established (10). The remainder of the proof is essentially

a verbatim repetition of the last part of the proof of Theorem 1’, and we
omit it. Theorem 2 is now established.
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